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In this paper, a new multi-objective uniform-diversity genetic algorithm (MUGA) with a diversity

preserving mechanism called the e-elimination algorithm is used for Pareto optimization of a five-

degree of freedom vehicle vibration model considering the five conflicting functions simultaneously.

The important conflicting objective functions that have been considered in this work are, namely, seat

acceleration, forward tire velocity, rear tire velocity, relative displacement between sprung mass and

forward tire and relative displacement between sprung mass and rear tire. Further, different pairs of

these objective functions have also been selected for 2-objective optimization processes. The

comparison of the obtained results with those in the literature demonstrates the superiority of the

results of this work. It is shown that the results of 5-objective optimization include those of 2-objective

optimization and, therefore, provide more choices for optimal design of a vehicle vibration model.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration control of machines worked by engines has attracted
great amount of research activities during last decades. In
particular, vehicles’ motions are influenced by the harmful effects
of vibrations caused by engines and roads which have a pivotal
role in driver’s comfort. Griffin et al. (1982), Rakheja (1985),and
Barak (1991) have shown that the interior vibration of a vehicle
has a significant effect in comfort and road holding capability. In
the case of reducing this type of vibration, manufacturers’ efforts
have led to produce a suspension system that is installed between
road excitation and vehicle body. Bouazara (1997) studied the
influence of suspension system parameters on the vibration of
vehicle’s model. In the same year, Hrovat (1991) used a three-
dimensional vibration model instead of the two-dimensional
model to get more exact results. Crolla (1992) applied a semi-
active suspension model for improving the performance of
vehicle. Bouazara and Richard (1996) presented their vibration
model in three-dimensional space demonstrating that this model
has a good estimation of the vehicle behavior. Bouazara and
Richard (2001) also studied three types of suspension system
(active, semi-active and passive) for an eight-degree of freedom
vibration model. In his works, Bouazara combined all the
ll rights reserved.
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performance criteria to form an objective function for a single-
objective optimization process. For this purpose, he used weight-
ing coefficients to adjust comfort and road holding capability
criteria in the single-optimization design process. Gündo

˘
gdu

(2007) presented an optimization of a four-degree of freedom
quarter car seat and suspension system using genetic algorithms
to determine a set of parameters to achieve the best performance
of the driver’s seat. The desired objective was proposed as
the minimization of a multi-objective function formed by the
combination of not only suspension displacement and tire
deflection but also the head acceleration and crest factor (CF),
which is not practiced as usual by designers. Alkhatib et al. (2004)
applied genetic algorithm (GA) to the optimization problem of a
linear one-degree of freedom (1-DOF) vibration isolator mount
and the method was extended to the optimization of a linear
quarter car suspension model. The optimum solution was
obtained numerically by utilizing GA and employing a cost
function that sought minimizing absolute acceleration RMS (root
mean square) sensitivity to changes in RMS of relative displace-
ment.

In fact, optimization in engineering design has always been of
great importance and interest particularly in solving complex
real-world design problems. In multi-objective optimization
problems, there are several objectives or cost functions (a vector
of objectives) to be optimized (minimized or maximized)
simultaneously. These objectives often conflict with each other
so that as one objective function improves, another deteriorates.
Therefore, there is no single optimal solution that is best with
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respect to all the objective functions. Instead, there is a set
of optimal solutions, well-known as Pareto optimal solutions
(Srinivas and Deb, 1994; Fonseca and Fleming, 1993; Coello Coello
and Christiansen, 2000; Coello Coello et al., 2002), which
distinguishes significantly the inherent natures between single-
objective and multi-objective optimization problems. V. Pareto
(1848–1923) was the French–Italian economist who first devel-
oped the concept of multi-objective optimization in economics
Pareto (1896). The concept of a Pareto front in the space of
objective functions in multi-objective optimization problems
(MOPs) stands for a set of solutions that are non-dominated to
each other but are superior to the rest of solutions in the search
space. Evidently, changing the vector of design variables in such a
Pareto optimal solutions consisting of these non-dominated
solutions would not lead to the improvement of all objectives
simultaneously. Consequently, such change leads to a deteriora-
tion of at least one objective to an inferior one. Thus, each solution
of the Pareto set includes at least one objective inferior to that of
another solution in that Pareto set, although both are superior
to others in the rest of search space. The inherent parallelism in
evolutionary algorithms makes them suitably eligible for solving
MOPs. The early use of evolutionary search is first reported in
1960s by Rosenberg (1967). Since then, there has been a growing
interest in devising different evolutionary algorithms for MOPs.
Among these methods, the vector-evaluated genetic algorithm
(VEGA) proposed by Schaffer (1985), Fonseca and Fleming’s
genetic algorithm (FFGA) Fonseca and Fleming (1993), non-
dominated sorting genetic algorithm (NSGA) by Srinivas and
Deb (1994) and strength Pareto evolutionary algorithm (SPEA) by
Zitzler and Thiele (1998) and the Pareto-archived evolution
strategy (PAES) by Knowles and Corne (1999) are the most
important ones. A very good and comprehensive survey of these
methods has been presented in Coello Coello, 1999 and in Khare
et al. (2003). Coello Coello http://www.lania.mx/�ccoello/EMOO/
has also presented an Internet-based collection of many papers as
very good and easily accessible literature resources. Basically, both
NSGA and FFGA as Pareto-based approaches use the revolutionary
non-dominated sorting procedure originally proposed by Gold-
berg (1989). There are two important issues that have to be
considered in such evolutionary multi-objective optimization
methods: driving the search towards the true Pareto optimal set
or front and preventing premature convergence or maintaining
the genetic diversity within the population Toffolo and Benini
(2003). The lack of elitism was also a motivation for modification
of that algorithm to NSGA-II Goldberg (1989), in which a direct
elitist mechanism, instead of a sharing mechanism, has been
introduced to enhance the population diversity. This modified
algorithm represents the state-of-the-art in evolutionary MOPs
Coello Coello and Becerra (2003). A comparison study among
SPEA and other evolutionary algorithms on several problems and
test functions showed that SPEA clearly outperforms the other
multi-objective EAs (Zitzler et al., 2000). Some further investiga-
tions reported in reference (Toffolo and Benini, 2003) demon-
strated, however, that the elitist variant of NSGA (NSGA-II) equals
the performance of SPEA.

In this paper, a new multi-objective uniform-diversity genetic
algorithm (MUGA) with a diversity preserving mechanism called
the e-elimination algorithm is used for multi-objective optimiza-
tion of a five-degree of freedom vehicle vibration model.
The conflicting objective functions that have been considered for
minimization are, namely, seat acceleration (€zc), forward tire
velocity (_z1), rear tire velocity (_z2), relative displacement between
sprung mass and forward tire (d1) and relative displacement
between sprung mass and rear tire (d2). The design variables used
in the optimization of vibration are, namely, seat damping
coefficient (css), vehicle suspension damping coefficient (cs1 and
cs2), seat stiffness coefficient (kss), vehicle suspension stiffness
coefficient (ks1 and ks2( and seat position in relation to the center
of mass (r). Various pair-wise 2-objective optimization and
5-objective optimization processes are performed. The inclusion
of the results by 5-objective optimization is verified using the
results of different 2-objective optimization processes through
some overlay graphs of the Pareto fronts. Prominently, it is shown
that a trade-off optimum design can be verified from those Pareto
fronts obtained by multi-objective optimization process. Finally,
the superiority of time domain vibration performance of such
design point is shown in comparison with those given in the
literature.
2. Multi-objective Pareto optimization

Multi-objective optimization, which is also called multi-
criteria optimization or vector optimization, has been defined
as finding a vector of decision variables satisfying constraints to
give acceptable values to all objective functions (Coello Coello and
Christiansen, 2000; Jamali et al., 2010). In general, it can be
mathematically defined as

Find the vector X� ¼ x�1; x
�
2; . . .; x

�
n�

T
�

to optimize

FðXÞ ¼ ½f1ðXÞ; f2ðXÞ; . . .; fkðXÞ�
T ; ð1Þ

subject to m inequality constraints

giðXÞr0; i¼ 1 to m; ð2Þ

and p equality constraints

hjðXÞ ¼ 0; j¼ 1 to p; ð3Þ

where X�ARn is the vector of decision or design variables, and
FðXÞARk is the vector of objective functions, which must each
be either minimized or maximized. However, without loss of
generality, it is assumed that all objective functions are to be
minimized. Such multi-objective minimization based on Pareto
approach can be conducted using some definitions.
2.1. Definition of Pareto dominance

A vector U ¼ ½u1;u2; . . .;uk�ARk is dominant to vector V ¼

½v1; v2; . . .; vk�ARk (denoted by U!V) if and only if 8iAf1;2; . . .; kg,
uirvi4(jAf1;2; . . .; kg: ujovj. In other words, there is at least one
uj which is smaller than vj whilst the remaining us are either
smaller or equal to corresponding vs.
2.2. Definition of Pareto optimality

A point XnAO (O is a feasible region in Rn satisfying Eqs. (2)
and (3)) is said to be Pareto optimal (minimal) with respect to all
XAO if and only if FðX�Þ!FðXÞ. Alternatively, it can be readily
restated as
8iA{1,2, y, k}, 8XAO�{Xn} fiðX

�Þr fiðXÞ4(jAf1;2; . . .; kg: fj(Xn)
o fj(X). In other words, the solution Xn is said to be Pareto optimal
(minimal) if no other solution can be found to dominate Xn using
the definition of Pareto dominance.
2.3. Definition of a Pareto set

For a given MOP, a Pareto set P� is a set in the decision variable
space consisting of all the Pareto optimal vectors P� ¼ fXA
9)X0A : FðX0Þ!FðXÞg. In other words, there is no other X0 as a
vector of decision variables in O that dominates any XAP�.
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2.4. Definition of a Pareto front

For a given MOP, the Pareto front PT̄� is a set of vector
of objective functions, which are obtained using the vectors of
decision variables in the Pareto set P�, that is PT̄� ¼ fFðXÞ
¼ ðf1ðXÞ; f2ðXÞ; . . .; fkðXÞÞ : XAP�}. In other words, the Pareto front
PT̄� is a set of the vectors of objective functions mapped from P�.

Evolutionary algorithms have been widely used for multi-
objective optimization because of their natural properties suited
for these types of problems. This is mostly because of their
parallel or population-based search approach. Therefore, most of
the difficulties and deficiencies within the classical methods in
solving multi-objective optimization problems are eliminated. For
example, there is no need for either several runs to find the Pareto
front or quantification of the importance of each objective using
numerical weights. In this way, the original non-dominated
sorting procedure given by Goldberg Goldberg (1989) was the
catalyst for several different versions of multi-objective optimiza-
tion algorithms (Srinivas and Deb, 1994; Fonseca and Fleming,
1993). However, it is very important that the genetic diversity
within the population be preserved sufficiently. This main issue in
MOPs has been addressed by many related research works Toffolo
and Benini (2003). Consequently, the premature convergence
of MOEAs is prevented and the solutions are directed and
distributed along the true Pareto front if such genetic diversity
is well provided. The Pareto-based approach of NSGA-II Deb
et al. (2002) has been used recently in a wide area of engineering
MOPs because of its simple yet efficient non-dominance ranking
procedure in yielding different levels of Pareto frontiers.
However, the crowding approach in such state-of-the-art MOEA
Coello Coello and Becerra (2003) is not efficient as a diversity
preserving operator, particularly in problems with more than
2 objective functions (Nariman-Zadeh et al., 2005; Jamali et al.,
2010).

In this work, a new multi-objective uniform-diversity genetic
algorithm method called MUGA is presented so that it can safely
be used for any number of objective functions (particularly for
more than 2 objectives) in MOPs.

2.5. Multi-objective uniform-diversity genetic algorithm (MUGA)

The multi-objective uniform-diversity genetic algorithm
(MUGA) uses non-dominated sorting mechanism together with
a e-elimination diversity preserving algorithm to get Pareto
optimal solutions of MOPs more precisely and uniformly.

2.5.1. The non-dominated sorting method

The basic idea of sorting of non-dominated solutions originally
proposed by Goldberg (1989), which has been used in different
evolutionary multi-objective optimization algorithms, as in
NSGA-II Deb et al. (2002), has been adopted here. The algorithm
simply compares each individual in the population with others to
determine its non-dominancy. Once the first front has been found,
all its non-dominated individuals are removed from the main
population and the procedure is repeated for the subsequent
fronts until the entire population is sorted and non-dominantly
divided into different fronts.

A sorting procedure to constitute a front could be simply
accomplished by comparing all the individuals of the population
and including the non-dominated individuals in the front. Such
procedure can be simply represented as following steps:
1.
 Get the population (pop)

2.
Fig. 1. Pseudo-code of e-elimination.
Include the first individual {ind(1)} in the front Pn as Pn(1), let
Pn_size=1;
3.
 Compare other individuals {ind(j), j=2, Pop_size)} of the Pop
with {Pn(K), K=1, Pn_size} of the Pn;
If ind(j)oPn(K) replace the Pn(K) with ind(j)
If Pn(K)o ind(K), j= j+1, continue comparison;
Else include ind(j) in Pn, Pn_size=Pn_size+1, j= j+1, continue
comparison;
4.
 End of front Pn;

It can be easily seen that the number of non-dominated
solutions in Pn grows until no further one is found. At this stage,
all the non-dominated individuals so far found in Pn are removed
from the main population and the whole procedure of finding
another front may be accomplished again. This procedure is
repeated until the whole population is divided into different
ranked fronts. It should be noted that the first rank front of the
final generation constitute the final Pareto optimal solution of the
multi-objective optimization problem.

2.5.2. The e-elimination diversity preserving approach

In the e-elimination diversity approach that is used to replace
the crowding distance assignment approach in NSGA-II Deb et al.
(2002), all the clones and e-similar individuals are recognized and
simply eliminated from the current population. Therefore, based
on a value of e as the elimination threshold, all the individuals in a
front within this limit of a particular individual are eliminated.
It should be noted that such e-similarity must exist both in the
space of objectives and in the space of the associated design
variables. This will ensure that very different individuals in the
space of design variables having e-similarity in the space of
objectives will not be eliminated from the population. The
pseudo-code of the e-elimination approach is depicted in Fig. 1.
Evidently, the clones and e-similar individuals are replaced from
the population by the same number of new randomly generated
individuals. Meanwhile, this will additionally help to explore the
search space of the given MOP more effectively. It is clear that
such replacement does not appear when a front rather than the
entire population is truncated for e-similar individual.

2.5.3. The main algorithm of MUGA

It is now possible to present the main algorithm of
MUGA which uses both non-dominated sorting procedure and
e-elimination diversity preserving approach, which is given in



ARTICLE IN PRESS

Fig. 2. The main algorithm of MUGA.

Fig. 3. Vehicle vibration five-degree of freedom model with passive suspension

adopted from Ref. Bouazara (1997).
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Fig. 2. It first initiates a population randomly. Using genetic
operators, another same size population is then created. Based on
the e-elimination algorithm, the whole population is then reduced
by removing e-similar individuals. At this stage, the population is
re-filled by randomly generated individuals which helps to
explore the search space more effectively. The whole population
is then sorted using non-dominated sorting procedure. The
obtained fronts are then used to constitute the main population.
It must be noted that the front, which must be truncated to match
the size of the population is also evaluated by e-elimination
procedure to identify the e-similar individuals. Such procedure is
only performed to match the size of the population within 710
present deviations to prevent excessive computational effort
to population size adjustment. Finally, unless the number of
individuals in the first rank front is changing in certain number of
generations, randomly created individuals are inserted in the
main population occasionally (e.g. every 20 generations of having
non-varying first rank front).
3. Multi-objective optimization of vehicle vibration model

A five-degree of freedom vehicle with passive suspension,
which is adopted from (Bouazara (1997)) is shown in Fig. 3. This
model is composed of one sprung mass that joints to three
unsprung masses (indicate tires and seat). Moreover, the effect of
degrees of freedom, linear motion (in vertical direction for sprung
and unsprung masses) and rotating motion (pitching motion) for
sprung mass, in terms of acceleration, velocity and movement, are
considered in formulation of motion equations. Parameters M1,
m2, mc, ms, Is, kp1, kp2, l1 and l2, which denote the vehicle’s fixed
parameters are expressed as forward tire mass, rear tire mass, seat
mass, sprung mass, momentum inertia of sprung mass, forward
tire stiffness coefficient, rear tire stiffness coefficient, forward and
rear tires position in relation to the center of mass, respectively.
Design variables kss, ks1 and ks2, css, cs1 and cs2 and r denote seat
stiffness coefficient, stiffness coefficients for vehicle suspension,
seat damping coefficient, damping coefficients for vehicle
suspension and seat position in relation to the center of mass,
respectively. Further, subscripts 1 and 2 indicate tire axes. It is also
necessary to observe that in this case study, seat type is composed
of a linear spring and damper. The dynamic of this model is
excited by a double bump as shown in Fig. 4.
3.1. The governing dynamic differential equations of motion

The linearized differential equations of motion, with respect to
the degrees of freedom and for small angle y, are derived by the
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Table 1
The values of fixed parameters of the model.

l1 1.011 m

l2 1.803 m

m1 40 kg

m2 35.5 kg

mc 75 kg

ms 730 kg

Is 130 kg m2

kp1 175,500 N/m

kp2 175,500 N/m
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use of Newton–Euler equations and can be written as follows
Bouazara (1997):

zps ¼ zs � ry ð4Þ

zs1 ¼ zs � l1y ð5Þ

zs2 ¼ zsþ l2y ð6Þ

Fss ¼ kssðzc � zpsÞþcssð_zc � _zpsÞ ð7Þ

Fs1 ¼ ks1ðzs1 � z1Þþcs1ð_zs1 � _z1Þ ð8Þ

Fs2 ¼ ks2ðzs2 � z2Þþcs2ð_zs2 � _z2Þ ð9Þ

mc €zc ¼ � Fss ð10Þ

ms €zs ¼ � Fs1 � Fs2þFss ð11Þ

Is
€y ¼ l1Fs1 � l2Fs2 � rFss ð12Þ

ms €z1 ¼ Fs1 � kp1ðz1 � zp1Þ ð13Þ

ms €z2 ¼ Fs2 � kp2ðz2 � zp2Þ ð14Þ

where, zc, zs, zsi and y are vertical seat displacement, vertical
displacement of the central gravity of the sprung mass, vertical
displacement of the ends of the sprung mass and rotating motion
(pitching motion), respectively. Further, _zc , _zi and _zsi represent
vertical seat velocity, vertical tires velocity and vertical velocity of
the ends of the sprung mass, respectively. €Zc , €zs, €zi and €y denote
vertical seat acceleration, vertical acceleration of the central
gravity of the sprung mass, vertical tires acceleration and rotating
acceleration (pitch acceleration), respectively. Lastly, zp1 and zp2

represent the excitation via road double bumps, as shown in Fig. 4.
It is supposed that the vehicle moves at constant velocity

v=20 m/s over a double bump, and it is further assumed that the
rear tire follows the same trajectory as the front tire with a delay
of Dt=(lf+ lv)/v. The input values of fixed parameters are presented
at Table 1 Bouazara (1997).

In this paper, 50,000rkssr150,000, 10,000rks1r20,000,
10,000rks2r20,000, 1000rcssr4000, 500rcs1r2000, 500r
cs2r2000 and 0rrr0.5 are observed as 7 design variables to be
optimally found based on multi-objective optimization of 5
different objective functions, namely, seat acceleration (€zc),
forward tire velocity (_z1), rear tire velocity (_z2), relative displace-
ment between sprung mass and forward tire (_z2) and relative
displacement between sprung mass and rear tire (d2).
3.2. Two-objective optimization of vehicle vibration model

In this section, the multi-objective uniform-diversity genetic
algorithm (MUGA) (Jamali et al., 2010) presented in previous
sections is used for multi-objective design of vehicle model which
has been shown in Fig. 4. For this purpose, 4 different pairs out of
10 possible pairs of 5 objectives are considered in various
2-objective optimization processes. Such pairs of objectives to
be optimized separately have been chosen as (€zc ,_z1), (€zc ,_z2), (€zc ,d1)
and (€zc ,d2), which stand for seat acceleration with forward tire
velocity, rear tire velocity, relative displacement between sprung
mass and forward tire and relative displacement between sprung
mass and rear tire, respectively. Evidently, it can be observed that
all of the objective functions are minimized in those sets of
objective functions. A population of 80 individuals with a
crossover probability of 0.9 and mutation probability of 0.1 has
been used in 240 generations. Pareto fronts of each chosen pair of
2 objectives have been shown through Figs. 5–8. It is clear from all
of the figures that obtaining a better value of one objective would
normally cause a worse value of another objective. However, if the
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set of decision variables is selected based on each of a Pareto front,
it will lead to the best possible combination of that pair of
objectives. In other words, if any other set of decision variables is
chosen, the corresponding values of pair of objectives will locate a
point inferior to the corresponding Pareto front. Such inferior area
in the space of the objective functions for Figs. 5–8 are in fact top/
right sides.

Fig. 5 depicts the Pareto front of seat acceleration and forward
tire velocity representing different non-dominated optimum
points with respect to the conflicting objectives. In this figure,
points A and B1 stand for the best seat acceleration and the best
forward tire velocity, respectively. It should be noted that all the
optimum design points in this Pareto fronts are non-dominated
and could be chosen by a designer. It is clear from this figure that
choosing a better value for any objective function in these Pareto
fronts would cause a worse value of another objective function.
Clearly, there are some important optimal design facts between
these objective functions that can be readily observed in that
Pareto front. In Fig. 5, point C1 is the point which demonstrates an
important optimal design fact. Optimum design point C1 obtained
in this paper exhibits a small increase in forward tire velocity in
comparison with that of point B1 (the design with the least
forward tire velocity) whilst its seat acceleration improves about
13%. In fact, the trade-off design point, C1, would not have been
obtained without the use of the Pareto optimum approach
presented in this paper.

Such non-dominated Pareto fronts of the other chosen sets of
objective functions have been shown in Figs. 6–8. Design point A
stands for the best seat acceleration whilst points B2, B3 and B4

represent the best _z2, d1 and d2, respectively. Similarly, the trade-
off designing points C2, C3 and C4 are the design points which
demonstrate the important optimal design fact. With more careful
observation, it is found that the values of seat accelerations
improve about 18%, 9% and 20% with a small increase in other
objective functions from points B2 to C2, B3 to C3 and B4 to C4 in
Figs. 6–8, respectively. In all these figures, point D represents the
optimum design obtained in Bouazara (1997) which it is very
evident that is drastically dominated by all Pareto fronts shown in
these figures.

The time behavior of the seat acceleration of the trade-off
design points of these figures and the one of the optimum point
proposed in Bouazara (1997) are shown for comparison in
Figs. 9–12. It is obvious from these figures that the values of
seat accelerations of the design points obtained in this paper are
better than those by the design point D given in Bouazara (1997).
The corresponding values of objective functions and design
variables of these optimum design points and the point one in
Bouazara (1997) are also given in Table 2.

The Pareto optimum approach of this paper reveals some
interesting and informative design aspects that may not have
been found without multi-objective optimization. However, all
such important and worthy information regarding the trade-off
design point can also be simply discovered using a 5-objective
Pareto optimization instead of 4 (or more) separate 2-objective
optimization processes.
3.3. Five-objective optimization of vehicle vibration model

A multi-objective optimization design of vehicle model
including all 5 objectives simultaneously can offer more choices
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for a designer. Moreover, such 5-objective optimization can
subsume all the 2-objective optimization results presented in
the previous section. This will allow finding a trade-off optimum
design point from the view of all 5 objective functions simulta-
neously. Therefore, in this section, 5 objective functions, namely,
seat acceleration (€zc), forward tire velocity (_z1), rear tire velocity
(_z2), relative displacement between sprung mass and forward tire
(d1) and relative displacement between sprung mass and rear tire
(d2) are chosen for multi-objective optimization in which all of
them are minimized simultaneously. A population of 80 indivi-
duals with a crossover probability of 0.9 and mutation probability
of 0.1 has been used in 240 generations.

Fig. 13 depicts the non-dominated individuals of 5-objective
optimization in the plane of (€zc � _z1) together with the results to
2-objective optimization found in previous section. Such non-
dominated individuals of both 5- and 2-objective optimizations
have alternatively been shown in the plane of (€zc � _z2), (€zc � d1)
and (€zc � d2) in Figs. 14–16, respectively. It should be noted that
there is a single set of individuals as a result of 5-objective

optimization of €zc , _z1, _z2, d1 and d2 that are shown in different
planes together with the corresponding 2-objective optimization
results obtained in previous section. Therefore, there are some
points in each plane that may dominate others in the case of
5-objective optimization. However, these individuals are all non-
dominated when considering all 5 objectives simultaneously. By
careful investigation of the results of 5-objective optimization in
each plane, the Pareto fronts of the corresponding 2-objective
optimization previously found can now be verified in these
figures. It can be readily observed that the results of such
5-objective optimization include the Pareto fronts of each
2-objective optimization and provide, therefore, more optimal
choices for the designer.
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It may now be desired to obtain an optimum design point out
of all non-dominated 5-objective optimization process somehow
satisfying all 5 objective functions. In other words, each of the
obtained design points given in previous section is acceptable
based on the pertinent 2 objective functions, but there is no
reason that such an optimum design point existed in one of the
Pareto fronts (e.g. plane of (€zc � _z1)) is located in the other Pareto
fronts too (e.g. plane of (€zc � _z2)).

It is now possible to seek an optimum design point which
is located almost on all Pareto fronts of Figs. 13–16. This can be
simply achieved by mapping of the values of objective functions of
all non-dominated points into interval 0 and 1. Using the sum of
these values for each non-dominated points, the design point F
simply represents the minimum of those values. It can be seen
that the design point F is located on all Pareto fronts approxi-
mately. Moreover, it can be seen that point F significantly
dominates point D proposed in Bouazara (1997). In the plane of
(€zc � d1) both point F and D are non-dominated, but it is clear that
with a small increase in d1 from point D to F, €zc improves about
42%. The time responses of the seat acceleration of the proposed
optimum point of this work and the one given in Bouazara (1997)
are shown in Fig. 17. It is clear that the time response of point F is
superior to that of point D. The values of objective functions
and their associated design variables of F are shown in Table 2.
The comparison of the values of objective functions associated
with the optimum design point F obtained from the 5-objective
functions optimization process with those of the 2-objective
functions optimization processes of design points C1, C2 and C3

given in Table 2 also demonstrates the relative superiority of
design point F.

Therefore, such multi-objective optimization of seat accelera-
tion (€zc), forward tire velocity (_z1), rear tire velocity (_z2), relative
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displacement between sprung mass and forward tire (d1) and
relative displacement between sprung mass and rear tire (d2)
provide optimal choices of design variables based on Pareto non-
dominated points.
4. Conclusion

A multi-objective genetic algorithm with a recently developed
diversity preserving mechanism has been used to optimally design
vehicle vibration model. The objective functions which conflict with
each other were selected as seat acceleration (€zc), forward tire velocity
(_z1), rear tire velocity (_z2), relative displacement between sprung
mass and forward tire (d1) and relative displacement between sprung
mass and rear tire (d2). The multi-objective optimization of vehicle
model led to the discovering of some important trade-offs among
those objective functions. The superiority of the obtained optimum
design points was shown in comparison with those reported in the
literature. Such multi-objective optimization of vehicle model could
unveil very important design trade-offs between conflicting objective
functions which would not have been found otherwise. Further, it has
been shown that the results of 5-objective optimization include those
of 2-objective optimization in terms of Pareto frontiers and provide,
consequently, more choices for optimal design.
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