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Abstract: Most papers in the scheduling field assume that a job can be processed by only one
machine at a time. Namely, they use a one-job-on-one-machine model. In many industry settings,
this may not be an adequate model. Motivated by human resource planning, diagnosable
microprocessor systems, berth allocation, and manufacturing systems that may require several
resources simultaneously to process a job, we study the problem with a one-job-on-multiple-
machine model. In our model, there are several alternatives that can be used to process a job. In
each alternative, several machines need to process simultaneously the job assigned. Our purpose
is to select an alternative for each job and then to schedule jobs to minimize the completion time
of all jobs. In this paper, we provide a pseudopolynomial algorithm to solve optimally the
two-machine problem, and a combination of a fully polynomial scheme and a heuristic to solve
the three-machine problem. We then extend the results to a generalm-machine problem. Our
algorithms also provide an effective lower bounding scheme which lays the foundation for
solving optimally the generalm-machine problem. Furthermore, our algorithms can also be
applied to solve a special case of the three-machine problem in pseudopolynomial time. Both
pseudopolynomial algorithms (for two-machine and three-machine problems) are much more
efficient than those in the literature.© 1999 John Wiley & Sons, Inc. Naval Research Logistics 46:
57–74, 1999

INTRODUCTION

Due to the popularity of just-in-time and total quality management concepts, scheduling has
played an important role in satisfying customer’s expectation for on-time delivery. In the last
four decades, many papers have been published in the scheduling area. There is a common
assumption in the scheduling literature of a one-job-on-one-machine pattern. That is, at a given
time, each job can be processed on only one machine. In many industry applications, this may
not be an adequate model. Namely, a job may be processed simultaneously by several machines.
For example, in semiconductor circuit design workforce planning, a design project is to be
processed bym persons (a team of people). The project containsn tasks, and each task can be
worked on by one of a set of alternatives, where each alternative contains one or more persons
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working simultaneously on that particular task. Task 1 can either be handled by person 1 and
person 2 together, by person 1 and person 3 together, or just handled by person 1 alone. The
processing time of each task depends on the group being assigned to handle the task. A group
is formed when a set of people is working on a particular task, but a person may not belong to
a fixed group all the time. Our goal is to assign thesen tasks tom persons in order to minimize
the project finishing time. Other applications can be found in (i) the berth allocation problems,
where a large vessel may occupy several berths for loading and/or unloading, (ii) diagnosable
microprocessor systems (Krawczyk and Kubale [20]), where a job must be performed on
parallel processors in order to detect faults, (iii) manufacturing, where a job may need machines,
tools, and people simultaneously, and (iv) scheduling a sequence of meetings where each
meeting requires a certain group of people (Dobson and Karmarker [13]). In all the above
examples, one job may need to be processed by several machines simultaneously. In literature
we call this multiprocessor task scheduling(Drozdowski [15]) or aone-job-on-multiple-
machineproblem (Lee and Cai [24]).

We are interested in the problem with a one-job-on-multiple-machine pattern. To describe the
problem concisely we introduce the notation first.

There aren jobs to be processed onm machines, and

Ji : job i , i 5 1, . . . ,n,
Mj : machinej , j 5 1, . . . ,m,
Ci : completion time forJi,

Cmax : makespan5 Max{ Ci: i 5 1, . . . ,n},
N(i ) : the number of alternative machine sets to which jobJi can be assigned,

ti ,I : the processing time of jobJi if it is assigned to the processors in setI , where
I is a set of machines (for example,ti ,12 is the processing time ofJi assigned
to Processors 1 and 2).

In this paper,job and taskwill be used interchangeably, andmachineandprocessorwill also
be used interchangeably.

For example, we may have four jobs to be processed by three machines. The alternative
machine sets that can process each job are shown in the following matrices.J1 can be processed
by one of six alternatives (N(1) 5 6): { M1,M2,M3}, { M1,M2}, { M1,M3}, { M2,M3}, { M2}
or { M3}, with corresponding processing timest1,123 5 2, t1,12 5 3, t1,13 5 3, t1,23 5 3, t1,2

5 6, and t1,3 5 8. Therefore, ifJ1 is processed by the first alternative: {M1,M2,M3}
(represented by the first column in the first matrix where an entry of 1 in rowj means thatMj

belongs to alternative 1), then the processing time ist1,1235 2. Our purpose is to schedule jobs
with a particular objective function.

J1: 3
M1: 1 1 1 0 0 0
M2: 1 1 0 1 1 0
M3: 1 0 1 1 0 1
t1,I: 2 3 3 3 6 8

4 , J2: 3
M1: 1 0 1 0
M2: 1 1 0 1
M3: 1 1 0 0
t2,I: 4 5 8 6

4 ,

J3: 3
M1: 0 1 0 0
M2: 1 0 1 0
M3: 1 0 0 1
t3,I: 5 8 8 8

4 , J4: 3
M1: 1 1 0 0
M2: 1 0 1 0
M3: 0 0 0 1
t4,I: 2 4 4 4

4 .
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In general, for them-machine problem, the maximum possible number of alternative sets for

any job isSm
1D 1 Sm

2D 1 · · · 1 Sm
mD. Actually, for notational convenience we can always

assume thatN~i! 5 Sm
1D 1 Sm

2D 1 · · · 1 Sm
mD for all i and lettiI 5 ` for thoseI such that

job i cannot be processed in parallel by processors with indices inI . In the above example,t2,12,
t2,13, andt2,3 are all equal tò . In this paper, we are particularly interested inm 5 2 and 3.
Hence for alli , we haveN(i ) 5 3 and 7 form 5 2 and 3 respectively.

There are two special cases that have been studied in the scheduling literature. In the first
special case,N(i ) 5 1 for all i . Namely, for each job a specificallyfixed set of machines is
assigned to it. We call this problem afixed multiprocessor task scheduling problem. For
example, if onlyt1,1, t2,23, t3,23, and t4,3 are finite numbers in the above example, then our
problem becomes a fixed multiprocessor task scheduling problem. Krawczyk and Kubale [20],
Kubale [21], Hoogeveen, van de Velde, and Veltman [18], Brucker [9], and Kramer [19] study
the problem with the objective of minimizing themakespanunder different machine configu-
rations and constraints. Dobson and Karmarkar [13], Dobson and Khosla [14], Hoogeveen, van
de Velde, and Veltman [18], Brucker [9], and Cai, Lee, and Li [12] study the problem with
objective function related toweighted mean flow time.Bianco et al. [2], Brucker [9], Bianco et
al. [3], and Lee, Lei, and Pinedo [26] examine the problem with an objective related tolateness.
Most of the papers above study parallel-machine problems while Brucker and Kramer [10, 11]
study other machine configurations such as flow shop, open shop and job shop.

The second class of problems assumes that each job may require a fixednumberof processors
working simultaneously, yet the machines required arenot specified.In the example above, if
only t1,12, t1,13, t1,23, t2,123, t3,1, t3,2, t3,3, t4,1, t4,2, and t4,3 are finite numbers, then it is
equivalent to the problem whereJ1 needs to be processed by two machines (any two machines
simultaneously with processing time 3),J2 by three machines simultaneously (with processing
time 4) and jobsJ3 andJ4 by only one machine (with processing times 8 and 4, respectively).
We call this problem asizedmultiprocessor task scheduling problem. Blazewicz, Weglarz, and
Drabowski [8], Blazewicz, Drabowski, and Weglarz [5], Du and Leung [16], and Blazewicz et
al. [7] study the problem of minimizingmakespan.Lee and Cai [24] study the problem with an
objective of minimizingweighted mean flow time.Plehn [27] and Lee and Cai [24] study the
problem with alateness-relatedobjective function.

For the generalset multiprocessor task scheduling problem, Bianco et al. [1] provide a
dynamic programming algorithm with time complexitiesO(nT0

3) for the m 5 2 case, and
O(nT0

4) for a special case ofm 5 3, whereT0 is a finite upper bound of the makespan which
will be defined formally later. They also provide a heuristic for the generalm-machine problem
with error boundC/C* # m. Please see Veltmann, Lageweg, and Lenstra [28], Blazewicz,
Drozdowski, and Weglarz [6], Drozdowski [15], and Lee, Lei, and Pinedo [25] for detailed
surveys.

To refer to the problem under study more precisely, we follow the standard notation used in
scheduling literature. We use Pmusetj uCmax to denote the general problem of minimizing the
makespan of multiprocessor tasks in them-parallel-machine problem, where each job can be
processed by a set of alternatives, and each alternative contains one or more machines
simultaneously. Also, we use Pmufix j uCmax to denote the first special case where the alternative
assigned to each job has been fixed in advance.

The paper is organized in the following way. In Section 1, we study the problem character-
istics and provide some optimality properties. Section 2 discusses the two-machine problem. In
particular, we provide a pseudopolynomial algorithm with running timeO(nT0) to solve the
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problem optimally. Section 3 discusses the three-machine problem. We provide a pseudopoly-
nomial algorithm with running timeO(nT0

2) to find an effective lower bound for the optimal
makespan and to solve optimally a special case of the problem. Both of our pseudopolynomial
algorithms significantly improve previous results in the literature. We also provide a combina-
tion of a fully polynomial scheme and a heuristic method, with time complexityO(n3/«2) and
error bound (3/2)(11 «), to solve the general three-machine problem. Section 4 extends our
results to them-machine problem. Finally, Section 5 concludes with a summary and a discussion
of some future research topics.

1. PROBLEM CHARACTERISTICS AND OPTIMALITY PROPERTIES

In solving Pmusetj uCmax problem, we need to assign a machine set fromN(i ) alternatives for
each jobi , i 5 1, . . . ,n. We also need to decide the schedule for jobs (i.e., the order in which
the jobs are executed). We call these two decisions:assignmentandschedule.Note that these
two decisions can be made in parallel or in sequence. We can assign a machine set to each job
first, and then make scheduling decision for the jobs. It is also possible to make the assignment
and schedule decisions for a particular job before we consider other jobs. However, doing
assignments for all jobs before proceeding with a schedule decision has the advantage of
simplicity. We will follow this approach in this paper and call ittwo-phase method.Phase I is
an assignment decision while Phase II is a scheduling decision.

Since we will not consider scheduling in making the assignment decision, it is important to
choose the right objective function for the assignments. We will introduce an objective function
for the assignment decision problem so that an optimal assignment in terms of this objective
function provides an effectivelower boundfor the original Pmusetj uCmax problem.

For a given assignmentA, we useGI(A) to denote the set of jobs that are assigned to the
parallel execution of all processors with index in the setI . For example, for a given assignment
A, G1(A) consists of the jobs that are assigned to Processor-1,G12(A) consists of the jobs that
are assigned to be processed by Processor-1 and Processor-2 in parallel, andG123(A) consists of
the jobs that are assigned to be processed by Processor-1, Processor-2, and Processor-3 in
parallel. Define

Tj~A! 5 O
I[V~j!

O
Ji[GI~A!

ti,I,

whereV( j ) denotes the set of index sets that contain machinej . For example, in two-machine
problem,V(1) 5 {{1}, {12}} and V(2) 5 {{2}, {12}}. Given assignment A, Tj( A) is the sum
of processing times of all jobs for which processorj will participate in processing. In calculating
Tj( A) we haven’t considered the schedule decision, and henceTj( A) does not include any idle
time that may be incurred when the schedule is implemented.

For example, for the two-machine problem,

T1~A! 5 O
Ji[G1~A!

ti,1 1 O
Ji[G12~A!

ti,12,

T2~A! 5 O
Ji[G2~A!

ti,2 1 O
Ji[G12~A!

ti,12.
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For the three-machine problem,

T1~A! 5 O
Ji[G1~A!

ti,1 1 O
Ji[G12~A!

ti,12 1 O
Ji[G13~A!

ti,13 1 O
Ji[G123~A!

ti,123,

andT2( A) andT3( A) are defined similarly.
Let

TA 5 max
j51, . . . ,m

Tj~A!.

Our assignment problem is to find an assignmentA such thatTA is minimized. Namely,

(PA) min
A
HTA 5 max

j51, . . . ,m
H O

I[V~j!

O
Ji[GI~A!

ti,IJJ .

We call the above assignment problem Problem PA. In Problem PA, we are interested in
finding an assignmentA to minimizeTA. WhenA* is an optimal solution to Problem PA, then
clearly TA* is a lower boundof the original problem Pmusetj uCmax. Namely,TA* # T*, where
T* is the optimal value of the original problem. AlthoughTA* may not be the optimal objective
value for the original problem, we show that it is an effective lower bound.

In this paper, when we sayoptimal assignment,we meanoptimalsolution to problem PA, i.e.,
it may not be optimal to the original problem. In some special cases in which we can find a
schedule, based on a given assignment, that results in no idle time in each machine, the lower
bound we obtain from the assignment decision will also be an optimal value for our original
problem. Examples of these special cases include thetwo-machine problem and a special case
of three-machine problem.

In the two-machine problem,TA* is actually anoptimal value for the original problem,
P2usetj uCmax, as the following schedule will yield a feasible schedule with makespanTA* :

Scheduling Decision for the Two-Machine Problem:“Given the assignmentA*, first
schedule all the jobs inG12( A*) on Processor-1 and Processor-2 for parallel execution and then
schedule all jobs inG1( A*) on Processor-1 and all jobs inG2( A*) on Processor-2.”

Under this schedule, there is no idle time between jobs on each machine. Hence the
completion time will be equal toTA* . Thus, it is an optimal solution to the original problem
P2usetj uCmax. As we will show in Section 2, a pseudopolynomial algorithm can optimally solve
the assignment decision. Hence we can get the optimal solution to the original problem in
pseudopolynomial time.

For them-machine (m . 2) problem, the situation is much more complicated, except for a
special case of the three-machine problem, as we will show later. The problem has been proven
to be NP-hard in the strong sense even for the special case P3ufixedj uCmax. Namely, it is
impossible to solve the original problem optimally by a pseudopolynomial algorithm (Garey and
Johnson [17], p. 95). Even if we solve the assignment problem optimally, the optimal value of
the assignment is only a lower bound to the original problem. Furthermore, the schedule
decision is based on the given assignment we obtained in the assignment decision, hence we
cannot determine whether we have identified an optimal solution to the original problem if the
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final makespan of the schedule is greater thanTA*. Nevertheless,TA* does provide an effective
lower bound. In Section 3, we will provide a polynomial heuristic, based onTA* , with time
complexityO(n3/«2) and error bound of (11 «)(3/2).

2. TWO-MACHINE PROBLEM: P2 zSETJzCMAX

It is clear that the P2usetj uCmax problem is NP-hard because a special case of it, the classical
two-parallel-machine problem P2iCmax, is already NP-hard. As we discussed above, once we
solve Problem PA optimally, we can then easily find an optimal schedule for the original
problem. Hence in this section, we will focus on solving problem PA for the two-machine
problem. Note that there are at most three alternatives for each job [N(i ) # 3 for all i ]. Hence
we assume that each jobJi is associated with a triple (ti ,1, ti ,2, ti ,12), whereti ,I was defined
above. We will let the processing time of a particular alternative be infinite if there is no such
alternative for that job. The P2usetj uCmax problem is to schedule the jobs so that the makespan
is minimized.

Let tmin(i ) 5 min{ ti ,1, ti ,2, ti ,12}. We assume thattmin(i ) , ` for all i . Define

T0 5 O
i51

n

tmin~i !.

Bianco et al. [1] provide a pseudopolynomial dynamic programming algorithm with time
complexity O(nT0

3) to solve the problem. In this section, we provide a much more efficient
algorithm with time complexityO(nT0) to solve the problem optimally.

LEMMA 1: Let Topt be the makespan for an optimal schedule for the jobsJ1, . . . , Jn in the
P2usetj uCmax problem. ThenT0/ 2 # Topt # T0.

PROOF: Consider the following assignmentA: for i 5 1, . . ., n, assign jobJi to the
alternative with processing timetmin(i ). It is obvious that the assignment will have a makespan
T # T0, and henceTopt # T # T0. For each jobJi, the minimum processing time is at least
tmin(i ) on at least one machine; any processor assigned toJi has to spend time at leasttmin(i )
in order to process jobJi. Therefore, the minimum total sum of processing times for any
assignment to two machines is at leastT0. Thus, a lower bound of the optimal makespan isT0/ 2,
which is obtained by evenly distributingT0 to two machines. HenceTopt $ T0/ 2. h

Now we are ready to provide a pseudo-polynomial algorithm to solve our problem optimally.
The following dynamic programming algorithm aims to partition the jobsJ1, . . . , Jn into three
groupsG1( A), G2( A), G12( A) such that the valueTA is minimized.

Dynamic Programming Algorithm (DP1). Define the value of the functionf(i ,x) for i $
1, 0 # x , ` to be the minimumy such that there is an assignmentS for jobsJ1, . . . , Ji, for
which the total running time on Processor-1 isx, and the total running time on Processor-2 is
y, where we assume thatx andy are finite numbers. If there does not exist an assignment for
jobsJ1, . . . , Ji such that the total running time on Processor-1 isx and the total running time
on Processor-2 is finite, then we definef(i , x) 5 `.

Supposef(i ,x) 5 y. There are three possible ways to assign jobi to achievef(i ,x) 5 y: (1)
Assign jobi to Processor-1, (2) assign it to Processor-2, or (3) assign it to parallel execution on
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Processor-1 and Processor-2. Supposef(i ,x) 5 y is achieved by assigning jobi to Processor-1.
Since this assignment increases the running time of Processor-1 byti1 and does not increase the
running time of Processor-2, we must havef(i 2 1, x 2 ti1) 5 y. Similar analysis can be
applied for the other two possible assignments. Hence by the principle of optimality, we know
that

f~i ,x! 5 min$f~i 2 1, x 2 ti,1!, f~i 2 1, x! 1 ti,2, f~i 2 1, x 2 ti,12! 1 ti,12%

Now we are ready to develop recursive equations to solve the problem.

Initial conditions:

f~1,0! 5 t1,2,

f~1,t1,1! 5 0,

f~1,t1,12! 5 t1,12,

f~1,x! 5 ` for all otherx.

Recursive equations:

f~i ,x! 5 minH f~i 2 1, x 2 ti,1!,
f~i 2 1, x! 1 ti,2,

f~i 2 1, x 2 ti,12! 1 ti,12,

where i 5 2, . . . ,n, andx 5 0, . . . ,T0.

THEOREM 1: The optimal solution of P2usetj uCmax is equal to min{max(x, f(n,x)): x 5
0, . . . , T0}, and it can be found in time complexityO(nT0).

PROOF: Sincetmin(i ) , ` for all i , by Lemma 1 there must exist an optimal assignment for
J1, . . . , Jn such that the total running time on Processor-1 isx0, the total running time on
Processor-2 isy0, x0 # T0, y0 # T0, and the corresponding completion time is max{x0, y0).

Note thaty0 is a feasible solution given that the total processing time on Processor-1 isx0.
We havef(n,x0) # y0 by the definition off(n,x0). Hence min{max(x, f(n,x)): x 5 0, . . . ,T0}
# max{ x0,f(n,x0)} # max(x0, y0).

On the other hand, letx1 be the value such that max{x1, f(n, x1)} 5 min{max(x, f(n,x)):
x 5 0, . . . ,T0}. It means that there exists a feasible solution such that the total running time
on Processor-1 isx1 and the total running time on Processor-2 isf(n, x1). Clearly, it is a feasible
solution to P2usetj uCmax. Hence min{max(x,f(n,x)): x 5 0, . . . ,T0} 5 max{ x1,f(n, x1)} $
max{ x0, y0).

By the recursive equation, it is easy to see that the optimal solution can be found inO(nT0)
time and the actual assignment corresponding to thisf(n, x) can be constructed by backtracking
from f(n, x) in time O(n). h
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Now we can summarize our approach for solving P2usetj uCmax optimally. First, apply the
Dynamic Programming Algorithm (DP1) described above to solve Problem PA, denoting the
optimal assignment asA* and the corresponding objective value asTA* . Second, schedule all
jobs in G12( A*) on Processor-1 and Processor-2 for parallel execution and then schedule all
jobs in G1( A*) to Processor-1 and all jobs inG2( A*) to Processor-2. The optimal objective
value of P2usetj uCmax is equal toTA* found by solving PA.

REMARK 1: We can develop a fully polynomial approximation scheme, similar to the one
in the next section for the three-machine problem, to solve the problem P2usetj uCmax.

3. THREE-MACHINE PROBLEM: P3 zSETJzCMAX

As mentioned above, the three-machine problem is more complicated than the two-machine
problem. It has been proven that the more restricted problem P3ufix j uCmax, in which the
assignment is fixed, is strongly NP-hard (see Blazewicz et al. [4] and Hoogeveen et al. [18]).
Hence, our problem is also NP-hard in the strong sense. It is impossible to find a pseudopoly-
nomial algorithm to solve the three-machine problemoptimally(Garey and Johnson [17], p. 95).
Hence our goal is to provide a polynomial heuristic approach to solve the problem and also
provide an error bound analysis. Similarly to our analysis for the two-machine problem, we
solve the problem by first deciding the assignment and then the schedule. In the assignment
decision, a pseudopolynomial algorithm will be provided to find an optimal solution to problem
PA, which will serve as alower bound to our original problem. The assignment decision for the
three-machine problem is similar to that of the two-machine problem. However, the scheduling
decision for the three-machine problem is much more complicated than that for the two-machine
problem.

In the following subsections, we will first provide a pseudo-polynomial algorithm to find an
optimal assignment for Problem PA. Based on this approach, we then provide a fully polynomial
approximation scheme for the Problem PA. The purpose of the fully polynomial approximation
scheme is to combine it with a polynomial heuristic in the schedule decision and to solve the
whole problem in polynomial time. Error bound analysis for the heuristic will be provided.

3.1. Pseudopolynomial Dynamic Programming Algorithm: Optimal Assignment
Decision

Since there are at most seven possible alternatives for each job, we letJi 5 (ti ,1, ti ,2, ti ,3,
ti ,12, ti ,13, ti ,23, ti ,123), wheretiI was defined above. In this subsection, we will solve Problem
PA for the three-machine problem.

(PA) min
A
HTA 5 max

j51,2,3
H O

I[V~j!

O
Ji[GI~A!

ti,IJJ .

The optimal value of problem PA, denoted asTA* , will serve as alower boundfor our original
problem. Lettmin(i ) 5 min{ ti ,1, ti ,2, ti ,3, ti ,12, ti ,13, ti ,23, ti ,123}. Furthermore, we defineT0

5 ¥ i51
n tmin(i ).

LEMMA 2: T0/3 # TA* # T0.
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PROOF: Similar to that of Lemma 1. Omitted.

The following dynamic programming algorithm aims to find an optimal assignment to obtain
a lower bound, TA* , for the P3usetj uCmax problem.

Dynamic Programming Algorithm (DP2). Define the functionf(i , x, y) as the minimum
value of the total processing time assigned to Processor-3 (without counting possible idle time),
given that there exists an assignment forJ1, . . . , Ji such that the total processing time isx for
Processor-1 andy for Processor-2. The valuef(i ,x,y) equals̀ if there is no such assignment.
Similar to Theorem 1, we can develop recursive equations to get the optimal assignment
solution. There are seven alternatives in the recursive equations, as shown below.

Initial condition:

f~1,t1,1,0! 5 0,

f~1, t1,12, t1,12! 5 0,

f~1,t1,13,0! 5 H t1,13, if t1,13Þ t1,1,
0, otherwise,

f~1, 0, t1,2! 5 0,

f~1,0,t1,23! 5 H t1,23, if t1,23Þ t1,2,
0, otherwise,

f~1,0,0! 5 t1,3

f~1,t1,123,t1,123! 5 H t1,123 if t1,123Þ t1,12,
0, otherwise,

f~1,x,y! 5 ` for all otherx andy.

Recursive equations:

f~i , x, y! 5 min5
f~i 2 1, x 2 ti,1, y!,
f~i 2 1, x, y 2 ti,2!,
f~i 2 1, x, y! 1 ti,3,
f~i 2 1, x 2 ti,12, y 2 ti,12!,
f~i 2 1, x 2 ti,13, y! 1 ti,13,
f~i 2 1, x, y 2 ti,23! 1 ti,23,
f~i 2 1, x 2 ti,123, y 2 ti,123! 1 ti,123,

where i 5 2, . . . , n, x 5 0, . . . , T0, andy 5 0, . . . , T0.
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Optimal Solution:min{max( f(n,x,y), x, y): x 5 0, . . . , T0, y 5 0, . . . , T0}.
Time Complexity: O(nT0

2). Note that the actual assignment corresponding to thisf(n, x, y)
can be constructed by backtracking fromf(n, x, y) in time O(n).

Justification:There are seven possible allocations for each jobJi. Since in the optimum value
TA* for the assignment problem, we only care about the total processing time for each processor
(without counting the possible idle time), these seven cases correspond to the seven terms in the
recursive equation.

REMARK 2: It is interesting to note that the above pseudopolynomial dynamic programming
algorithm can also be used to solve the special case studied by Bianco et al. [1]. They provide
a pseudopolynomial algorithm with time complexityO(nT0

4) to solve a special case of the
problem P3usetj uCmax where at least one ofG12( A), G13( A), and G23( A) is empty for any
assignment (or has infinite processing time for each job in that set). They analyze 26 cases and
use a dynamic programming algorithm to solve the problem. Without loss of generality, we
assume thatG13( A) 5 A for anyA. For notational convenience, we denote such a problem as
Special P3zsetjzCmax. As indicated in Bianco et al. [1], any schedule to such a problem can
always be reduced to one of the schedules shown in Figure 1. In the following we show that
DP2, which is much more efficient [with time complexityO(nT0

2)] and is easier to understand,
can be applied to solve such a special case.

Figure 1. Detailed schedules for special P3usetj uCmax: subcase (a):T 5 T1( A); subcase (b):T 5 T2( A);
subcase (c):T 5 T3( A).
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LEMMA 3: DP2 can be applied to solveSpecialP3usetj uCmax in O(nT0
2) time.

PROOF: As discussed above,TA* is a lower bound forT*. Hence it suffices to show that
given the solution ofTA* , we can always construct a feasible solution to the originalSpecial
P3usetj uCmax problem with TA* 5 T*. Let A* be the optimal assignment constructed by
Algorithm DP2. Depending on whetherTA* equalsT1( A*), T2( A*), or T3( A*), we construct
a schedule illustrated in Figure 1 as subcases (a), (b), and (c), respectively. It is easy to verify
that, in each case, the schedule has completion time5 TA* . Namely, we have a feasible schedule
with an objective value equal to a lower bound of the optimal value. Clearly it is an optimal
solution. h

So far, we have shown how to provide a pseudopolynomial time algorithm with running time
O(nT0

2) for solving Problem PA. In the next subsection, we show how this pseudopolynomial
time algorithm provides the basis for a fully polynomial approximation scheme for solving
Problem PA. This fully polynomial approximation scheme plus a polynomial heuristic for the
schedule decision will yield a polynomial heuristic for the whole problem.

3.2. Fully Polynomial Scheme for the Assignment Decision

Let « . 0 be any constant. LetK 5 («T0)/(3n). Define a new job set

J9 5 $J9i 5 ~t9i,1, t9i,2, t9i,3, t9i,12, t9i,13, t9i,23, t9i,123!: i 5 1, . . . , n%,

wheret9i , j 5 ti , j/K, t9i , jk 5 ti , jk/K, t9i ,123 5 ti ,123/K, andx denotes the smallest integer
that is not less thanx. Also, let

t9min~i ! 5 min$t9i,1, t9i,2, t9i,3, t9i,12, t9i,13, t9i,23, t9i,123%

5 min$ti,1/K, ti,2/K, ti,3/K, ti,12/K, ti,13/K, ti,23/K, ti,123/K%

5 tmin~i !/K

and T90 5 ¥ i51
n t9min(i ).

According to the previous discussion, the pseudopolynomial time algorithm DP2 constructs
an optimal solutionAapx for the job setJ9 in Problem PA. Keeping the same job-processor
assignments,Aapx is also an assignment for the original job setJ. We useAapx as an
approximation to the optimal assignment for the original job setJ.

THEOREM 2: LetTAapx be the value for the assignmentAapx andTA* be the value for an
optimal assignmentA* for the assignment problem PA, both for the original job setJ. Then (i)
the assignmentAapx can be constructed in timeO(n3/«2) and (ii) TAapx/TA* # 1 1 «.

PROOF: The assignmentAapx can be constructed from the job setJ9, using the algorithm
DP2 that runs in timeO(n(T90)2)), where

T90 5 O
i51

n

t9min 5 O
i51

n

tmin~i !/K
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# O
i51

n

~tmin~i !/K 1 1!

5
1

K O
i51

n

tmin~i ! 1 n

5
T0

K
1 n

5
n~3 1 «!

«
.

Therefore, the assignmentAapx can be constructed in timeO(n(T90)2) 5 O(n3/«2), which is
O(n3) when« is a fixed constant.

Now we analyze the performance ratio for the assignmentAapx for jobsJ1, . . . , Jn. For the
assignmentAapx, let ti ,1

apx, ti ,2
apx andti ,3

apx be the processing times of jobJi assigned to Processor-1,
Processor-2, and Processor-3, respectively, byAapx. If Aapx assigns jobJi to Processor-1 alone,
then ti ,1

apx 5 ti ,1 and ti ,2
apx 5 ti ,3

apx 5 0; if Aapx assigns jobJi to Processor-2 alone, thenti ,1
apx 5

ti ,3
apx 5 0 and ti ,2

apx 5 ti ,2; if Aapx assigns jobJi to Processor-1 and Processor-2 for parallel
execution, thenti ,1

apx 5 ti ,12, ti ,2
apx 5 ti ,12, and ti ,3

apx 5 0, . . . , etc. Similarly, lett*i ,1, t*i ,2, and
t*i ,3 be the processing time of jobJi assigned to Processor-1, Processor-2, and Processor-3,
respectively, byA*. The valueTAapx for the scheduleAapx is

TAapx 5 maxH O
i51

n

ti,1
apx, O

i51

n

ti,2
apx, O

i51

n

ti,3
apxJ ,

and the valueTA* for the scheduleA* is

TA* 5 maxH O
i51

n

t*i,1, O
i51

n

t*i,2, O
i51

n

t*i,3J .

We have

TA* 5 maxH O
i51

n

t*i,1, O
i51

n

t*i,2, O
i51

n

t*i,3J
5 maxHK O

i51

n

t*i,1/K, K O
i51

n

t*i,2/K, K O
i51

n

t*i,3/KJ
$ maxHK O

i51

n

~t*i,1/K 2 1!, K O
i51

n

~t*i,2/K 2 1!, K O
i51

n

~t*i,3/K 2 1!J
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5 maxHK O
i51

n

t*i,1/K, K O
i51

n

t*i,2/K, K O
i51

n

t*i,3/KJ 2 Kn

$ maxHK O
i51

n

ti,1
apx/K, K O

i51

n

ti,2
apx/K, K O

i51

n

ti,3
apx/KJ 2 Kn.

This last inequality holds due to the fact that the scheduleAapx is an optimal assignment for the
job setJ9 and the value max{¥i51

n ti ,1
apx/K, ¥i51

n ti ,2
apx/K, ¥i51

n ti ,3
apx/K} is an optimal value

for the job setJ9.
Note that

K maxH O
i51

n

ti,1
apx/K, O

i51

n

ti,2
apx/K, O

i51

n

ti,3
apx/KJ

$ K maxH O
i51

n

ti,1
apx/K, O

i51

n

ti,2
apx/K, O

i51

n

ti,3
apx/KJ

5 maxH O
i51

n

ti,1
apx, O

i51

n

ti,2
apx, O

i51

n

ti,3
apxJ

5 T
Aapx

.

Thus we obtain

TA* 1 Kn $ TAapx or 1 1
Kn

TA*
$

TAapx

TA*
.

Note thatA* is an optimal assignment for the job setJ. According to Lemma 2,TA* $ T0/3.
Moreover, recall thatK 5 («T0)/(3n). We obtain (Kn)/TA* # «. This givesTAapx/TA* # 1 1 «. h

That is, the assignmentAapx is an«-approximation to the optimal assignment for the job setJ.

3.3. Approximating P3zsetjzCmax: Schedule Jobs

Given a job setJ 5 { Ji 5 (ti ,1, ti ,2, ti ,3, ti ,12, ti ,13, ti ,23, ti ,123): i 5 1, . . . ,n}, we first
apply theO(n3/«2)-time approximation algorithm described in the previous subsection to obtain
an assignmentA such thatTA # TA* (1 1 «) # T*(1 1 «), where T* is the minimum
makespan for the problem P3usetj uCmaxandTA* # T*. The assignmentA partitions the jobs into
seven groupsG1( A), G2( A), G3( A), G12( A), G13( A), G23( A), G123( A), where, as defined
above,GI( A) consists of the jobs that are assigned byA to the parallel execution of all
processors indexed inI . For notational convenience, we will deleteA in GI( A) in this
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subsection. Our next task is to schedule jobs on machines such that the makespan is as small as
possible.

For each job groupGj, we letT(Gj) be the total processing time of the system on the jobs
in Gj. That is,T(Gj) 5 ¥Ji [Gj

ti , j for j 5 1,2,3. Wedefine the notationT(Gjk) andT(G123)
similarly. Without loss of generality, we assume thatT(G1) $ T(G2) $ T(G3) (otherwise, we
simply reindex the processors). Based on assignmentA, we apply a polynomial heuristic to
schedule the jobs, and call the scheduleS, which keeps the job-processor assignment ofA but
also schedules the jobs which may lead to idle times between jobs. LetT be the completion time
of the final schedule. Although we cannot directly compareT to the optimal solutionT*, we are
able to show thatT # (3/ 2)(1 1 «)TA* , which implies thatT # (3/ 2)(1 1 «)T*.

Heuristic Schedule Algorithm 1:

1. Starting from time 0, execute the jobs inG123 on the three processors. Suppose that
this process finishes at times123.

2. Starting from times123, process the jobs inG12 on Processor-1 and Processor-2.
Suppose that this process finishes at times12.

3. Starting from times12, process the jobs inG13 on Processor-1 and Processor-3.
Suppose that this process finishes at times13.

4. Starting from times13, process the jobs inG23 on Processor-2 and Processor-3.
Suppose that this process finishes at times23.

5. Starting from times13, process the jobs inG1 on Processor-1. Starting from time
s23 process the jobs inG2 on Processor-2 and process the jobs inG3 on Proces-
sor-3.

THEOREM 3: LetT be the completion time for the schedule from the Heuristic Schedule
Algorithm 1 andT* be the optimal completion time for the original problem P3usetj uCmax. Then
T # (3/ 2)(1 1 «)T*.

PROOF: Since the Heuristic Scheduling Algorithm 1 keeps the same assignment as that ofA,
and we haveTA # TA* (1 1 «) # T*(1 1 «), it suffices to show thatT # (3/ 2)TA. By the
definition in the Heuristic Schedule Algorithm,T 5 max{s1, s2, s3}, wheresj is the completion
time of the last job on machinej . Note that by our assumption,T(G1) $ T(G2) $ T(G3).

CASE i: s1 $ s2. HenceT 5 s1. Clearly T 5 TA [Fig. 2(a)] sinceT 5 T1( A) and
Processor-1 has no idle time.

CASE ii: s1 , s2. HenceT 5 s2 [Fig. 2(b)]. In this case, the sum of total processing times
on the three machines equals

Ttotal 5 3s123 1 2~s12 2 s123! 1 2~s13 2 s12! 1 2~s23 2 s13! 1 ~s1 2 s13! 1 ~s2 2 s23!

1 ~s3 2 s23!

$ 2s23 1 2~s2 2 s25! because~s1 2 s13! 5 T~G1! $ T~G2! 5 ~s2 2 s23!

5 2s2 5 2T.
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Since there are three processors, we haveTA $ Ttotal/3 $ (2/3)T. That isT # (3/ 2)TA. This
completes the analysis for the algorithm since, by our assumptionT(G2) $ T(G3), we always
haves2 $ s3. h

REMARK 3: We point out that the ratioT/T* # (3/ 2)(1 1 «) is tight, based on our
Heuristic Schedule Algorithm 1. To prove this, we show that there exists an instance for which
the ratioT/T* is arbitrarily close to 3/2. Consider a four-job three-machine problem with the
following data. With the notationJi 5 { ti ,1, ti ,2, ti ,3, ti ,12, ti ,13, ti ,23, ti ,123}, we havet1,1 5
2 1 2d, t1,12 5 1, t2,2 5 2 1 2d, t2,23 5 1, t3,1 5 1 1 d, t3,3 5 1, t4,3 5 1 1 d, and
all otherti , j, ti ,kl as well asti ,123 are`, whered is a very small number. It is easy to verify that
the assignmentA* for this instance hasTA* 5 2 1 d and for any other assignmentA we have
TA $ 2 1 2d. Therefore, if we let« , d/(2 1 d), then an«-approximation to the assignment
A* must be an optimal. Thus, if we apply the«-approximation scheme to the assignment problem,
we will getG12 5 { J1}, G23 5 { J2}, G1 5 { J3}, andG3 5 { J4} with TA* 5 2 1 d. We then apply
the Heuristic Schedule Algorithm 1 and get the schedule shown in Figure 3a with makespanT 5 31
d. However, the optimal solution of our problem is the schedule shown in Figure 3b with makespan
T* 5 2 1 d. Thus the ratioT/T* approaches 3/2 sinced can be arbitrarily small.

REMARK 4: In Step 5 of Heuristic Schedule Algorithm 1, if there is an empty slot befores23

that is long enough for a job inG2, then instead of starting froms23, we will schedule that job
to start in that available slot. Similarly, we will schedule jobs inG3 into any available slot before
s23. Such a schedule will certainly result in a better makespan although it cannot improve the
worst case error bound.

In summary, we have provided a combination of a fully polynomial approximation scheme
with a polynomial heuristic schedule which is of running timeO(n3/«2) and performance ratio
T/T* # (3/ 2)(1 1 «) for the P3usetj uCmax problem.

Figure 2. Schedule for P3usetj uCmax with (a) s1 $ s2 and (b)s1 , s2.
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4. M-MACHINE PROBLEM: P MzSETJzCMAX

For each fixed integerm $ 4, we can extend the dynamic programming algorithm (DP2) to
find a lower bound for them-machine problem and then use the approximation scheme to find
a solution within a (11 «) error bound for the assignment. LetR be the maximum number of

alternatives to which a job can be assigned,R # Sm
1D 1 Sm

2D 1 · · · 1 Sm
mD. Sincem is fixed,

R is a fixed number too. Given that we have applied a fully polynomial scheme to obtain an
assignmentA such thatTA # TA* (1 1 «) # T*(1 1 «), whereA* is an optimal solution to
the assignment decision problem PA, andT* is the minimum makespan for the problem
Pmusetj uCmax, we then apply the following polynomial heuristic to schedule those jobs, assum-
ing thatT(G1) $ T(Gi) for all i .

Heuristic Schedule Algorithm 2:

1. Given a solution from the assignment step, divide jobs into following three sets.
S1: those jobs that need more than one machine to process and one of them must
be processor-1.
S2: those jobs that need more than one machine to process and none of them is
processor-1.
S3: jobs that require only one machine. Namely,S3 5 G1 ø G2 ø . . . ø Gm.

2. Schedule jobs inS1 on the corresponding machines at the earliest machine
available time and then jobs inS2 and finally jobs inS3 at the earliest machine
available time.

Figure 3. (a) Schedule obtained from the Schedule Algorithm; (b) optimal schedule.
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THEOREM 4: LetT be the completion time for the final schedule of the Heuristic Schedule
Algorithm 2 andT* be the optimal completion time for the original problem Pmusetj uCmax. Then
T # (m/ 2)(1 1 «)T*.

PROOF: Since the Heuristic Scheduling Algorithm 2 keeps the same assignment as that ofA,
and we haveTA # TA* (1 1 «) # T*(1 1 «), it suffices to show thatT # (m/ 2)TA. Let sj

be the completion time for the last job on machinej , thenT 5 max{s1, s2, . . . , sm}.
Note that Step 2 implies that there is no idle time on machine 1. Hences1 # TA. If T 5 s1,

thenT 5 s1 # TA # TA* (1 1 «) # T*(1 1 «), and we are done. Now suppose thatT 5 sj

. s1. Since each job inS1 andS2 needs more than one machine to process in parallel, and by
our assumption,T(G1) $ T(Gj), the sum of all processing times (if a job needs to be processed
by k machines in parallel, then we count its processing timek times) is not less than 2sj 5 2T.
HenceTA $ 2T/m. We haveT # (m/ 2)TA # (m/ 2)T*(1 1 «). h

5. CONCLUSION AND FUTURE RESEARCH

The general multiprocessor task scheduling problem can be attacked in two steps, assignment
and schedule. In the first step, we assign jobs to machines and then we schedule them in the
second step. We provide a pseudo-polynomial algorithm for the assignment problem, which
provides an effective lower bound for the original problem. These pseudo-polynomial time
algorithms can also be used to solve the two-machine problem and a special case of three-
machine problemoptimally. Both algorithms are significantly more efficient than those in the
literature. We also provide a fully polynomial approximation scheme to solve the assignment
problem. In the scheduling step, we provide a heuristic algorithm with error boundT/T* #
(m/ 2)(1 1 «) for the m-machine problem (m $ 2).

Future research includes solving the problems with: (i) other objective functions such as mean
flow time and tardiness related functions and (ii) job-precedence constraints and other job or
machine constraints such as machine availability constraints (Lee [22, 23]). We are also
interested in using integer programming and branch and bound schemes to solve this large scale
problem optimally.
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