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Abstract - We propose a hardware performance 
estimation flow for fast design space exploration, based on 
worst-case execution time analysis algorithms for software 
analysis. Test cases on some real-world applications show 
that our flow provides a tight upper bound of the execution 
time, and many useful hints to the designer. 

I. Introduction

As the Moore's law continues to apply to the embedded 
system industry, systems become more complex every year. 
Unfortunately, designer productivity doesn't continue to grow 
as fast as system complexity, making design cost grow 
rapidly every year. Especially, failing to meet the given 
constraints (cost, performance, power consumption, etc) in 
late stages of design and repeating the whole design cycle 
can be catastrophic. Therefore, accurately estimating the 
final design in early design stages becomes more and more 
important.

Although many recent designs try to rely more on 
software, many modern embedded systems use hardwired 
logic for performance-critical portions of the given 
algorithm, which is mainly because hardwired logic provides 
performance higher than software. However, the performance 
is achieved at higher manufacturing cost. To find an 
optimal design in early design stages, it is crucial to 
estimate accurately the performance and cost of the 
hardware implementation of a given algorithm.

Since it is difficult and time-consuming to estimate the 
final design manually considering the exceedingly large 
design size of modern systems, there has to be some 
automated method. This problem has been a research issue 
for more than 10 years and there exist many hardware 
estimation and analysis tools, along with tools that generate 
hardware implementations from behavioral models. However, 
most of the previous approaches evaluate the hardware's 
performance based on simulation.  

Simulation-based estimation flows have many limitations.  
As the design size grows, simulation speed gets slower.  
Moreover, the number of test cases needs to increase 
exponentially as the system size grows, since there can be 
many corner cases. Even with all those efforts, there's no 
way to guarantee that every corner case has been tested, so 
there always exists some possibility of missing tests for 
worst case performance.

In this paper, we present a hardware estimation flow 
based on static performance analysis techniques. The 

proposed estimation flow translates a given C function into 
CDFG, synthesizes a hardware structure from the CDFG, 
and statically analyzes the generated hardware to estimate 
the performance. Although the proposed estimation flow 
analyzes the hardware implementation statically to obtain 
worst case performance, it also does simulation-based 
estimation for average case performance.

II. Related Work

A. Behavioral Synthesis and Estimation

Behavioral synthesis (commonly known as high-level 
synthesis or architectural synthesis)[1] is a core part of our 
estimation flow. It has been a research topic for more than 
a decade and there are some real-world products that 
perform behavior-level synthesis on C-based input 
description. Catapult C-synthesis[2] from Mentor Graphics, 
an example of such product, generates synthesizable HDL 
code out of some restricted form of C/C++ code.  The user 
can explore the hardware design space by interactively 
specifying how to implement some portions of codes, such 
as by setting a loop to be always unrolled, or by 
modifying the resource constraints. Additionally, the user 
can select what kind of external interface the hardware will 
have.

Forte's Cynthesizer[3] is another such synthesis flow 
which starts from SystemC behavioral description.  By 
using Cynthesizer, users can generate many RTL 
descriptions of an algorithm with different constraints, and 
choose the appropriate one for the whole design.

However, these commercial tools focus on fast design 
implementation by automating RTL coding, neglecting tight 
worst-case execution time (WCET) analysis techniques.  The 
user can figure out how many cycles it takes by simulation, 
or by figuring out how many times a loop might iterate in 
the worst case, and multiply it by the worst-case execution 
cycles of the loop body.

B. Static Estimation

There are many approaches to static software analysis. 
Our work is inspired from those software estimation flows.

The Cinderella system[4] is a static approach to 
estimating the performance of real-time software. The goal 



Figure 1. The KPN-based SoC design space exploration flow.

of this approach is to estimate the worst-case execution 
time (WCET) of a program. Based on basic block analysis, 
the authors generate a series of linear constraints about the 
execution counts of each basic block. Thus, the problem of 
finding the WCET of a program is reduced to an integer 
linear programming (ILP) problem. Together with the delay 
of each basic block, the WCET is obtained by solving an 
ILP with the objective of maximizing the total delay. Our 
static hardware estimation flow is based on the idea from 
this work.

SymTA/S[5] is another work based on static analysis.  It 
uses many approaches from real-time analysis theory to the 
system level.  The task execution times are obtained by 
using the approaches from Cinderella.  Furthermore, it 
extends the Cinderella's work to system level WCET 
analysis. Users can explore the design space of the given 
system specification by trying different schedules and 
different implementations.

There have been many researches on WCET analysis for 
various microprocessor architectures, such as microprocessors 
with cache, or microprocessors with branch prediction[6][7].
However, the authors are not aware of any prior research 
on applying WCET analysis on synthesized hardware.

III. Application of the Estimation Flow

The hardware estimation flow described in this paper is 
based on the hardware estimator of our prior work[8].
Figure 1 illustrates our SoC design space exploration flow.  
Our prior work is an interactive SoC design space 
exploration tool, which uses a KPN-modeled SystemC 
description as its starting point. The steps of our SoC 
design space exploration tool is as follows:
1)  The input KPN model is translated to an HMDG 

(hierarchical module dependency graph) consisting of 
many MDGs. (module dependency graphs) and the 
behavior of each node of the MDGs is extracted into 
C code.

2) The C code is sent to the hardware estimator and 
software estimator, which estimates the execution time 
and implementation cost of each function.

3) Based on the estimation information, the 
hardware/software partitioner decides whether an MDG 
node should be implemented in hardware or software. 
It may report mixed implementation of an MDG, if 
some of its sub-MDGs are implemented in hardware 
and the rest is implemented in software.

4) Since there can be many different implementations of 
an algorithm, the optimal system implementation may 
not be obtained unless we examine various designs 
with various constraints. In our case, the partitioner 
runs the hardware estimator multiple times on the 
same input C function, each with different cost 
constraints. However, since just estimating the 
hardware design for all possible constraints for each 
functional block of the system takes infeasible amount 
of time, our partitioner uses a heuristic algorithm to 
decide which subset of constraints will be tried for a 
given function.  However, it still takes a huge 
amount of time with a naive approach such as 
simulation, and thus requires a fast hardware 
estimation method.

IV. Hardware Estimation Flow

A. Hardware Model

We assume that the generated hardware will be 
connected using a bus, and communicate using a DMA 
controller.  We also assume that a hardware block will 
have its own private memory space, which can be accessed 
by other processors via the bus while the hardware block is 
idle.

We assume the system operates as follows:
1) The caller (microprocessor or another hardware block) 

checks to see if the hardware block is available, and 
acquires the control over the generated hardware. This 
control can be implemented using mutex.

2) The caller uses the DMA controller to transmit all 
data required for the hardware to complete its 
execution to the hardware's private memory space.

3) The caller writes a 'start' command on the hardware's 
'command' register, which starts the execution of the 
hardware.

4) After the execution completes, the caller uses a DMA 
controller to fetch the computed result from the 
hardware's private memory.
Figure 2 shows the hardware model we assumed.  We 

used this model because of the following reasons:
1) The hardware estimation flow is expected to estimate 

hardware blocks that will run as a microprocessor 
accelerator, thus, assuming a DMA using general 
buses for communication will be appropriate.  



Figure 2. Hardware model.

Figure 4. An example code with user constraints inserted.

Figure 3. Hardware estimation flow.

2) We assumed a private memory block because it's 
difficult to predict how long a bus access will take.  
If we assumed shared memory space, many kinds of 
hard-to-predict latencies such as arbitration has to be 
added, and it will be difficult to predict the 
worst-case execution time correctly.
Although the model limits the generality of the 

synthesized hardware, we believe that the proposed approach 
can be applied to a more general model with proper 
adjustment.

B. Overview of the analysis flow

Figure 3 illustrates our hardware estimation flow. The 
input of the current estimation flow is a C function with 
some restrictions on the constructs, including pointer access 
and some control flow statements such as goto or break.
First, the input code is translated into an in-house 
control-flow data graph (CDFG) implementation[9]. Next, 
many target-independent optimizations, such as common 
subexpression elimination and constant propagation, are 
applied to the CDFG. The optimized CDFG is then 
scheduled, and appropriate hardware resources are allocated 
to meet the hardware constraints given by the user or some 
other tool. This generates a CDFG that's ready to be 
synthesized into hardware. These steps are a typical 
behavioral synthesis flow.

However, no hardware is generated after this step. The 
'synthesized' CDFG, which contains cycle-accurate 
scheduling information, can be either analyzed statically or 
simulated. The analysis (or simulation) result provides a 
feedback such that the user can apply different constraints 
to the CDFG and obtain different results.

Although this paper focuses on static analysis of 
worst-case execution, simulation-based analysis is still useful 
for analyzing the average-case execution cycles.  The CDFG 
simulator does cycle-accurate simulation for obtaining the 
performance for some test case.  Test cases are generated 
by extracting the input data applied to the function.  The 
testbench generator library gets linked to the original C 
code, to log the C code's input data to be used later as the 
input test vector for simulation.

The following two sections describe the two blocks - 
the constraint extractor and the CDFG extractor - which are 
tightly related to static analysis.

C. Constraint Extractor

The constraint extractor analyzes the C code's structure, 

and generates constraints that are always fulfilled regardless 
of the input condition. Currently, our constraint extractor 
looks for trivial loops with fixed number of iterations by 
using the SUIF compiler infrastructure's code analyzer.[10]

Although our constraint extractor looks for trivial constraints 
only, this can be further improved in our later versions of 
the flow.  Since constraint analysis has been an active 
research field, we believe that we can integrate most of 
these approaches to our flow.[11]

Even with the most sophisticated analysis algorithms, 
there can be many constraints that are difficult to determine 
automatically, or that are input-dependent.  In this case, the 
user may add constraints by annotating C code.  The 
constraint extractor extracts all constraints including the 
user-specified constraints, and sends them to the CDFG 
analyzer.

Constraints can be specified as a number of equations, 
using variables as the execution count of the corresponding 



control flow.  Figure 4 shows an example function with the 
user-given constraints added in. The user can add simple 
constraints such as the maximum number of iterations a 
loop will run (line 3). Moreover, the user can add 
complicated dependencies between many execution counts, 
such as the relationship between two branches' execution 
paths (line 4).

D. Static CDFG Analyzer

The static CDFG analyzer generates a large list of 
integer linear programming (ILP) constraints from the 
synthesized CDFG. The constraints are then solved using an 
ILP solver.  For our flow, we have used GLPK[12], an 
open-source ILP solver.  Since we are interested in the 
worst case performance, the ILP solver is invoked to find 
the worst case.

The method of generating the ILP is adopted from 
software estimation flows[13].  Although the approach has 
been originally developed for static software analysis, it is 
also possible to apply this technique to CDFG analysis, 
since CDFGs also represent an algorithm's operations and 
control flow.

The total execution time can be modeled as:

where  is the total number of basic blocks,  is 
the execution time of the basic block, and  is the 
number of times that the basic block is executed.  This is 
the object value that must be maximized when solving the 
ILP.  Since  is the number of cycles a basic block takes 
to execute, it is determined when the hardware is 
synthesized.

Constraints by the control path is generated by the fact 
that for each basic block, the number of times the control 
enters the basic block equals to the number of times the 
control exits the basic block.  However, unlike the typical 
'flat' basic block graph structure, our synthesis flow 
represents the control flow by using hierarchical nodes 
which contains many basic blocks.  This approach can be 
found from some other high-level synthesis flows[14].

Our control flow representation contains two kinds of 
hierarchical nodes - loop nodes which represents do-while
loops, and condition nodes which represents if-then-else 
statements.  A loop node contains one basic block which 
represents the body and the condition expression of the 
loop, and a condition node contains three basic blocks 
where each of them represents the condition block, true 
block and the false block.  Each basic block can contain 
other hierarchical nodes, and the whole function is 
represented as a single basic block.

We modified the control path modeling as the 
following: for all condition nodes , if we let  be the 
execution count of that node, and  and 
be the execution count of the 'true' basic block and the 
'false' basic block of that condition node, a condition node 
can be modeled as:

For loops, since we are modeling do-while loops, we  
generate the constraint that the loop body should execute 
more or same times than the loop node itself.  This can be 

modeled as:

Additionally, all nodes within a basic block has the 
same execution count.  Therefore, the constraint for that 
should also be added.

For example, the constraints by the control path of the 
example on figure 4 is generated as:

where  is the execution count of the function 
itself, and the other terms equal to the execution count of 
the corresponding control block annotated on the code.

The final ILP formulation is generated by adding 
user-specified constraints and automatically extracted 
constraints.  For the example on figure 4, the following 
user-specified constraints can be added:

In order to make the static estimator give accurate 
results, the execution counts of all loops in the CDFG have 
to be known prior to performing static estimation. The loop 
information generated by the constraint analyzer and 
constraint extractor is used in this stage. However, in some 
cases, the user may fail to specify all required loop 
information, and that will result in failing to find tight 
upper bound of execution time. In that case, users can 
incrementally improve the analysis results by adding more 
constraints on performance-critical code first.  Additionally, 
the user can compare the static analysis results with the 
simulation results to see if there are unacceptably loose 
estimation results.

Currently, the static analyzer can only analyze the 
execution time.  Other performance metrics such as energy 
consumption per execution are obtained via simulation.

V. Test Case and Experimental Results

We have done experiments using two real-world 
multimedia applications: the h.263 video encoder, and the 
Karplus-Strong algorithm,

A. H.263 Encoder

We have experimented with the h.263 encoder, a widely 
adopted video compression application. We analyzed the 
two most heavily used functions: SAD_Macroblock and 
Quantize.

Figure 5 and 6 show the area-performance tradeoff of 
SAD_Macroblock function and Quantize function, 
respectively. We have used different number of ALUs as 
the area constraint of the implementation.

Figure 7 and 8 show the simulation results of the 
hardware implementation with the maximum number of 



Figure 7. Simulation result of SAD Macroblock.
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Figure 6. Area-performance tradeoff of Quantize.
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Figure 9. The Karplus-Strong code for this experiment.

Figure 10. Simulation result of Karplus-Strong.
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Figure 5. Area-performance tradeoff of SAD Macroblock.
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Figure 8. Simulation result of Quantize.
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functional units.  The X axis represents the simulation run 
ID number, and the Y axis represents the number of cycles. 
We have done 451 simulations for SAD_Macroblock and 
168 for Quantize, using different real-world testbenches.  
From the figures, we can make sure that the execution time 
obtained by simulation is always within the upper bound 
obtained by static analysis. 

For SAD_Macroblock, the worst case execution time 
obtained by the simulation exactly matches the upper 
bound. However, for Quantize, the worst case execution 
time by the simulation is 2,458 cycles, whereas the static 
estimation result gives 2,677 cycles. Through a careful 
analysis, we have found that our simulation-based estimation 
has missed running the h.263 encoder with different modes, 
which takes exactly the same cycles as the static analysis 
reports.

Even though ILP is known to be an NP-complete 
problem, the execution of the ILP solver is done almost 
instantly on an average workstation. (Intel Xeon 2.4GHz). 
This is because the ILP problem is reasonably small - the 
set of equations from Quantize has 49 variables and 55 



equations and that from SAD_Macroblock has 54 variables 
and 39 equations.

B. Karplus-Strong

Karplus-strong[15] is a method of generating synthesized 
sound waveforms, which is based on physical modeling of 
a hammered or plucked string, or some type of percussion.  
We have used our implementation of Karplus-strong, which 
does double-buffering on the output buffer.  Figure 9 shows 
the C code of our implementation.

By observing the C code, it's easy to find the constraint 
that the two for loops have dependencies on loop iteration 
numbers - the sum of the number of iterations on the two 
loops are 1,023. These kind of constraints can be added by 
formulating it as an ILP.  In this case, the estimated worst 
case was 16,385 cycles.

However, when using the simple method - multiplying 
the number of worst-case iterations to the cycles that takes 
to execute the loop body, we have to use the worst case 
for both loops, and the two loops are assumed to iterate 
1,023 times.  In this case, the estimated worst case is 
31,731 cycles.

Figure 10 shows the execution cycles of the simulation.  
The X axis represents the simulation run ID number, and 
the Y axis represents the number of cycles.  The worst 
case execution cycle of the simulation equals to our 
analysis result.  This shows that the analysis method of our 
flow gives a tight upper bound.

VI. Conclusion and Future Work

In this paper, we present a hardware estimation flow 
that can be used for design space exploration. The test 
cases and experiments show that our flow can help the 
designer to understand many possible issues that can happen 
in the hardware implementation.

We summarize our contribution as:
1) Presenting a hardware estimation flow based on static 

analysis of the execution pattern, and 
2) presenting a method of adding complex execution 

path constraints to a C function, and using them for 
worst-case execution analysis.
However, our estimation flow has some more points to 

improve.  Our estimation flow made many on the 
restrictions made in the input C code. These limitations 
have added much labor on modifying the reference code to 
work with the estimation flow. However, we expect to 
remove most of these limitations in our future work.

Some additional features that might help the users of 
this flow can be static energy consumption analysis. By 
predicting a reasonable upper bound of energy consumption, 
it would be possible to make a reasonable power budget.

Additionally, the hardware model that we used assumes 
a local buffer memory, so that there would be no 
unpredictable memory accesses delays.  We believe this can 
be improved by adding information about the external bus 
into the static analyzer, and generate the appropriate ILP 
formula based on those information.
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