View metadata, citation and similar papers at core.ac.uk brought to you b

provided by CiteSeerX

General Multiprocessor Task Scheduling

Jianer Chen! Chung-Yee Leé
1 Department of Computer Science, Texas A&M University, College Station, Texas, USA
77843-3112

2 Department of Industrial Engineering, Texas A&M University, College Station, Texas, USA
77843-3131

Received July 1997; revised June 1998; accepted 25 August 1998

Abstract: Most papers in the scheduling field assume that a job can be processed by only one
machine at a time. Namely, they use a one-job-on-one-machine model. In many industry settings,
this may not be an adequate model. Motivated by human resource planning, diagnosable
microprocessor systems, berth allocation, and manufacturing systems that may require several
resources simultaneously to process a job, we study the problem with a one-job-on-multiple-
machine model. In our model, there are several alternatives that can be used to process a job. In
each alternative, several machines need to process simultaneously the job assigned. Our purpose
is to select an alternative for each job and then to schedule jobs to minimize the completion time
of all jobs. In this paper, we provide a pseudopolynomial algorithm to solve optimally the
two-machine problem, and a combination of a fully polynomial scheme and a heuristic to solve
the three-machine problem. We then extend the results to a generalchine problem. Our
algorithms also provide an effective lower bounding scheme which lays the foundation for
solving optimally the generain-machine problem. Furthermore, our algorithms can also be
applied to solve a special case of the three-machine problem in pseudopolynomial time. Both
pseudopolynomial algorithms (for two-machine and three-machine problems) are much more
efficient than those in the literatur@. 1999 John Wiley & Sons, Inc. Naval Research Logistics 46:
57-74, 1999

INTRODUCTION

Due to the popularity of just-in-time and total quality management concepts, scheduling has
played an important role in satisfying customer’s expectation for on-time delivery. In the last
four decades, many papers have been published in the scheduling area. There is a common
assumption in the scheduling literature of a one-job-on-one-machine pattern. That is, at a given
time, each job can be processed on only one machine. In many industry applications, this may
not be an adequate model. Namely, a job may be processed simultaneously by several machines.
For example, in semiconductor circuit design workforce planning, a design project is to be
processed byn persons (a team of people). The project contaitasks, and each task can be
worked on by one of a set of alternatives, where each alternative contains one or more persons

Correspondence taC.-Y. Lee
Contract grant sponsor: National Science Foundation; contract grant numbers: CCR-9613805 and
DMI-9610229

© 1999 John Wiley & Sons, Inc. CCC 0894-069X/99/010057-18

https://core.ac.uk/display/357348199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

58 Naval Research Logistic¥ol. 46 (1999)

working simultaneously on that particular task. Task 1 can either be handled by person 1 and
person 2 together, by person 1 and person 3 together, or just handled by person 1 alone. The
processing time of each task depends on the group being assigned to handle the task. A group
is formed when a set of people is working on a particular task, but a person may not belong to
a fixed group all the time. Our goal is to assign thegasks tom persons in order to minimize
the project finishing time. Other applications can be found in (i) the berth allocation problems,
where a large vessel may occupy several berths for loading and/or unloading, (ii) diagnosable
microprocessor systems (Krawczyk and Kubale [20]), where a job must be performed on
parallel processors in order to detect faults, (iii) manufacturing, where a job may need machines,
tools, and people simultaneously, and (iv) scheduling a sequence of meetings where each
meeting requires a certain group of people (Dobson and Karmarker [13]). In all the above
examples, one job may need to be processed by several machines simultaneously. In literature
we call this multiprocessor task schedulinProzdowski [15]) or aone-job-on-multiple-
machineproblem (Lee and Cai [24]).

We are interested in the problem with a one-job-on-multiple-machine pattern. To describe the
problem concisely we introduce the notation first.

There aren jobs to be processed an machines, and

J, ijobi,i=1,...n,

M. : machinej, j = 1,... m,
C, : completion time forJ;,

Chax . makespan= Max{C;: i = 1, ... n},

N(i) : the number of alternative machine sets to which jJolsan be assigned,

. the processing time of jod if it is assigned to the processors in sgwhere

| is a set of machines (for examptg, , is the processing time a§ assigned
to Processors 1 and 2).

In this paperjob andtaskwill be used interchangeably, amdachineand processomwill also
be used interchangeably.

For example, we may have four jobs to be processed by three machines. The alternative
machine sets that can process each job are shown in the following maljicas be processed
by one of six alternativesN(1) = 6): {M,M,,M3}, { M,M,}, { M{,M3}, { M5,M3}, { M}
or {M}, with corresponding processing times, 3= 2,t; 1, = 3,t; ;3= 3,t; ,3= 3,1t ,
= 6, andt, ; = 8. Therefore, ifJ; is processed by the first alternativeM{,M,,M}
(represented by the first column in the first matrix where an entry of 1 injnoeans tha;
belongs to alternative 1), then the processing tinteg is; = 2. Our purpose is to schedule jobs
with a particular objective function.

Mg 111000 Mg 1 0 1 0

IMz 110110 My 1 1 0 1
Bl My 101101 % |mMy;1100]/"
|t 2 3 3 3 6 8 |t 4 5 8 6
(M 0 1 00 [M: 1 1 0 0]

My 1 0 1 0 My 1 0 1 0

9 My 100 1] Jo | 'my 00 0 1
| t,0 5 8 8 8 ty 2 4 4 4]

Chen and Lee: General Multiprocessor Task Scheduling 59

In general, for then-machine problem, the maximum possible number of alternative sets for

.. (m m m _ .
any job 'S<1> + <2> + -+ (m) Actually, for notational convenience we can always

m m m
assume thal(i) = (1 + (2 + -+ |y foralliand lett; = o for thosel such that

jobi cannot be processed in parallel by processors with indickdirthe above examplé; .,
t, 13 andt, ; are all equal toe. In this paper, we are particularly interestednin= 2 and 3.
Hence for alli, we haveN(i) = 3 and 7 form = 2 and 3 respectively.

There are two special cases that have been studied in the scheduling literature. In the first
special caseN(i) = 1 for all i. Namely, for each job a specificalfixed set of machines is
assigned to it. We call this problem faxed multiprocessor task scheduling problem. For
example, if onlyt, ,, t, 5 t3 >3 andt, 5 are finite numbers in the above example, then our
problem becomes a fixed multiprocessor task scheduling problem. Krawczyk and Kubale [20],
Kubale [21], Hoogeveen, van de Velde, and Veltman [18], Brucker [9], and Kramer [19] study
the problem with the objective of minimizing threakesparunder different machine configu-
rations and constraints. Dobson and Karmarkar [13], Dobson and Khosla [14], Hoogeveen, van
de Velde, and Veltman [18], Brucker [9], and Cali, Lee, and Li [12] study the problem with
objective function related taweighted mean flow tim&ianco et al. [2], Brucker [9], Bianco et
al. [3], and Lee, Lei, and Pinedo [26] examine the problem with an objective relatatttess.

Most of the papers above study parallel-machine problems while Brucker and Kramer [10, 11]
study other machine configurations such as flow shop, open shop and job shop.

The second class of problems assumes that each job may require auirbdrof processors
working simultaneously, yet the machines requiredrarespecifiedin the example above, if
only ty 15ty 13 t1 23 1o 103 t31, t3 5 a3 141, U4 @ndt, 5 are finite numbers, then it is
equivalent to the problem whedg needs to be processed by two machines (any two machines
simultaneously with processing time 3), by three machines simultaneously (with processing
time 4) and jobsl; andJ, by only one machine (with processing times 8 and 4, respectively).
We call this problem &izedmultiprocessor task scheduling problem. Blazewicz, Weglarz, and
Drabowski [8], Blazewicz, Drabowski, and Weglarz [5], Du and Leung [16], and Blazewicz et
al. [7] study the problem of minimizingnakespanLee and Cai [24] study the problem with an
objective of minimizingweighted mean flow tim&lehn [27] and Lee and Cai [24] study the
problem with alateness-relate@bjective function.

For the generabket multiprocessor task scheduling problem, Bianco et al. [1] provide a
dynamic programming algorithm with time complexiti€(nTs) for the m = 2 case, and
O(nTg) for a special case ah = 3, whereT, is a finite upper bound of the makespan which
will be defined formally later. They also provide a heuristic for the genaraiachine problem
with error boundC/C* = m. Please see Veltmann, Lageweg, and Lenstra [28], Blazewicz,
Drozdowski, and Weglarz [6], Drozdowski [15], and Lee, Lei, and Pinedo [25] for detailed
surveys.

To refer to the problem under study more precisely, we follow the standard notation used in
scheduling literature. We userifsef|C,,,,, to denote the general problem of minimizing the
makespan of multiprocessor tasks in theparallel-machine problem, where each job can be
processed by a set of alternatives, and each alternative contains one or more machines
simultaneously. Also, we userrFPfixj|Cmax to denote the first special case where the alternative
assigned to each job has been fixed in advance.

The paper is organized in the following way. In Section 1, we study the problem character-
istics and provide some optimality properties. Section 2 discusses the two-machine problem. In
particular, we provide a pseudopolynomial algorithm with running t@{@T,) to solve the

60 Naval Research Logistic¥ol. 46 (1999)

problem optimally. Section 3 discusses the three-machine problem. We provide a pseudopoly-
nomial algorithm with running time(nT3) to find an effective lower bound for the optimal
makespan and to solve optimally a special case of the problem. Both of our pseudopolynomial
algorithms significantly improve previous results in the literature. We also provide a combina-
tion of a fully polynomial scheme and a heuristic method, with time comple3ty*/¢) and

error bound (3/2)(1+ ¢€), to solve the general three-machine problem. Section 4 extends our
results to then-machine problem. Finally, Section 5 concludes with a summary and a discussion
of some future research topics.

1. PROBLEM CHARACTERISTICS AND OPTIMALITY PROPERTIES

In solving Am|sef|C,,,x problem, we need to assign a machine set (i) alternatives for
each jobi, i = 1, ... n. We also need to decide the schedule for jobs (i.e., the order in which
the jobs are executed). We call these two decisiassignmentandschedule.Note that these
two decisions can be made in parallel or in sequence. We can assign a machine set to each job
first, and then make scheduling decision for the jobs. It is also possible to make the assignment
and schedule decisions for a particular job before we consider other jobs. However, doing
assignments for all jobs before proceeding with a schedule decision has the advantage of
simplicity. We will follow this approach in this paper and calbito-phase method?hase | is
an assignment decision while Phase Il is a scheduling decision.

Since we will not consider scheduling in making the assignment decision, it is important to
choose the right objective function for the assignments. We will introduce an objective function
for the assignment decision problem so that an optimal assignment in terms of this objective
function provides an effectivieower boundfor the original Pn|sef|C,,, problem.

For a given assignme®, we useG,(A) to denote the set of jobs that are assigned to the
parallel execution of all processors with index in thelsdtor example, for a given assignment
A, G;(A) consists of the jobs that are assigned to ProcessGi-{A) consists of the jobs that
are assigned to be processed by Processor-1 and Processor-2 in paraligl,ghdconsists of
the jobs that are assigned to be processed by Processor-1, Processor-2, and Processor-3 in
parallel. Define

Tj(A): E E ti,li

1€Q() JEGIA)

where()(j) denotes the set of index sets that contain machif®r example, in two-machine
problem,((1) = {{1}, {12}} and Q(2) = {{2}, {12}}. Given assignmentA, T;(A) is the sum
of processing times of all jobs for which procesgaiill participate in processing. In calculating
T;(A) we haven't considered the schedule decision, and hg{@g does not include any idle
time that may be incurred when the schedule is implemented.

For example, for the two-machine problem,

Tl(A): E ti,l+ 2 ti,121

JEGLA) JEG12AA)

Tz(A): 2 ti,2+ 2 ti,12-

JEGHA) JEG12AA)

Chen and Lee: General Multiprocessor Task Scheduling 61

For the three-machine problem,

Tl(A): E L+ E ti,12+ E ti1s T 2 ti 103

JEGLA) JEG12AA) JEG13A) JEG124A)

andT,(A) andT5(A) are defined similarly.
Let

Ta= max Tj(A).

j=1,...m

Our assignment problem is to find an assignm&rsuch thatT 5 is minimized. Namely,

(PA) minlT,= max | > > t,tl.
A I=Lom () JeaiA)

We call the above assignment problem Problem PA. In Problem PA, we are interested in
finding an assignmerft to minimizeT,. WhenA* is an optimal solution to Problem PA, then
clearly T,* is alower boundof the original problem Bsef|C,,., Namely,T,* = T*, where
T* is the optimal value of the original problem. Although* may not be the optimal objective
value for the original problem, we show that it is an effective lower bound.

In this paper, when we sayptimal assignmentye mearoptimalsolution to problem PA, i.e.,
it may not be optimal to the original problem. In some special cases in which we can find a
schedule, based on a given assignment, that results in no idle time in each machine, the lower
bound we obtain from the assignment decision will also be an optimal value for our original
problem. Examples of these special cases includétbemachine problem and a special case
of three-machine problem.

In the two-machine problemT ,* is actually anoptimal value for the original problem,
P2sef|Cpax as the following schedule will yield a feasible schedule with makedpan

Scheduling Decision for the Two-Machine Problem:“Given the assignmenf*, first
schedule all the jobs 6, ,(A*) on Processor-1 and Processor-2 for parallel execution and then
schedule all jobs ir5;(A*) on Processor-1 and all jobs i@,(A*) on Processor-2.”

Under this schedule, there is no idle time between jobs on each machine. Hence the
completion time will be equal t@ ,*. Thus, it is an optimal solution to the original problem
P2sef|Cpax As we will show in Section 2, a pseudopolynomial algorithm can optimally solve
the assignment decision. Hence we can get the optimal solution to the original problem in
pseudopolynomial time.

For them-machine (n > 2) problem, the situation is much more complicated, except for a
special case of the three-machine problem, as we will show later. The problem has been proven
to be NP-hard in the strong sense even for the special cafiee®3C,,,,. Namely, it is
impossible to solve the original problem optimally by a pseudopolynomial algorithm (Garey and
Johnson [17], p. 95). Even if we solve the assignment problem optimally, the optimal value of
the assignment is only a lower bound to the original problem. Furthermore, the schedule
decision is based on the given assignment we obtained in the assignment decision, hence we
cannot determine whether we have identified an optimal solution to the original problem if the

62 Naval Research Logistic¥ol. 46 (1999)

final makespan of the schedule is greater than NeverthelessT 5+ does provide an effective
lower bound. In Section 3, we will provide a polynomial heuristic, based gn with time
complexityO(n®e?) and error bound of (& £)(3/2).

2. TWO-MACHINE PROBLEM: P2 |SET,|Cyax

It is clear that the HEeﬂCmaX problem is NP-hard because a special case of it, the classical
two-parallel-machine problem B2,,,,, is already NP-hard. As we discussed above, once we
solve Problem PA optimally, we can then easily find an optimal schedule for the original
problem. Hence in this section, we will focus on solving problem PA for the two-machine
problem. Note that there are at most three alternatives for eactNjob £ 3 for all i]. Hence
we assume that each jab is associated with a triplet;(;, t; », t; 15), wheret; | was defined
above. We will let the processing time of a particular alternative be infinite if there is no such
alternative for that job. The FPSZeHCmaX problem is to schedule the jobs so that the makespan
is minimized.

Let tin(i) = min{t; 4, t; 5, t; 15} We assume that,; (i) < o for all i. Define

TO = 2 tmin(i)-

Bianco et al. [1] provide a pseudopolynomial dynamic programming algorithm with time
complexity O(nT3) to solve the problem. In this section, we provide a much more efficient
algorithm with time complexityO(nT,) to solve the problem optimally.

LEMMA 1: Let T°P' be the makespan for an optimal schedule for the jhbs . . , J,, in the
P2sef|Cax Problem. ThenTy/2 = T°P' = T,

PROOF: Consider the following assignmeht for i = 1, ..., n, assign jobJ; to the
alternative with processing tinte,;(i). It is obvious that the assignment will have a makespan
T = T,, and hencd®P' = T = T,. For each johJ;, the minimum processing time is at least
tmin(i) ONn at least one machine; any processor assignddtas to spend time at leatst; (i)
in order to process jold;. Therefore, the minimum total sum of processing times for any
assignment to two machines is at ledst Thus, a lower bound of the optimal makespamgj&2,
which is obtained by evenly distributiri§, to two machines. Hencg&®"' = T,/2. O

Now we are ready to provide a pseudo-polynomial algorithm to solve our problem optimally.
The following dynamic programming algorithm aims to partition the jdps. . . , J,, into three
groupsG;(A), G,(A), G;,(A) such that the valu& , is minimized.

Dynamic Programming Algorithm (DP1). Define the value of the functiof{i, x) for i =
1, 0 = x < = to be the minimuny such that there is an assignmé&or jobsJ,, ..., J;, for
which the total running time on Processor-1xjsand the total running time on Processor-2 is
y, where we assume thatandy are finite numbers. If there does not exist an assignment for
jobsJ,, ..., J; such that the total running time on Processor-g &d the total running time
on Processor-2 is finite, then we defif{g, x) = o°.

Supposd(i,x) = y. There are three possible ways to assignijtd achievef(i,x) = y: (1)
Assign jobi to Processor-1, (2) assign it to Processor-2, or (3) assign it to parallel execution on

Chen and Lee: General Multiprocessor Task Scheduling 63

Processor-1 and Processor-2. Supgd@ise&) = y is achieved by assigning jakto Processor-1.
Since this assignment increases the running time of Processot-ldnd does not increase the
running time of Processor-2, we must haye — 1, X — t;;) = y. Similar analysis can be
applied for the other two possible assignments. Hence by the principle of optimality, we know
that

f(i,x) =min{f(i — 1, x —ti), f(i —1,X) + ti, f(i — 1, X — ti10) + ti1o

Now we are ready to develop recursive equations to solve the problem.

Initial conditions:

f(llo) = t1,21
f(litl,l) = 01
f(lvtl,lZ) = t112

f(1,x) = o for all otherx.
Recursive equations:

f(i —1,x—ty),
f(i,x) =miny f(i —1,%) +t,,
fli— 1, X —ti1n) + ti1a

wherei = 2, ... n,andx = 0, ... T,.

THEOREM 1: The optimal solution of H’é&aﬂcmax is equal to min{maxg, f(n,x)): x =
0,...,To}, and it can be found in time complexit®(nT,).

PROOF: Since,,; (i) < = for all i, by Lemma 1 there must exist an optimal assignment for
Ji, ..., J, such that the total running time on Processor-Xkgjsthe total running time on
Processor-2 iy,, Xg = To, Yo = T, and the corresponding completion time is max{y,).

Note thaty, is a feasible solution given that the total processing time on Processofs1 is
We havef(n, X,) = yg by the definition off(n, X). Hence min{maxg, f(n,x)): x =0, ... To}
= max{xg,f(n,%g)} = Mmax(Xy, Yo)-

On the other hand, let; be the value such that max{, f(n, x;)} = min{max(x, f(n,x)):

x =0, ...,Tg}. It means that there exists a feasible solution such that the total running time
on Processor-1 is; and the total running time on Processor-#(is x;). Clearly, it is a feasible
solution to P%ef|C,,,, Hence min{maxk,f(n,x)): x = 0, ... Tg} = max{x,,f(n, x,)} =
max{Xo, Yo)-

By the recursive equation, it is easy to see that the optimal solution can be fo@{d Q)
time and the actual assignment corresponding tofhisx) can be constructed by backtracking
from f(n, x) in time O(n). O

64 Naval Research Logistic¥ol. 46 (1999)

Now we can summarize our approach for solvingseflC,., ., optimally. First, apply the
Dynamic Programming Algorithm (DP1) described above to solve Problem PA, denoting the
optimal assignment a&* and the corresponding objective value Bs.. Second, schedule all
jobs in G, ,(A*) on Processor-1 and Processor-2 for parallel execution and then schedule all
jobs in G;(A*) to Processor-1 and all jobs i@,(A*) to Processor-2. The optimal objective
value of Pisef|C,,. is equal toT . found by solving PA.

REMARK 1: We can develop a fully polynomial approximation scheme, similar to the one
in the next section for the three-machine problem, to solve the problésefR2,,,,

3. THREE-MACHINE PROBLEM: P3 |SET,|Cyax

As mentioned above, the three-machine problem is more complicated than the two-machine
problem. It has been proven that the more restricted probleffixf3,,,, in which the
assignment is fixed, is strongly NP-hard (see Blazewicz et al. [4] and Hoogeveen et al. [18]).
Hence, our problem is also NP-hard in the strong sense. It is impossible to find a pseudopoly-
nomial algorithm to solve the three-machine problgmimally (Garey and Johnson [17], p. 95).
Hence our goal is to provide a polynomial heuristic approach to solve the problem and also
provide an error bound analysis. Similarly to our analysis for the two-machine problem, we
solve the problem by first deciding the assignment and then the schedule. In the assignment
decision, a pseudopolynomial algorithm will be provided to find an optimal solution to problem
PA, which will serve as dower bound to our original problem. The assignment decision for the
three-machine problem is similar to that of the two-machine problem. However, the scheduling
decision for the three-machine problem is much more complicated than that for the two-machine
problem.

In the following subsections, we will first provide a pseudo-polynomial algorithm to find an
optimal assignment for Problem PA. Based on this approach, we then provide a fully polynomial
approximation scheme for the Problem PA. The purpose of the fully polynomial approximation
scheme is to combine it with a polynomial heuristic in the schedule decision and to solve the
whole problem in polynomial time. Error bound analysis for the heuristic will be provided.

3.1. Pseudopolynomial Dynamic Programming Algorithm: Optimal Assignment
Decision

Since there are at most seven possible alternatives for each job, de=e(t; ,, t; ,, t; 3,
ti 12 ti 13 1 23 1 129, Wheret;; was defined above. In this subsection, we will solve Problem
PA for the three-machine problem.

(PA) min Ty= max! >, >ttt
A 1=123(1en() seciA)

The optimal value of problem PA, denotedTgs, will serve as dower boundor our original
problem. Lett i (i) = min{t; 1, t; 5, t; 3, ti 12, G 13 i 23 t; 105, Furthermore, we defing
= 2inzl tmin(i)-

LEMMA 2: Ty/3 = Tpe = To.

Chen and Lee: General Multiprocessor Task Scheduling 65
PROOF: Similar to that of Lemma 1. Omitted.

The following dynamic programming algorithm aims to find an optimal assignment to obtain
alower bound, ., for the P3sef|C,,.x problem.

Dynamic Programming Algorithm (DP2). Define the functiorf(i, x, y) as the minimum
value of the total processing time assigned to Processor-3 (without counting possible idle time),
given that there exists an assignmentJor . . . , J; such that the total processing timexigor
Processor-1 ang for Processor-2. The valuéi, x,y) equalsx= if there is no such assignment.
Similar to Theorem 1, we can develop recursive equations to get the optimal assignment
solution. There are seven alternatives in the recursive equations, as shown below.

Initial condition:
f(latl,lvo) = 01
f(1, t112 t1,12) =0,

t if ty137 t1 4,
f(1,t1150) = { 101,3 ot?\lénNiS:Lél,

f(1, 0,t;,) =0,
_ t1,23’ If t1,23 2 t1,21
f(1.04.2) = { 0, otherwise,
f(l,0,0) = t1,3

t if t11037 t11n
(Ltstid ={ 57 " cinenuice,

f(lxy) = for all otherx andy.
Recursive equations:

(1 — 1, x =ty),

fi—1,%x Y ty),

f(i —1,%Yy) + ts

f(Q, x, y) = min{ f(i = 1, X = ti15 Y — ti12),
fi—1,Xx—ts Yy + b

fi — 1, X, Y — tiza) + tigs
(=1, X — tina Y — 129 + ti1on

wherei = 2,...,n,x=0,...,Ty, andy =0, ..., T,.

66 Naval Research Logistic¥ol. 46 (1999)

Processor-1 Gias G2 G,
Processor-2 Gixs G, G, Ga3
Processor-3 Gin G; Ga3

Subcase (a): T=Ti(A)

Processor-1 Gz G2 Gy -

Processor-2 Gz G2 G, G2z
Processor-3 Gin G; Ga3
Subcase (b): T=T»(A)

Processor-1 | Gy G2 Gy _

Processor-2 | Gyas G2 G, Gas
Processor-3 | Gy23 G; Gas
Subcase (¢) T= T5(A)

Figure 1. Detailed schedules for special[B&|C,,,, subcase (a)l = T,(A); subcase (b)T = T,(A);
subcase ()T = T5(A).

Optimal Solution:min{max(f(n,x,y), X, y): x =0, ...,Tg,y =0, ..., o}

Time Complexity: @ T2). Note that the actual assignment corresponding tofthisx, y)
can be constructed by backtracking frdégn, x, y) in time O(n).

Justification:There are seven possible allocations for eachljoBince in the optimum value
T, for the assignment problem, we only care about the total processing time for each processor
(without counting the possible idle time), these seven cases correspond to the seven terms in the
recursive equation.

REMARK 2: It is interesting to note that the above pseudopolynomial dynamic programming
algorithm can also be used to solve the special case studied by Bianco et al. [1]. They provide
a pseudopolynomial algorithm with time complexi®(nT;) to solve a special case of the
problem P#ef|C,,. Where at least one db;,(A), G;5(A), andG,5(A) is empty for any
assignment (or has infinite processing time for each job in that set). They analyze 26 cases and
use a dynamic programming algorithm to solve the problem. Without loss of generality, we
assume tha®, 5(A) = O for any A. For notational convenience, we denote such a problem as
Special P&e}lcmax. As indicated in Bianco et al. [1], any schedule to such a problem can
always be reduced to one of the schedules shown in Figure 1. In the following we show that
DP2, which is much more efficient [with time complexi®(nT3)] and is easier to understand,
can be applied to solve such a special case.

Chen and Lee: General Multiprocessor Task Scheduling 67

LEMMA 3: DP2 can be applied to solvBpecialP3sef|C,,.,in O(nT?) time.

PROOF: As discussed aboVE,. is a lower bound foiT*. Hence it suffices to show that
given the solution off 5., we can always construct a feasible solution to the origBecial
P3sef|Cpax Problem with To. = T*. Let A* be the optimal assignment constructed by
Algorithm DP2. Depending on whethér,. equalsT,(A*), T,(A*), or T5(A*), we construct
a schedule illustrated in Figure 1 as subcases (a), (b), and (c), respectively. It is easy to verify
that, in each case, the schedule has completionirig.. Namely, we have a feasible schedule
with an objective value equal to a lower bound of the optimal value. Clearly it is an optimal
solution. O

So far, we have shown how to provide a pseudopolynomial time algorithm with running time
O(nT3) for solving Problem PA. In the next subsection, we show how this pseudopolynomial
time algorithm provides the basis for a fully polynomial approximation scheme for solving
Problem PA. This fully polynomial approximation scheme plus a polynomial heuristic for the
schedule decision will yield a polynomial heuristic for the whole problem.

3.2. Fully Polynomial Scheme for the Assignment Decision

Let e > 0 be any constant. L&k = (eT,)/(3n). Define a new job set

I ={J=(tiy, tin tis i tig tig)i =1, ...,n},

wheret; ; = [; /KOt = O j /KO t] 153 = [1,4 KO andxOdenotes the smallest integer
that is not less thar. Also, let

thin(i) = Min{t{y, tio, tia, 15 t1a t2s 1103
min{[; /KO 0 /KO O /KO O /KO O /KO @ KO @ 1,dKG
= |]mln(l)/KE|

andTo = 2Ly thn(i).

According to the previous discussion, the pseudopolynomial time algorithm DP2 constructs
an optimal solutionA®P* for the job set)’ in Problem PA. Keeping the same job-processor
assignmentsA®P* is also an assignment for the original job skt We use A?P* as an
approximation to the optimal assignment for the original jobJset

THEOREM 2: LetT s« be the value for the assignmeAP* and T,. be the value for an
optimal assignmen* for the assignment problem PA, both for the original job &eThen (i)
the assignmend??* can be constructed in tim@(n®/&?) and (i) Tpad Tae = 1 + &.

PROOF: The assignmei®™* can be constructed from the job skt using the algorithm
DP2 that runs in time(n(T,)?)), where

TE) = E t:nin: E |jtmln(l)/KD
i=1

i=1

68 Naval Research Logistic¥ol. 46 (1999)

= E (tmin(i)/K + 1)

i=1
12 .
= R E tmin(l) +n
i=1

= 1z”+ n

B N3+ &)

&

Therefore, the assignmeAf* can be constructed in tim@(n(Ty)?) = O(n%/&?), which is
O(n®) whene is a fixed constant.

Now we analyze the performance ratio for the assignméft for jobsJ,, ..., J,. For the
assignmenf®P, lett?h, t26*andt?5* be the processing times of jdbassigned to Processor-1,
Processor-2, and Processor 3, respectiverA,W. If A%P*assigns johJ; to Processor-1 alone,
thent?? = t; ; andt?d* = t?5* = 0; if A*"* assigns johJ; to Processor-2 alone, theff™ =
t22* =0 andtapx =t if Aapx assigns johJ; to Processor-1 and Processor-2 for parallel
executlon ther‘uapx =t P8 = t; 15, @ndt?®* = 0, ..., etc. Similarly, let] ,, t7,, and

t7 3 be the processing time of joly aSS|gned to Processor-1, Processor-2, and Processor-3,
respectively, byA*. The valueT ,ax for the schedulA®P* is

i=1 =

T pere = max{ >t E 2% E tapX],

and the valu€T 5. for the schedul&* is

n n n
Ta = mah{ >othL > th, > t’f,s]-

i=1 i=1 i=1

We have

n n n
TA* = ma){ z ttlv E t’i‘,Z! E tt3}
i=1 i=1 i=1

max{K DK, K DK, K D t’is/K]
i=1 i=1

i=1

i=1 i=1 i=1

>ma>{K D (/KO- 1), K E (At/KO—- 1), K 2 (/KO- 1)}

Chen and Lee: General Multiprocessor Task Scheduling 69

= max{K > A/KOK Y d*/KOK Y D’[JKD} —Kn

i=1 i=1 i=1

= max{K > OARYKO K Y, O%YKO K Y, [lﬁgX/K# — Kn.

i=1 i=1 i=1

This last inequality holds due to the fact that the schedd® is an optimal assignment for the
job setd’ and the value maxg{, OP%YKO 2L, OPYYKO 2L, AFFYKD is an optimal value
for the job set)’.

Note that

K ma>{ > aFyKO Y, %YKo Dﬁgvm]

i=1 i=1 i=1

n n n
=K max{ > IK, D) YK, tﬁEX/K]

i=1 i=1 i=1

n n n
= max{ PR ARG tﬁ%’*]

i=1 i=1 i=1

Aapx
Thus we obtain

K n T AaPX
=

" = T peox = .
Ta + Kn TAp0r1+TA* T

Note thatA* is an optimal assignment for the job s&tAccording to Lemma 2T, = T4/3.
Moreover, recall thaK = (eT)/(3n). We obtain Kn)/T,« = e. This givesT /Ty, = 1 + &. O

That is, the assignme is ane-approximation to the optimal assignment for the jobJet

3.3. Approximating P3se{|C,,,.. Schedule Jobs

Given a job setl = {J; = (t; 1, ti 2 iz b 12 b1z tios 1090 1 = 1, ... N}, we first
apply theO(n®/¢?)-time approximation algorithm described in the previous subsection to obtain
an assignmenA such thatT, = Ta (1 + &) = T*(1 + €), whereT* is the minimum
makespan for the problem B8{|C,,,,andT . = T*. The assignmen partitions the jobs into
seven group$,(A), G,(A), G3(A), G1x(A), Gi3(A), G,o5(A), Gyo5(A), where, as defined
above, G,(A) consists of the jobs that are assigned Myto the parallel execution of all
processors indexed ih. For notational convenience, we will delefe in G,(A) in this

70 Naval Research Logistic¥ol. 46 (1999)

subsection. Our next task is to schedule jobs on machines such that the makespan is as small as
possible.
For each job grouis;, we letT(G;) be the total processing time of the system on the jobs
in G;. That is,T(G)) = 2, g, ti,; forj = 1,2,3. Wedefine the notatio(G;,) andT(G4)
similarly. Without loss of generality, we assume ti§G,) = T(G,) = T(G;) (otherwise, we
simply reindex the processors). Based on assignmente apply a polynomial heuristic to
schedule the jobs, and call the schedlevhich keeps the job-processor assignmenA difut
also schedules the jobs which may lead to idle times between job$.hesthe completion time
of the final schedule. Although we cannot directly compgte the optimal solutiom™*, we are
able to show thal = (3/2)(1 + &)Ta«, Which implies thatfT = (3/2)(1 + &)T*.

Heuristic Schedule Algorithm 1:

1. Starting from time 0, execute the jobsG3,50n the three processors. Suppose that
this process finishes at ting 5.

2. Starting from times, ,5, process the jobs iG,, on Processor-1 and Processor-2.
Suppose that this process finishes at tspe

3. Starting from times, ,, process the jobs i%;; on Processor-1 and Processor-3.
Suppose that this process finishes at tspg

4. Starting from times, 5, process the jobs i%,; on Processor-2 and Processor-3.
Suppose that this process finishes at tspg

5. Starting from times, 5, process the jobs i®, on Processor-1. Starting from time
S,3 process the jobs i, on Processor-2 and process the job$inon Proces-
sor-3.

THEOREM 3: LetT be the completion time for the schedule from the Heuristic Schedule
Algorithm 1 andT* be the optimal completion time for the original probIem|§é;|Cmax Then
T = (3/2)(1 + &)T*.

PROOF: Since the Heuristic Scheduling Algorithm 1 keeps the same assignment asithat of
and we havelT, = Ta.(1 + &) = T*(1 + ¢), it suffices to show thal = (3/2)T,. By the
definition in the Heuristic Schedule Algorithi,= max{s,, s,, s3}, Wheres; is the completion
time of the last job on machine Note that by our assumptioi(G,) = T(G,) = T(Gy).

CASE i:s; = s,. HenceT = s;. Clearly T = T, [Fig. 2(a)] sinceT = T,(A) and
Processor-1 has no idle time.

CASE ii: s; < s,. HenceT = s, [Fig. 2(b)]. In this case, the sum of total processing times
on the three machines equals

Tiotal = 3S123+ 2(S12 — Si129) + 2(S13— S12) + 2(Sp3— S1a) + (S1 — S1a) + (S, — Sp9)
+ (S5~ S»)
=283+ 2(s; — S5 becausds, — s;5) = T(G) = T(G,) = (S, —)

= 2s,=2T.

Chen and Lee: General Multiprocessor Task Scheduling 71

5123 512 513 8
Processor-1 G2 G G3 G,
Processor-2 G G2 Gaa G,
Processor-3 G2 Gi3 Gy Gs

823 53 82
5123 512 S13 51 S2
Processor-1 G
Processor-2 Gys G,
Processor-3 Gy | G;
S23 83

Figure 2. Schedule for P8ef|C ., With () s, = s, and (b)s, < s,.

Since there are three processors, we HBye= T,.../3 = (2/3)T. That isT = (3/2)T. This
completes the analysis for the algorithm since, by our assump{iég) = T(G;), we always
haves, = s. O

REMARK 3: We point out that the ratid@/T* = (3/2)(1 + &) is tight, based on our
Heuristic Schedule Algorithm 1. To prove this, we show that there exists an instance for which
the ratioT/T* is arbitrarily close to 3/2. Consider a four-job three-machine problem with the
following data. With the notatiod; = {t; 1, tj 5, tj 3, tj 12, ti 13 ti 23 ti 123, We havet, ; =
2 + 28, t112 1, t22—2+28 thos=1,t3, =1+ 8, t33=1,t,,=1+ 3, and
all othert; ;, t; ,, as well ag; ;,5are«, wheres is a very small number. It is easy to verify that
the assignmem* for this instance ha3 .. = 2 + & and for any other assignmeAtwe have
T, = 2 + 28. Therefore, if we leke < 8/(2 + 8), then ane-approximation to the assignment
A* must be an optimal. Thus, if we apply tleapproximation scheme to the assignment problem,
we will getG,, = { 3.}, Go3 = {1}, G; = { I3}, and G5 = { I} with T, = 2 + 6. We then apply
the Heuristic Schedule Algorithm 1 and get the schedule shown in Figure 3a with maKes&at
8. However, the optimal solution of our problem is the schedule shown in Figure 3b with makespan
T* = 2 + 6. Thus the ratiol/T* approaches 3/2 sinc&can be arbitrarily small.

REMARK 4: In Step 5 of Heuristic Schedule Algorithm 1, if there is an empty slot befpre
that is long enough for a job iG,, then instead of starting fromsy5, we will schedule that job
to start in that available slot. Similarly, we will schedule job&iginto any available slot before
S,3. Such a schedule will certainly result in a better makespan although it cannot improve the
worst case error bound.

In summary, we have provided a combination of a fully polynomial approximation scheme
with a polynomial heuristic schedule which is of running ti@én®/e?) and performance ratio
T/T* = (3/2)(1 + &) for the P3sef|C,,,.x Problem.

72 Naval Research Logistic¥,ol. 46 (1999)

1 2+0
Processor-1 Ji I3
Processor-2 i I
Processor-3 - i) J4

1 2 349

1 2+0
Processor-1 1 J3
Processor-2 I J>
Processor-3 J4 I,
149 2+9

Figure 3. (a) Schedule obtained from the Schedule Algorithm; (b) optimal schedule.

4. M-MACHINE PROBLEM: P M|SET,|Cyax

For each fixed integan = 4, we can extend the dynamic programming algorithm (DP2) to
find a lower bound for then-machine problem and then use the approximation scheme to find
a solution within a (1+ &) error bound for the assignment. LRtbe the maximum number of

m m m
alternatives to which a job can be assigneds <1> + (2> + -+ <m> Sincemis fixed,

R is a fixed number too. Given that we have applied a fully polynomial scheme to obtain an
assignmenA such thafT, = Tx(1 + &) = T*(1 + &), whereA* is an optimal solution to

the assignment decision problem PA, aftl is the minimum makespan for the problem
Pm|se}|Cmam we then apply the following polynomial heuristic to schedule those jobs, assum-
ing thatT(G,) = T(G;) for all i.

Heuristic Schedule Algorithm 2:

1. Given a solution from the assignment step, divide jobs into following three sets.
S,: those jobs that need more than one machine to process and one of them must
be processor-1.

S,: those jobs that need more than one machine to process and none of them is
processor-1.
S;: jobs that require only one machine. NameB4, = G, U G, U --- U G,

2. Schedule jobs inS; on the corresponding machines at the earliest machine
available time and then jobs i8, and finally jobs inS; at the earliest machine
available time.

Chen and Lee: General Multiprocessor Task Scheduling 73

THEOREM 4: LetT be the completion time for the final schedule of the Heuristic Schedule
Algorithm 2 andT* be the optimal completion time for the original problerm|Be}|Cma)c Then
T=(m2)(1+ &)T*.

PROOF: Since the Heuristic Scheduling Algorithm 2 keeps the same assignment asithat of
and we haveT, = Tpa.(1 + &) = T*(1 + &), it suffices to show thal = (m/2)T,. Lets;
be the completion time for the last job on machjnehenT = max{s,;, S,, ..., Su}-

Note that Step 2 implies that there is no idle time on machine 1. HeneeT,. If T = s,
thenT = s; = Tp = Ta (1 + &) = T*(1 + €), and we are done. Now suppose thiat s;
> s;. Since each job ir5, andS, needs more than one machine to process in parallel, and by
our assumptionT(G;) = T(G;), the sum of all processing times (if a job needs to be processed
by k machines in parallel, then we count its processing titienes) is not less thansg = 2T.
HenceT, = 2T/m. We haveT = (m/2)T, = (M/2)T*(1 + &). O

5. CONCLUSION AND FUTURE RESEARCH

The general multiprocessor task scheduling problem can be attacked in two steps, assignment
and schedule. In the first step, we assign jobs to machines and then we schedule them in the
second step. We provide a pseudo-polynomial algorithm for the assignment problem, which
provides an effective lower bound for the original problem. These pseudo-polynomial time
algorithms can also be used to solve the two-machine problem and a special case of three-
machine problenoptimally. Both algorithms are significantly more efficient than those in the
literature. We also provide a fully polynomial approximation scheme to solve the assignment
problem. In the scheduling step, we provide a heuristic algorithm with error bdliid <
(m/2)(1 + &) for the m-machine problemr = 2).

Future research includes solving the problems with: (i) other objective functions such as mean
flow time and tardiness related functions and (ii) job-precedence constraints and other job or
machine constraints such as machine availability constraints (Lee [22, 23]). We are also
interested in using integer programming and branch and bound schemes to solve this large scale
problem optimally.

ACKNOWLEDGMENTS

This work is supported in part by NSF Grants CCR-9613805 and DMI-9610229. The authors
are grateful to an anonymous Associate Editor and referee whose constructive comments have
led to a substantial improvement in the presentation of the paper.

REFERENCES

[1] L. Bianco, J. Blazewicz, P. Dell’Olmo, and M. Drozdowski, Scheduling multiprocessor tasks on a
dynamic configuration of dedicated processors, Ann Operations Res 58 (1995), 493-517.

[2] L. Bianco, J. Blazewicz, P. Dell’Olmo, and M. Drozdowski, Preemptive scheduling of multiprocessor
task on the dedicated processor system subject to minimal lateness, Inf Process Lett 46 (1993),
109-113.

[3] L. Bianco, J. Blazewicz, P. Dell’Olmo, and M. Drozdowski, Preemptive multiprocessor task sched-
uling with release times and time windows, Ann Operations Res Sched 70 (1997), 43-57.

[4] J.K. Blazewicz, P. Dell'OImo, M. Drozdowski, and M.G. Speranza, Scheduling multiprocessor tasks
on three dedicated processors, Inf Process Lett 41 (1992), 275-280.

74 Naval Research Logistic¥ol. 46 (1999)

[5] J.K. Blazewicz, M. Drabowski, and J. Weglarz, Scheduling multiprocessor tasks to minimize
schedule length, IEEE Trans Comput C-35 (1986), 389—-393.
[6] J.K. Blazewicz, W. Drazdowski, and J. Weglarz, Scheduling multiprocess tasks—a survey, Micro-
comput Appl 13 (1994), 89-97.
[7] J. Blazewicz, M. Drozdowski, G. Schmidt, and D. de Werra, Scheduling independent two-processor
tasks on a uniform duo-processor system, Discrete Appl Math 28 (1990), 11-20.
[8] J.K. Blazewicz, J. Weglarz, and M. Drabowski, Scheduling independent 2-processor tasks to
minimize scheduling length, Inf Process Lett 18 (1984), 267-273.
[9] P. Brucker, Scheduling algorithm, Springer-Verlag, Berlin, 1995.
[10] P. Brucker and A. Kramer, Shop scheduling problems with multiprocessor tasks on dedicated
processors, Ann Operations Res 57 (1995), 13-27.
[11] P. Brucker and A. Kramer, Polynomial algorithms for resource-constrained and multiprocessor task
scheduling problems, Eur J Operational Res 90 (1996), 214—-226.
[12] X. Cai, C.-Y. Lee, and C.L. Li, Scheduling multiprocessor tasks with prespecified processor
allocations, Naval Res Logistics 45 (1998), 231-242.
[13] G. Dobson and U. Karmarkar, Simultaneous resource scheduling to minimize weighted flow times,
Operations Res 37 (1989), 592—-600.
[14] G. Dobson and I. Khosla, Simultaneous resource scheduling with batching to minimize weighted flow
times, IIE Trans 27 (1995), 587-598.
[15] M. Drozdowski, Scheduling multiprocessor tasks—an overview, Eur J Operational Res 94 (1996),
215-230.
[16] J. Du and J.Y.-T. Leung, Complexity of scheduling parallel task systems, SIAM J Discrete Math 2
(1989), 473-487.
[17] M.R. Garey and D.S. Johnson, Computer and intractability: A guide to the theory of NP-complete-
ness, Freeman, New York.
[18] J.A. Hoogeveen, S.L. van de Velde, and B. Deltman, Complexity of scheduling multiprocessor tasks
with prespecified allocations, Discrete Appl Math 55 (1994), 259-272.
[19] A. Kramer, Scheduling multiprocessor tasks on dedicated processors, Ph.D. Thesis, FB Mathematik/
Informatik, Universita Osnabiak.
[20] H. Krawczyk and M. Kubale, An approximation algorithm for diagnostic test scheduling in multi-
computer systems, |IEEE Trans Comput 34 (1985), 869—-872.
[21] M. Kubale, The complexity of scheduling independent two-processor tasks on dedicated processors,
Inf Process Lett 24 (1987), 141-147.
[22] C.-Y. Lee, Machine scheduling with an availability constraint, J Global Optim, Special Issue Optim
Scheduling Appl 9 (1996), 395—-416.
[23] C.-Y. Lee, Minimizing the makespan in the two-machine flowshop scheduling problem with an
availability constraint, Operations Res Lett 20 (1997), 129-139.
[24] C.-Y. Lee and X. Cai, Scheduling multiprocessor tasks without prespecified processor allocations,
submitted for publication.
[25] C.-Y. Lee, L. Lei, and M. Pinedo, Current trends in deterministic scheduling, Ann Operations Res 70
(1997), 1-42.
[26] C.-L. Li, X. Cai, and C.-Y. Lee, Machine scheduling with multiple-job-on-one-machine pattern, IIE
Trans 30, (1998), 433—-446.
[27] J. Plehn, Preemptive scheduling of independent jobs with release times and deadlines on a hypercube,
Inf Process Lett C-34 (1990), 161-166.
[28] B. Veltmann, B.J. Lageweg, and J.K. Lenstra, Multiprocessor scheduling with communication delays,
Parallel Comput 16 (1990), 173-182.

