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Solitary dynamo waves
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Abstract

Long dynamo waves are a characteristic feature of interface dynamo models with spatially localized α and Ω effects. The evolution of such
waves is described by the modified Korteweg–de Vries equation. Solutions to this equation take the form of solitary waves, breathers, and snoidal
and cnoidal waves, and represent nonlinear waves of magnetic activity that migrate towards the equator, as observed on the Sun. Averaging
techniques extend the theory to longer times and relate the amplitude of these waves to the dynamo number.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Mean-field dynamo theory [8,15] provides a description of
the mechanism that is believed to be responsible for the gen-
eration of the large-scale magnetic field in stars and planets.
The mechanism relies on the generation of toroidal field from
a poloidal one via differential rotation (the Ω-effect) together
with the regeneration of the poloidal field via the interaction
of the small-scale flows and magnetic fields (the α-effect).
The saturation of the instability is achieved through the back-
reaction of the field on the flow, but in the kinematic regime
(in which the flow is prescribed) the mechanism is most of-
ten modeled by the suppression of the α-effect. Recently, it has
been realized that the instability works more efficiently if the
locations of the α and Ω effects are separated in space; such a
separation is natural in the solar dynamo if the dynamo is lo-
cated below the convection zone, in a region known as the solar
tachocline [14,16].

Recently, Mason et al. [6] considered a simple analytically
tractable model of this process. Both α and Ω are taken to be lo-
calized in thin spatially disjoint layers. The dispersion relation
describing infinitesimal waves can be obtained analytically, and
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reveals the presence of two types of waves: long waves whose
wavelength is large compared to the vertical extent L of the
system, and short waves whose wavelength is comparable to L.
The long mode is particularly interesting because its nonlinear
evolution obeys at leading order an integrable partial differ-
ential equation, the modified Korteweg–de Vries equation [7].
This fact can be traced to the invariance of the dynamo equa-
tions under A → A+const, where A is the (vector) potential for
the poloidal magnetic field. This observation in turn suggests
the possibility of solitary dynamo waves, although the version
of the problem studied in Ref. [7] was not general enough to
permit such waves.

In this Letter we show that if the model is slightly gener-
alized solitary dynamo waves are indeed possible, and explore
their properties. In addition, we describe solutions in the form
of cnoidal waves, snoidal waves, kinks and breathers. The re-
sults are unexpected since the dynamo equations constitute a
(forced) dissipative system, and may be of interest in connec-
tion with more realistic models of the dynamo process. In the
interest of brevity we omit all details of the calculations; these
are similar to those in Ref. [7].

2. The model

We consider an idealized nonlinear mean-field dynamo in
which the α and Ω effects are spatially separated. For sim-
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Fig. 1. The geometry of the model. Local Cartesian coordinates are defined on the interface of the convection zone and the tachocline at a point in the northern
hemisphere, with x increasing poleward and z with radius (L1 > 1, L2 < 0).
plicity, we take both of these to be spatially localized, with the
former situated at z = 1 (representing the effect of the convec-
tion zone) and the latter located at z = 0 (representing the solar
tachocline). The magnetic field B(x, z, t) ≡ ∇ × Aey + Bey

obeys the dimensionless dynamo equations [4,8]

(2.1)
∂A

∂t
= α(z)B + ∇2A,

(2.2)
∂B

∂t
= DΩ(z)

∂A

∂x
+ ∇2B,

where A(x, z, t)ey is the vector potential of the poloidal mag-
netic field, B(x, z, t) is the toroidal field, α(z) = δ(z − 1)/(1 +
B2) ≈ δ(z − 1)(1 − B2), Ω(z) = δ(z) and D ≡ α0Ω0z

3
0/η

2
0 is

the dynamo number. The form of α represents quenching of the
α effect as the field amplifies and provides the sole nonlinear-
ity in the problem. Alternative mechanisms for saturating the
dynamo instability are discussed in Ref. [9].

We solve these equations in the semi-infinite domain −∞ <

x < ∞, L2 � z � L1 for waves that travel in the negative x

direction, i.e., towards the equator (Fig. 1). Here z = L1 > 1
represents the top of the convection zone, while z = L2 < 0
lies in the radiative interior below the tachocline, with boundary
conditions obtained by matching the magnetic field inside the
layer to an external potential field. In a thin layer geometry such
a procedure leads to the boundary conditions [13]

(2.3)B(x, z = L1,2, t) = 0,
∂A

∂z
(x, z = L1,2, t) = 0.

Thus the toroidal magnetic field is confined in L2 < z < L1
while the poloidal magnetic field is normal to the layer at
z = L1,2 at leading order in its aspect ratio. In the following
we increase the dynamo number D to trigger the onset of the
dynamo instability.

It should be noted that, except at the locations of the α and
Ω effects responsible for magnetic field generation, the equa-
tions for A and B are diffusion equations. Solutions in the
three regions L2 < z < 0, 0 < z < 1, 1 < z < L1 satisfying the
boundary conditions at z = L1 and z = L2 are therefore simple
to write down. These then have to be matched across z = 0 and
z = 1 subject to the requirement that A and B are continuous
and their derivatives satisfy the jump conditions

(2.4)

[
∂A

∂z

]
z=0

= 0,

[
∂B

∂z

]
z=0

+ D
∂A

∂x

∣∣∣∣
z=0

= 0,

(2.5)

[
∂A

∂z

]
z=1

+ B

1 + B2

∣∣∣∣
z=1

= 0,

[
∂B

∂z

]
z=1

= 0,
obtained by integrating the model equations across z = 0 and
z = 1, respectively.

3. Longwave amplitude equation

Infinitesimal solutions of the form [A(x, z, t),B(x, z, t)] =
[a(z), b(z)] exp(pt + ikx), p ≡ σ + iω, satisfy the dispersion
relation, cf. [6],

4q2 sinh2[q(L1 − L2)
]

(3.1)+ ikD sinh
[
2q(L1 − 1)

]
sinh[2qL2] = 0,

where q2 ≡ p + k2. Waves with wavenumber k = ε � 1 trav-
eling towards the equator have frequency ω = εω10 + ε3ω30 +
ε5ω50 + · · · and set in at dynamo number Dc = D0 + ε2D2 +
ε4D4 + · · · , where

ω10 =
√

3

2(2L1 − 1) − (L1 + L2)2
,

(3.2)D0 = −ω10(L1 − L2)
2

L2(L1 − 1)
.

The requirement that ω10 ∈ 
 places restrictions upon the rel-
ative values of L1 and L2, as shown in Fig. 2. For fixed L1,

 ≡ −L2/L1 must be within the range 0 � 
ω1 < 
 < 
ω2 ,
say. For L1 = 2 we have 0 < 
 � 2.2. Fig. 3, also computed
for L1 = 2, shows D2 and ω30 as functions of 
; D2 van-
ishes at 
d ≈ 1.5, while ω30 vanishes at 
 ≈ 1.3. Note that

ω1 � 
d � 
ω2 . When D2 > 0 (
 < 
d ) the instability sets in
with infinite wavelength, but when D2 < 0 (
 > 
d ) the onset
wavelength is finite, although long.

Fig. 2. The region of the (L1,L2) plane where the frequency ω10 is real. By
definition L1 > 1 and L2 < 0 (dashed lines) and the frequency ω10 is real
inside the subdomain bounded by the solid curve.
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Fig. 3. The corrections D2 and ω30 as functions of the boundary location 0 < 
 < 2.2 when L1 = 2.
We now suppose that the dynamo number is supercritical,
D = D0 + ε2D2 + ε4D4 + · · · + δ, where δ measures the dis-
tance from the threshold for the dynamo instability. We take
δ = dε2, where d = O(1). The growth rate σ = ε2δσ21 +
O(ε4δ; ε2δ2; δ3) is positive:

(3.3)σ21 = − 2L2(L1 − 1)

ω10(L2 − L1)2
,

and the corresponding frequency expansion takes the form
ω = εω10 + ε3ω30 + εδω11 + ε5ω50 + ε3δω31 + O(ε7; ε5δ;
ε3δ2; εδ3).

We seek a solution of the nonlinear problem of the form(
A

B

)
=

(
A0

0

)
+ ε

(
A1

B1

)
+ ε2

(
A2

B2

)
+ · · · ,

where A0 is O(1) but depends on x and t in the form ε(x + ct),
as appropriate for a wave traveling towards the equator. A long
computation, similar to that carried out in Ref. [7], now leads
to a reconstituted amplitude equation

(3.4)
∂C

∂τ
− a

∂C

∂ξ
− a

∂3C

∂ξ3
+ bC2 ∂C

∂ξ
+ εf = O

(
ε2)

for the quantity C(ξ, τ ) = A0ξ + O(ε), written in a reference
frame traveling with the speed c = ω10 + ε2(ω30 +dω11)+· · ·:
ξ = ε(x + ct), τ ∼ ε3t . Here

a = 2ω3
10

45

[
13 + 2L4

1 + 15L2
2 + 2L4

2

+ 2L3
1(7L2 − 11) + 3L2

1

(
21 − 20L2 + 8L2

2

)
+ 2L1

(−26 + 15L2 − 15L2
2 + 7L3

2

)]
,

(3.5)b = 3ω3
10(L1 − L2)

2 > 0,

and

(3.6)

f = (αa + η)
∂2C

∂ξ2
+ (αa + γ )

∂4C

∂ξ4
+ (β − αb)

∂2

∂ξ2

(
1

3
C3

)
,

where

α = −ω10

6

[
4
(
L2

1 + L2
2

) + 7 + 2L1(3L2 − 7)
]
,

β = 1

2
ω4

10(L1 − L2)
2[1 + 2L1(L2 − 1)

]
,

γ = 2D2(1 − L1)L2
2

− αa,

ω10(L2 − L1)
(3.7)η = γ + 2L2(1 − L1)d

ω10(L2 − L1)2
.

When a and b are both O(1) the leading order equation is
the modified Korteweg–de Vries (mKdV) equation

(3.8)
∂C0

∂τ
− a

∂C0

∂ξ
− a

∂3C0

∂ξ3
+ bC2

0
∂C0

∂ξ
= 0,

where C = C0 +O(ε). The solutions of this equation depend on
the relative signs of the coefficients a and b. The locations 
a ,
say (
ω1 < 
a < 
ω2 ) at which the coefficient a changes sign,
separate the situations in which traveling solutions C0(ξ, τ ) ≡
C0(Ξ), Ξ ≡ ξ − vτ , take the form of snoidal waves and kinks,
from those in which cnoidal and solitary waves are found (see
below). Fig. 4 shows that for L1 = 2 there is only one such
position, 
a ≈ 1.7. When a > 0 and a + v > 0 snoidal wave
solutions of the form

(3.9)C0 = Nsn sn(μsnΞ,s),

where

N2
sn = 6(a + vsn)

b

(
s2

1 + s2

)
,

(3.10)μ2
sn =

(
1 + vsn

a

)
1

1 + s2
,

are present. Here sn, and cn below, are the usual elliptic
functions and 0 � s < 1 is their modulus. Both have period
4K(s)/μ, where K(s) is the complete elliptic integral of the
first kind. As s → 1−, the snoidal waves degenerate into kinks,

(3.11)C0 = Nk tanh(μkΞ),

where

(3.12)N2
k = 3(a + vk)

b
, μ2

k = 1

2

(
1 + vk

a

)
.

For a < 0 the solutions take the form of cnoidal waves

(3.13)C0 = Ncn cn(μcnΞ,s),

where

N2
cn = 6(a + vcn)

b

(
s2

2s2 − 1

)
,

(3.14)μ2
cn =

(
1 + vcn

a

)
1

1 − 2s2
,
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Fig. 4. The coefficients a and b in the mKdV equation (3.8) as functions of the boundary location 0 < 
 < 2.2 when L1 = 2 (
a ≈ 1.7).

Fig. 5. The soliton amplitude Ns (left) and the speed vs (right) as functions of d . Note that Ns → 0 as d → −D2 > 0 (L1 = 2, 
 = 2).
provided that s2 > 1/2 (a+vcn > 0), and s2 < 1/2 (a+vcn < 0).
The former degenerate into solitary waves,

(3.15)C0 = Ns sech

[(
−N2

s b

6a

)1/2

Ξ

]
, N2

s = 6(a + vs)

b
,

as s → 1−.
In addition, when a < 0 localized time-dependent states

known as breathers are present. These take the form

C0(Θ, t) = −2

√
6(−a)1/3

b

(3.16)× ∂

∂Θ

{
arctan

(
λ sin(κΘ + ζ t + φ)

κ cosh(λΘ + ηt + ψ)

)}
,

where Θ = (−a)−1/3(ξ + aτ), ζ = κ(κ2 − 3λ2), η = λ(3κ2 −
λ2) and φ, ψ are arbitrary constants.

4. The perturbed mKdV equation

When D2 ∼ O(1) the amplitude of these waves evolves on
the timescale ε−4, as described by the perturbed mKdV equa-
tion (3.4). For the soliton (3.15) the perturbation selects the
amplitude Ns , given by the equation (cf. [1,3,10–12])

(4.1)
∂Ns

∂t
= f̂ + O(ε),

where

f̂ = −bN3
s

6a

(
2

3
(αa + η) + N2

s

15

[
4(β − αb) + 7b

3a
(αa + γ )

])
.

Fig. 6. The existence and stability of solitary waves in the (L1, 
) plane. The
frequency ω10 is real between the solid curves (and the abscissa and ordinate);
solitary waves lie inside this region but outside the dashed lines along which
a = 0. The stability region for such waves (the interior of the dotted curve
where ĥ > 0) is disjoint, indicating that solitary waves are unstable.

Fig. 7. The solitary wave C0 as a function of Ξ ≡ ξ − vsτ for d = 1 (L1 = 2,

 = 2).
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Fig. 8. The kink amplitude Nk (left) and speed vk (right) as functions of d (L1 = 2, 
 = 1).
Thus

(4.2)N2
s ≡ 30aL2(L1 − 1)(D2 + d)/bĥ,

where ĥ ≡ 7D2(1 − L1)L2 − 12a(L2 − L1)
2. The resulting bi-

furcation diagram Ns(d) and the corresponding speed vs(d)

are shown in Fig. 5 for L1 = 
 = 2. Since vs > 0 the solitary
waves travel towards the equator more slowly than infinitesi-
mal waves. The (amplitude) stability of the waves is given by

∂f̂

∂Ns

∣∣∣∣
Ns

= − 2b2N4
s ĥ

135a2ω10(L2 − L1)2
.

Since a < 0 it follows that solitary waves exist and are stable
if D2 + d > 0 and ĥ > 0. However, Fig. 6 shows that these
conditions are mutually exclusive, i.e., that when a < 0 ĥ is also
negative. Thus all solitary waves are unstable, as suggested by
the bifurcation diagram in Fig. 5. The solitary wave present at
d = 1 (L1 = 
 = 2) is shown in Fig. 7.

For the kink (3.11) the effect of the perturbation is to select
the amplitude Nk given by

(4.3)N2
k ≡ 15aL2(1 − L1)(D2 + d)/bh̄,

where h̄ ≡ 2D2(1 − L1)L2 + 3a(L2 − L1)
2. The correspond-

ing bifurcation diagram Nk(d) and the speed vk(d) are shown
in Fig. 8. Note that kinks can travel faster (vk < 0) or slower
(vk > 0) than infinitesimal waves depending upon the value
of d . The stability (and existence) again depends on the sign of
D2 and h̄. One finds that kinks exist and are stable when a > 0
and D2 > 0, while if D2 < 0 and h̄ > 0 the kinks exist and
are stable only for d > |D2|. In contrast, if D2 < 0 and h̄ < 0
kinks exist only for d < |D2|, but are then unstable. In particu-
lar, when d = 1 (L1 = 2, 
 = 1) the kink state (Fig. 9) is stable.

The solitary waves and kinks found above coexist with
cnoidal and snoidal waves of different spatial periods, i.e., with
extended wavetrains. For these the perturbation εf produces a
slow drift in the modulus s [7]; the fixed point of this drift deter-
mines the modulus s̄ say, and hence the amplitude and speed of
the waves as a function of the distance from the threshold for the
dynamo instability. The resulting bifurcation diagram Nsn(d)

and speed vsn(d) for snoidal waves of spatial period 2π , ob-
tained by eliminating vsn from Eq. (3.10), are shown in Fig. 10
(for L1 = 2, 
 = 1). Both solutions are compared with weakly
nonlinear results [7], shown as dashed lines. Since the primary
Fig. 9. The kink C0 as a function of Ξ ≡ ξ − vkτ for d = 1 (L1 = 2, 
 = 1).

bifurcation is supercritical the snoidal waves are stable with re-
spect to 2π -periodic perturbations. The corresponding results
for 2π -periodic cnoidal waves are shown in Fig. 11. These also
bifurcate supercritically and hence are initially stable with re-
spect to 2π -periodic perturbations. However, at larger d the
stable cnoidal waves are annihilated at a saddle-node bifurca-
tion by unstable cnoidal waves; thus 2π -periodic cnoidal waves
exist over a limited range of d only.

4.1. Physical manifestation of the solution

The solutions for the fields A0, A1 and B1 can be recon-
structed for each type of wave. For the solitary wave (3.15) we
obtain

A0 = Ns

(
− 24a

bN2
s

)1/2

arctan

[
tanh

((
−N2

s b

24a

)1/2

Ξ

)]
,

for the kink (3.11)

A0 = Nk

μk

ln

∣∣∣∣∣ cosh

((
N2

k b

6a

)1/2

Ξ

)∣∣∣∣∣,
for the snoidal wave (3.9)

A0 = Nsn

sμsn
ln

[
dn(μsnΞ,s) − s cn(μsnΞ,s)

]
,

and for the cnoidal wave (3.13)

A0 = Ncn arccos
[
dn(μcnΞ,s)

]
,

sμcn
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Fig. 10. The amplitude Nsn (left) and speed vsn (right) as functions of d for 2π -periodic snoidal waves (solid line) together with the corresponding result obtained
from second order perturbation theory (dashed line) (L1 = 2, 
 = 1).

Fig. 11. The amplitude Ncn (left) and speed vcn (right) as functions of d for 2π -periodic cnoidal waves (solid line—stable branch; long dashed line—unstable
branch) together with the corresponding result obtained from second order perturbation theory (short dashed line). The unstable branch may be traced backwards
into d < 0, and for d ≈ −5000 the fixed point s̄ ≈ 1 (L1 = 2, 
 = 2).
to within an arbitrary phase. In each case

A1 = Nω10

(
1

2
z2 − L1z + L1 − L2

)
ρ(Ξ) + b5 in z > 1,

A1 = Nω10

(
1

2
z2 − L2z

)
ρ(Ξ) + b5 in z < 1,

B1 = NL2D0(L1 − z)

L2 − L1
ρ(Ξ) in z > 0,

B1 = NL1D0(L2 − z)

L2 − L1
ρ(Ξ) in z < 0,

where ρ = ρs , ρk , ρsn, ρcn, respectively, and

ρs(Ξ) = sech

[(
−N2

s b

6a

)1/2

Ξ

]
,

ρk(Ξ) = tanh

[(
N2

k b

6a

)1/2

Ξ

]
,

ρsn(Ξ, s) = sn(μsnΞ,s), ρcn(Ξ, s) = cn(μcnΞ,s).

Fig. 12 shows the vertical profiles of B1(Ξ, z) at Ξ chosen to
correspond to a maximum of C0 ≡ A0ξ in each case. The lead-
ing order contributions to both the toroidal and poloidal fields
are shown together in Fig. 13; both are of order ε, despite the
fact that A0 = O(1).
Fig. 12. Profiles of B1(Ξ, z) for each type of wave at Ξ corresponding to max-
ima of C0: (a) An unstable solitary wave (solid line, Ξ = 0, d = 1, L1 = 2,

 = 2). (b) A kink (dotted line, Ξ = 10, d = 1, L1 = 2, 
 = 1; B1(0, z) = 0,
B1(−10, z) = −B1(10, z)). (c) A snoidal wave (long dashed line, Ξ = π/2,
d = 100, s̄ ≈ 0.96, L1 = 2, 
 = 1; B1(3π/2, z) = −B1(π/2, z)). (d) A sta-
ble cnoidal wave (short dashed line, Ξ = 0, d = 30, s̄ ≈ 0.45, L1 = 2, 
 = 2;
B1(π, z) = −B1(0, z)).

5. Discussion

In this Letter we have shown that mean-field dynamo equa-
tions with α-quenching possess solitary wave solutions. These
satisfy at leading order the modified KdV equation; corrections
to this equation incorporate both forcing and dissipation, and
permit us to identify the amplitude and velocity of the solitary
wave as a function of the distance from the threshold for the dy-
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Fig. 13. The toroidal field (B/ε, solid line) and poloidal field (|BP |/ε, |BP |2 ≡ ε2[(∂A1/∂z)2 + (∂A0/∂ξ)2], dashed line) at z = 0. (a) An unstable solitary wave
(d = 1, L1 = 2, 
 = 2). (b) A kink (−|BP |/ε for Ξ � 0 and |BP |/ε for Ξ � 0, d = 1, L1 = 2, 
 = 1). (c) A snoidal wave (|BP |/ε for Ξ � π and −|BP |/ε for
Ξ � π , d = 100, s̄ ≈ 0.96, L1 = 2, 
 = 1). (d) A stable cnoidal wave (−|BP |/ε for π/2 � Ξ � 3π/2 and |BP |/ε otherwise, d = 30, s̄ ≈ 0.45, L1 = 2, 
 = 2).
namo instability. The solitary wave moves with an O(1) speed
towards the equator. Since the modified KdV equation is com-
pletely integrable the leading order solitary waves are in fact
solitons, and will interact like solitons do. The extent to which
such soliton-like interactions persist in the presence of the per-
turbation εf remains to be elucidated. However, it is evident
that the ‘butterfly’ diagram used to represent the solar dynamo
will be substantially modified. We have also shown that these
solitary waves coexist with a one-parameter family of nonlinear
wavetrains, but were not successful in elucidating the relative
stability among solutions with different wavelengths.

Solitary waves are possible when the coefficient a in
Eq. (3.8) is negative. In the transition region 
 ∼ 
a the prob-
lem is described by two different equations, depending on how
close 
 is to 
a . When a = εqa0, 0 < q < 1, a0 = O(1), we
have the equation

(5.1)
∂C

∂τ
+ C2 ∂C

∂ζ
− εq sgn(a0)

∂3C

∂ζ 3
= 0,

where ζ = ξ + εqa0τ , and both b∗ ≡ b(
a) > 0 and a0 have
been absorbed into a rescaling of C and ζ . The resulting prob-
lem is similar to the zero-dispersion limit of the KdV equation
[5] except that here the equation in question is the mKdV. In
contrast, when a0 is smaller, viz., a = εa0, a0 = O(1), the sys-
tem is described by a perturbed Burgers-like equation

∂C

∂τ
+ b∗C2 ∂C

∂ξ

+ ε

[
η∗

∂2C

∂ξ2
+ γ∗

∂4C

∂ξ4
+ (β∗ − α∗b∗)

∂2

∂ξ2

(
1

3
C3

)

(5.2)− a0
∂C

∂ξ
− a0

∂3C

∂ξ3

]
= O

(
ε2),

where the subscript ∗ again indicates that quantities are evalu-
ated at 
 = 
a . It follows that, in a frame moving southwards
with speed near εa0, solutions with O(ε−1) wavelength evolve
on the slower time scale T = ετ according to

∂C

∂T
+ C2 ∂C

∂ζ

(5.3)+ ε2
[
η∗

∂2C

∂ζ 2
+

(
β∗
b∗

− α∗
)

∂2

∂ζ 2

(
1

3
C3

)]
= O

(
ε3),

where

β∗
b∗

− α∗ = − 2

ω10∗
< 0,

η∗ = 2L2(1 − L1)(D2 + d)

ω10(L2 − L1)2

∣∣∣∣

=
a

.

In writing Eq. (5.3) we have absorbed a coefficient b∗ + O(ε)

into a rescaling of C. The resulting equation is again a Burgers-
like equation but this time with (nonlinear) viscous regularisa-
tion. Eq. (5.2) thus describes the cross-over between dispersive
and viscous regularisation of the shocks that form when ε = 0.
Of particular interest is the possibility that η∗ > 0, indicating
that infinitesimal perturbations produce immediately a sea of
shocks that provide stochastic forcing for the nonlinear prob-
lem [2].

The above remarks indicate that as 
 increases the dynamo
waves within the model can change from snoidal waves or kinks
to cnoidal or solitary waves (and vice versa), and that this tran-
sition involves the formation of shock-like structures. These
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possibilities raise significant mathematical questions in their
own right.
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