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Abstract 
 

In the work the definitions of the guaranteed solution and guaranteed suboptimal solution are given for the 
multiconstraint integer programming problem. A method is developed for finding these solitions. This method is 
based on the sequental changing of the right hand side of the system of constraints by the dichotomia ous 
principle.   
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Introduction 
 

Mathematical models of many design and marketing problems related to decision making in economics and 
technics are usualy described by the different classes of discrete optimization problems.   
 
Since these problems belong to the NP-integer class, i.e. to the class of “hard problems”, finding the solutions of 
such large dimensional problems meets some serious difficulties.  That is why various high speed methods have 
been developed to find suboptimal (approximate) solutions of such problems [1-10, etc].   
 
In the work integer programming problem is considered as a class of discrete optimization problems. It is 
supposed that solution or any suboptimal solution of this problem is found by some known method [2, 3, 5, 7, 8, 
10, etc]. Then the maximal value of the perfomance index is known. Usually this value is not satisfactory for the 
customer in the solution of the practical design problems. Other words the customer wishes to have more that this 
maximal value (that descibes the benefit). In this case it is natural to change the right hand side of the constraint 
conditions (the recourses) i.e. to increase them. Thus we come to the following problem:   
 
To give minimal increase to the recourses which guarantees that the perfomance index will not be less than given 
value. 
 
In the work the mathematical model of such problem is constructed and its solution algorithm is developed.  
 

1. Problem formulation. Consider the following problem: 
 

푐 푥 → max                                                                             (1)           

푎 푥 ≤ b   , (푖 = 1,푚 ),                                                         (2)           
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0 ≤ x ≤ d   , (푗 = 1,푛)  are integers.                                                    (3)           
Here                 
푎 ≥ 0, 푐 > 0 , b > 0 ,  d > 0   ( 푖 = 1,푚 , 푗 = 1,푛) 
 

are given. 
 

In the work a method is developed for finding the quaranted solution of the problem (1)-(3) (definition of the 
quaranted solution and quaranted suboptimal solution is given below). The matter of this method is as follows. 
 

Suppose that optimal solution 푋∗ = (푥∗, 푥∗, … , 푥∗)  of the problem (1)-(3) is found by any known method. Then 
value of the function (1) will be  
 

푓∗ = 푐 푥∗. 

 

Assume that we want to increase the number 푓∗ by  ∆= 푓∗ ∙  . Here 푝 is ncrease percent of the quantity 푓∗. It 
is clear that in this case we have to change, indeed to increase the numbers b   (푖 = 1,푚 )  in the system (2). Thus 
we arrive to the problem: To find a minimal numbers 훿    ( 푖 = 1,푚)  such that in the problem obtained by 
replacing the right hand side of the system (2) by b +  훿    ( 푖 = 1,푚)  the maximal value of the function  (1)  be 
no less than  푓∗ +  ∆ .     

Here is the mathematical formulation of this problem  
 

훿 → min    , (푖 = 1,푚 )                                                              (4)           

푎 푥 ≤ b + 훿   , (푖 = 1,푚),                                                (5)           

푐 푥 ≥  푓∗ + ∆,                                                                         (6)           

                                                      0 ≤ x ≤ d   , (푗 = 1,푛)                                                                            (7) 
 

are integers. 
 

2. Finding of the Guaranteed Solution 
 

Note thtat that (4)-(7) is a multicriterial discrete optimization problem of special type. This problem may be 
solved theoratically by the known methods [11-15, etc]. But it is impossible to find optimal solution (the best 
solution in Pareto set) of such problems in large dimensional case in real time, since it belogs to the NP-integer 
class.   
 

To find the optimal solution for the problem (4)-(7) we transform it to more suitable form. For this purpose we 
add new integer variables 푦 ≥ 0, ( 푖 = 1,푚) to each 푖 − 푡ℎ  ( 푖 = 1,푚) inequality of the system (5) turning 
them to the equalities, and then find expressions for  훿  , (푖 = 1,푚) . Thus  
 

푎 푥 + 푦 = b + 훿   , (푖 = 1,푚),    

or 

훿 = 푎 푥 +  푦 − b   , (푖 = 1,푚).    

 

Now we give the definitions below as in [16].  
 

Definition 1.  Each 푛 dimensional vector 푋 = (푥 , 푥 , … , 푥 ) satisfying the system (5)-(7) by fixed ∆  and 
훿  ,   (푖 = 1,푚)    is called to be an admissible solution for the system (4)-(7) . 
 

Definition 2. The admissible solution 푋 = (푥 , 푥 , … , 푥 )  for the problem (4)-(7)  corresponding to the minimal 
integer value of 훿    ( 푖 = 1,푚)  is called to be a guaranteed solution for the problem (1)-(3).    
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The following theorem is proved. 
 

Theorem 1. For the quaranted solution 푋 = (푥 , 푥 , … , 푥 )  of the problem (1)-(3)  the system of inequalities (5) 
should be satisfied as equalities, i.e. 푦 = 0   (푖 = 1,푚) for this solution. 
 

Proof. If to put the expressions for the variables  훿  ,   (푖 = 1,푚) into the criteria (4) we obtain the problem   
 

훿 =  푎 푥 +  푦 − b → min,         (푖 = 1,푚)                 (8)           

푐 푥 ≥  푓∗ + ∆ .                                                                      (9)           

Here 
                                                       0 ≤ 푥 ≤ d   , (푗 = 1,푛),                                                                        (10) 
                                                       푦 ≥ 0  ,         (푖 = 1,푚)                                                                    (11) 
 

are integers.                                                       
 

Multiplying both sides of the relations (8) and (9) by -1 we obtain   
 

−훿 =  − 푎 푥 −  푦 + b → max  ,                                                   

− 푐 푥 ≤  −푓∗ − ∆  ,                                                                             

0 ≤ 푥 ≤ d   , (푗 = 1,푛)  푎푛푑  푦 ≥ 0  ,         (푖 = 1,푚) 
are integers. 
 

Now we accept the replacements 푥 =  푑 −  푡 ,   (푗 = 1,푛).  Here 0 ≤  푡 ≤ d  ,   (푗 = 1,푛)  are integers. Then   

−훿 = (−푎 )(푑 −  푡 ) − 푦 +  푏 = 푎 푡 − 푎 푑 − 푦 +  푏 , 

−푐 푑 −  푡   ≤ −푓∗ −  ∆⟹  푐 푡    ≤ 푐 푑   − 푓∗ −  ∆  .  

 

Thus we obtain the following problem  
 

푎 푡 − 푎 푑 − 푦 +  푏 → 푚푎푥,   (푖 = 1,푚)           (12)          

푐 푡    ≤ 푐 푑   − 푓∗ −  ∆ .                                             (13)          

Here 
                                          0 ≤ t ≤ d   , (푗 = 1,푛)                                                                                       (14) 
and 
                                         푦 ≥ 0  ,         (푖 = 1,푚)                                                                                          (15) 
 

are integer numbers. 
 

In this problem the variables 푦    (푖 = 1,푚)  are integers beloging to the interval 0 ≤ 푦 ≤ 푏     (푖 = 1,푚)  and do 
not participate in the constraints (13).  Since (12)-(15) is a maximization problem and the quatities 푦     (푖 = 1,푚) 
are involved to the criteria (12) with the sign minus, it is clear that 푦 = 0    (푖 = 1,푚)  in the optimal solution.  
The theorem is proved.  
 

To reduce the problem (12)-(14) to more simple form let us accept the denotations 
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퐴   ∶= 푏 − 푎 푑 , (푖 = 1,푚)   ,     푆  ∶=  푐 푑   − 푓∗ −  ∆ .    

 

It is clear that 퐴   (푖 = 1,푚)   and 푆  are constant numbers. Then the problem (12)-(15) turns to   
 

푎 푡 + 퐴 → 푚푎푥,          (푖 = 1,푚)                                  (16)          

푐 푡    ≤ 푆    ,                                                                            (17)          

0 ≤ t ≤ d   , (푗 = 1,푛)    are  integers.                                          (18)          
 

Note that in the problem (16)-(18) 푎 ≥ 0, 푐 > 0, 퐴 ≤ 0  (푖 = 1,푚,   푗 = 1,푛)  and 푆 > 0   are integer 
numbers. Obtained problem (16)-(18) is a multicriterial boolen programming problem with a single constraint. 
Solving the problem (16)-(18) by any known method [11] one can find its optimal solution 푇∗ = (푡∗, 푡∗, … , 푡∗) . 
Then making the replacement 푥 =  푑 −  푡 ,   (푗 = 1,푛)  we can find the guaranteed solution 
푋 = (푥 , 푥 , … , 푥 )  of the problem (1)-(3).   
 

3. Finding of the Guaranteed Suboptimal Solution 
 

Note that the problem (16)-(18) is a multicriterial boolen programming problem and finding its optimal solution 
may take non real machine time. That is why here we give a definition of the guaraneed suboptimal solution and 
develop a method for its finding.  
 

Definition.  The admissible solution 푋 = (푥 , 푥 , … , 푥 ) that gives minimum to  훿    (푖 = 1,푚) in the problem 
(4)-(7) by fixed  ∆> 0 is called to be a guaranteed suboptimal solution for the problem (1)-(3). 
 

Note that this definition is transformation of the definition of the guaranteed suboptimal solution for the boolen 
programming problem given in [16].   
 

Here is the description of the proposed method for the construction of the guaranteed suboptimal solution for the 
problem (1)-(3).   
 

Suppose that some suboptimal solution 푋 = (푥 , 푥 , … , 푥 ) of the problem (1)-(3) and corresponding value of 
the function (1)    
 

푓 = 푐 푥    

 

is found by any known method [9-10].  We want to find new admissible solution  푋 = (푥 , 푥 , … , 푥 )  that 
guarantees increasing the corresponding value of the function (1) at least by integer ∆ > 0 . In particular may be 
taken ∆ = 푓 . Here  푝 > 0 is a given number and denotes the increasing percent of the number  푓 .  As a 
result we get the following problem corresponding to (4)-(7)   
 

훿 → min    , (푖 = 1,푚 )                                                              (19)           

푎 푥 ≤ b + 훿   , (푖 = 1,푚),                                                (20)           

푐 푥 ≥  푓 + ∆ ,                                                                         (21)           

where 
                                               0 ≤ x ≤ d   , (푗 = 1,푛)                                                                                   (22)   
are integer numbers.         
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To find the small and non negative integer values of 훿     , (푖 = 1,푚 )  we first write their admissible maximal 
values corresponding to the solution 푋 = (푑 ,푑 , … ,푑 )  
 

훿   =  푎 푑 − b ,    (푖 = 1,푚). 

 

We use the dichotomous principle to minimize the parameters 훿      (푖 = 1,푚 ). To do this we fix the given 
numbers b     (푖 = 1,푚) because in the dichotomous process these numbers are changed. We denote   b ≔
b , b′ : = b ,  
 

b ∶=  푎 푑  ,       (푖 = 1,푚) 

and  훿 ∶=     (푖 = 1,푚). Here [ 푧 ] denotes integral part of the number  z. 
 

If  훿 =  0   (푖 = 1,푚)  then   the minimization process of the numbers 훿     , (푖 = 1,푚 ) is finished and 
min 훿 , (푖 = 1,푚). 
 

Otherwise taking b ∶=  b +  훿 , (푖 = 1,푚) we find the next solution 푋 = (푥 , 푥 , … , 푥 ) of the problem (1)-(3) 
and corresponding value of the function (1)  
 

푓 = 푐 푥   . 

 

If 푓  ≥  푓 + ∆ , then we take 훿 ∶=  훿 , 훿 ∶=    ,   b ∶=  b + 훿     (푖 = 1,푚 ) , otherwise if 푓 + ∆ , 

then we take 훿 ∶=  훿 , 훿 ∶=    , b ≔  b , b ∶=   b + 훿    (푖 = 1,푚 ). Then we find the next suboptimal 
solution 푋 = (푥 , 푥 , … , 푥 ) of the problem (1)-(3)  and corresponding value of the function (1).  We continue 
this process for all 푖   (푖 = 1,푚 ) untill we have   훿 = 0. Thus the quantities 훿 , (푖 = 1,푚 ) satisfying the 
conditions of the problem (19)-(22)  will be 훿 = b −  b′  . 
 

The last solution 푋 = (푥 , 푥 , … , 푥 )  will be guaranteed suboptimal solution of the problem (1)-(3). 
 

Note that the the process of minimization of the quantities 훿      (푖 = 1,푚 ) was necessary for construction of the 
guaranteed suboptimal solution 푋 = (푥 , 푥 , … , 푥 ) of the problem (1)-(3). To find the increasing (decreasing) 
norm of the given recourses  푏 , (푖 = 1,푚 )   we put the constructed suboptimal solution    푋 = (푥 , 푥 , … , 푥 )    
into the system (20) and find  
 

훿 = 푎 푥 − b′   ;     (푖 = 1,푚 )  .                                        (23)           

 

which indeed is a final changing norm of the right hand side  푏 , (푖 = 1,푚 ).   
 

Other words the new values of the given quantities 푏     , (푖 = 1,푚 ) by guaranteed suboptimal solution  푋 =
(푥 , 푥 , … , 푥 )  are b =   b′ +  훿  ,    (푖 = 1,푚 ). As one can see from the formula (23) the quantities 훿      (푖 =
1,푚 )   may take negative values also. It shows that if 훿  < 0  for some 푖  then the recourse  b  corresponding to 
the system (2) must decrease by 훿 , otherwise must increase 훿  units.  This situation is often met in the 
calculation experiments.  
 

The construction of the guaranteed suboptimal solution by proposed here method allows one to compare given 
two general recourses  
 

b′  푎푛푑  b . 

Suppose that  
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푆 = (b − b′ ) . 
 

If  푆 > 0  then the initial recourses should be increased, otherwise should be decreased.  The experiments show 
that in such cases the general recourses decrease. 
 

Note. It is claer that the proposed here method for finding of the guaranteed suboptimal solution is a numerical 
method to solving of the multicriterial integer programming problem.  
 

5. Results of the Numerical Experimets 
 

We made some numerical experiments on the problems with different dimensions to demonstrate the quality of 
the proposed method for finding of the guaranteed suboptimal solution.  The problem data are taken as the 
random numbers satisfying the following  conditions 
 

0 < 푐 ≤ 999,   0 ≤ 푎 ≤ 99, b = 0.4 푎 푑 , 1 ≤ 푑 ≤ 9, (푖 = 1,푚, 푗 = 1,푛). 

 

The results of the experiments are given in the table below. The suboptimal solution of the consideren problem is 
found by the method given in [10].  
 

In the table we acceopt the denotations:  
 

1. 푚  - number of constraints  
2. 푛  -  number of variables  
3. f  – value of the function (1) corresponding to the suboptimal solution of  (1)-(3)   
4. p(%)  -  increasing percent of the value   f   
5. ∆   - increasing of the value  f   
6. f (δ) – value of the function (1) by the guaranteed suboptimal solution   
7. S  - sum of the right hand side of the system (2) considering minimal values of the increments 훿    ,

( 푖 = 1,푚) i.e.  

S =  (b +  훿 )  

8. S - sum of the right hand sides of the system (2) in the initial problem (1)-(3) i.e. 

S =  b   

9. 푆∗ - sum of the right hand sides of the system (2) by the guaranteed suboptimal solution  푋 =
(푥 , 푥 , … , 푥 ) i.e.  

푆∗ =  푎 푥   

10. S - sum of the right hand sides of (2)  by initial suboptimal solution 푋 = (푥 , 푥 , … , 푥 )  i.e.  

S =  푎 푥   

11.  δ = min δ  ,            δ = max δ   ,     δ =     ∑ δ                
12. ∆(푓 ) - increment of the additional benefit corresponding to the added average unit expense i.e.  
 

∆(푓 ) =
f (δ)− f  

δ
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Table 1. Results of the Minimization Process of 휹풊     , ( 풊 = ퟏ,풎) 
 

 

Table 2. Results of the Minimization Process of 훅퐢     , ( 퐢 = ퟏ,퐦) 
 

 

Table 3. Results of the Minimization Process of 훅퐢     , ( 퐢 = ퟏ,퐦) 
 

 
 
 
 
 
 
 
 
 
 

m x  n 10 x 100 10 x 500 
f  7938 51120 

p(%) 1 2 3 5 1 2 3 5 

∆ = f ∙
p

100
 79   158   238   396   511   1022   1533   2556   

f (δ) − f  145 204 288 411 577 1104 1546 2862 
S −  S 195 484 652 977 1287 2582 3660 6903 
S∗ − S 221 325 610 963 1392 2583 3808 6877 
δ  -50 -68 -40 -29 94 182 349 578 
δ  81 144 177 216 223 317 416 790 
δ  22 32 61 96 139 258 380 687 
∆(f ) 6.59 6.37 4.72 4.28 4.15 4.28 4.07 4.17 

m x  n 10 x 1000 10 x 2000 
f  18471 38589 

p(%) 1 2 3 5 1 2 3 5 

∆ = f ∙
p

100
 184   369   554   923   386  771   1157   1929   

f (δ) − f  257 409 606 979 390 833 1441 2261 
S −  S 251 352 689 1031 335 676 1357 2033 
S∗ − S 252 433 790 962 326 714 1550 2266 
δ  -7 10 48 29 -42 18 108 195 
δ  67 102 144 152 75 111 219 300 
δ  25 43 79 96 32 71 155 226 
∆(f ) 10.28 9.51 7.67 10.19 12.18 11.73 9.3 10.01 

m x  n 20 x 100 20 x 500 
f  7690 50230 

p(%) 1 2 3 5 1 2 3 5 

∆ = f ∙
p

100
 77 153   230   384   502   1004   1506   2511   

f (δ) − f  147 159 268 513 724 1010 1624 3003 
S −  S 477 654 975 1970 3455 4313 6917 13844 
S∗ − S 508 1237 1124 2274 2652 4422 6971 13429 
δ  -63 -49 -60 8 -41 104 187 426 
δ  113 171 143 221 227 331 456 792 
δ  25 61 56 113 132 221 348 671 
∆(f ) 5.88 2.61 4.79 4.54 5.48 4.57 4.67 4.48 
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Table 4. Results of the Minimization Process of 훅퐢     , ( 퐢 = ퟏ,퐦) 
 

 

Table 5. Results of the Minimization Process of 훅퐢     , ( 퐢 = ퟏ,퐦) 
 

 

Table 6. Results of the Minimization Process of 훅퐢     , ( 퐢 = ퟏ,퐦) 
 

 

5. Conclusion 
 

As one can see from the table 1. the increase of the maximal value of the function (1) (maximal benefit) at least 
few times by the initial suboptimal solution is provided by relatively less increase of the right hand side of the 
systenm (2) (expenses). The avarage additional increment of the function corresponding to the minimal value of 
  훿     ( 푖 = 1,푚)  is minimum 2 and maximum 43 times.  This fact is important in the solution of the practical 
problems. It is shown that raising (1% − 5%) of the the increment percent of the found initial maximal value of 
the function leads to decreasing of the increment of the function. It shows that in practical problems it is suitable 
to increase the maximal benefit only few percents.  
 

m x  n 20 x 1000 20 x 2000 
f  15515 30408 

p(%) 1 2 3 5 1 2 3 5 

∆ = f ∙
p

100
 155   310   465   775   304   608   912   1520   

f (δ)− f  163 368 491 837 352 750 1051 1553 
S −  S 241 679 1015 1702 681 1373 2054 2798 
S∗ − S 175 694 838 1706 588 1278 1930 3394 
δ  -84 -53 -48 -33 -133 -46 -30 102 
δ  104 105 128 188 179 198 199 308 
δ  8 34 41 85 29 63 96 169 
∆(f ) 20.38 10.82 11.98 9.85 12.14 11.91 10.95 9.19 

m x  n 50 x 100 50 x 500 
f  9002 48352 

p(%) 1 2 3 5 1 2 3 5 

∆ = f ∙
p

100
 90   180   270   450   483   967   1450   2417   

f (δ) − f  129 208 352 523 784 1053 1590 3210 
S −  S 835 2097 3405 4240 8599 12890 17221 34463 
S∗ − S 172 1961 2408 4522 7708 10134 17659 37110 
δ  -72 1 -77 -4 32 57 201 521 
δ  69 98 139 230 337 341 569 1041 
δ  3 39 48 90 154 202 353 742 
∆(f ) 43 5.33 7.33 5.81 5.09 5.21 4.51 4.33 

m x  n 50 x 1000 50 x 2000 
f  12796 26897 

p(%) 1 2 3 5 1 2 3 5 

∆ = f ∙
p

100
 127   255   383   639   269 537   806 1344 

f (δ)− f  149 309 436 769 412 626 963 1457 
S −  S 2531 3414 3815 5109 1697 3517 5114 7258 
S∗ − S 208 650 1698 3653 2456 3389 5789 8611 
δ  131 -156 -149 -89 -44 -113 -9 54 
δ  131 144 154 220 169 211 309 323 
δ  4 13 33 73 49 67 115 172 
∆(f ) 37.25 23.77 13.21 10.53  8.40 9.34 8.37 8.47 
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