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Parameter Identification of 
Compressor Dynamics During 
Closed-Loop Operation 
A low-speed axial research compressor has been fitted with movable inlet guide 
vanes to allow for feedback stabilization of rotating stall. A model exists whose 
structure captures the input-output behavior, and stabilization of rotating stall is 
possible using this model. Quantitative identification of the parameters in the rotating 
stall model requires the ability to identify MIMO dynamics, which may be unstable, 
during closed loop operation. The 'instrumental variable' technique is presented as 
the basic approach to this problem. The necessary extensions to the basic technique 
are discussed, and the resulting algorithm is applied. Experimental results are pre­
sented which verify that the methodology yields useful estimates. 

1 Introduction 
Rotating stall is a fluid mechanical phenomenon which besets 

axial compressors at low flow conditions. It is characterized 
by a severely nonaxisymmetric distribution of axial velocity 
around the annulus of the compressor, taking the form of a 
wave or "stall cell," which propagates in the circumferential 
direction at a fraction of the rotor speed. Because the non-
uniformity travels with respect to both the rotor and stator 
vanes, both are subject to large amplitude unsteady velocities 
and thus loading which can cause vibration, fatigue, and severe 
heating. Additionally, rotating stall in jet engines reduces the 
thrust and often leads to surge, an even more severe and de­
bilitating instability involving the entire compression system. 

The transition from normal compressor operation into ro­
tating stall is depicted on a typical compressor pressure rise-
mass flow characteristic in Fig. 1. This plot relates the non-
dimensionalized flow rate—known as flow coefficient, <j>—to 
the nondimensional pressure rise. The lowest flow rate at which 
the compressor can operate with axisymmetric flow is point 
A, the peak of the characteristic. At lower flow coefficients, 
an abrupt transition occurs into rotating stall (point B). This 
condition will persist until the flow is increased to point C. 
Thus, there exists a severe "hysteresis," that is, range of flow 
coefficients at which two stable operating conditions exist— 
one of which is undesirable and often unsafe. 

Traditionally, stall has been avoided by avoiding operation 
near point A. This solution necessitates leaving an ample "stall 
margin," so that transients in flow rate and ingestion of non­
axisymmetric or otherwise disturbing flow will not drive the 
system to the rotating stall operating condition. A concomitant 
performance penalty is paid, because the highest pressure rise 
and, sometimes, the highest efficiency lie at a flow coefficient 
below the minimum imposed by the stall margin requirement. 
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It is therefore of interest to reduce the minimum allowable 
flow coefficient, without putting the system in danger of stall 
and/or surge. 

This is the motivation for a number of recent papers, which 
describe the phenomenology (Kerrebrock, 1977; Greitzer, 1976; 
and Greitzer, 1980), fluid mechanics (Moore, 1984; Hynes and 
Greitzer, 1987; and Epstein et al., 1989) and active control 
(Epstein et al., 1989; Paduano et al., 1991; and Paduano, 
1992), of rotating stall. In this paper, we will take the results 
of these papers as a starting point, giving only a brief descrip­
tion of the active control results and the model presented in 
(Paduanoetal., 1991 andPaduano, 1992). We will then present 
techniques for identification of the model parameters. 

1.1 Active Control of Rotating Stall. Consider the sche­
matic diagram of an axial compressor in Fig. 2. It consists of 
an upstream annular duct, a set of inlet guide vanes (IGVs), 
a compressor, a downstream annular duct, and a throttle. 
Normally, flow through the compressor is circumferentially 

Fig. 1 
Flow Coefficient 

Typical pressure rise characteristics for an axial compressor 
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Fig. 2 Schematic of the active control research compressor. A-inlet 
duct, B-IGVs, C-compressor, b-exit duct, E-throttle 

uniform (axisymmetric), and a single non-dimensional measure 
of fluid velocity determines the system state. This measure is 
the flow coefficient, which is axially velocity normalized by 
rotor speed at the mean radius: 

(axial velocity) 
(rotor speed) (1) 

Under certain conditions, however, the flow through the com­
pressor can become non-axisymmetric, that is, circumferential 
"waves" of perturbation flow coefficient, 5</>, can exist. In 
this case, the system can be completely characterized by two 
terms: the annulus averaged flow coefficient, <£, and the cir­
cumferential perturbation on this average at some axial station: 

<t> = 4> + b<t>(B,t), (2) 

where 6 is circumferential position and tis time. Velocity waves 
84> will tend to propagate around the annulus in the direction 
of rotor rotation. The time evolution of these waves determines 
the stability of the system. If they damp out with time, the 
system is stable and will return to axisymmetric operation. If 
they grow, the system is unstable and the waves will continue 
to grow until nonlinear effects take over—this condition is 
known as rotating stall, and usually consists of one or more 
stall cells rotating around the annulus at a fraction of the rotor 
speed. 

Recently (Paduano et al., 1991), active control was sue-

Active control software: 
- DFT of hot wire signals 
- Modal control law 
- IDFT to blade commands 

Motion control 
•boards 
(12 axes) 

Fig. 3 Hardware components of the active control research compressor 

cessfully applied to this problem in a low-speed single-stage 
research compressor. The experimental setup is shown in Fig. 
3. Eight hot wire anemometers, arranged around the annulus 
near the compressor face, measure the velocity perturbations. 
A digital computer processes these signals and creates a feed­
back signal to a set of 12 movable inlet guide vanes (IGVs). 
The IGVs are individually mounted on digitally controlled 
high-bandwidth (80 Hz) servomotors. This allows independent 
control of the IGV incidences, 8yk. For the wave shapes that 
are of interest in our experiment, these 12 blade deflections 
around the circumference can be considered as a continuous 
"actuation wave," 8y(6,t). This actuation wave can be com­
manded in response to the measured wave of perturbation axial 
velocity, a feedback scheme which allows the compressor to 
operate axisymmetrically at values of $ which would normally 
be unstable to flow perturbations S(j>(6,t). 

Epstein et al. (1989) and Paduano (1992) present a model 
for the input-output dynamics of this system, which will be 
reviewed briefly in Section 1.2. Although the structure of this 

Nomenclature 

B(z) 
A(z) 

B„(z) 
An(z) 

Au{z) 

AS(Z) 

a. 

b, = 

"in | 

Sin 

C(z)] 
D(z)1 

numerator, denominator 
polynomials in discrete 
SISO model (13) 

numerator, denominator 
polynomials in discrete 
rotating stall model (11) 
polynomial whose roots 
coincide with the unsta­
ble roots of A (z) (32) 
polynomial whose roots 
coincide with the stable 
roots ofA(z) (32) 
denominator coefficients 
of z _ 1 in discrete models 
(11, 13) 
numerator coefficients of 
z~[ in discrete models 
(11, 13) 

= control power parameters 
for continuous rotating 
stall model (8) 

= numerator, denominator 

E(z) 
F(z) 

e 

Gn(s) 

Gr„(s) 

G,„(s) 

Gc(z) 

Gs(z) 

k 

L 

n 
t 

polynomials in discrete 
SISO noise model (21) 

polynomials in alternate 
representation of discrete 
noise model (33) 
prediction error (15) 
transfer function between 
y„(s) and 4>n(s), (4) 
transfer function between 
uln(s) and yln(s), (7) 
transfer function between 
uht(s) and y2n(s), (7) 
dynamics in the feedback 
path of closed-loop sys­
tem (Fig. 4) 
dynamics of forward 
path of closed-loop sys­
tem (Fig. 4) 
time index for discrete 
systems 
term to be minimized in 
the log-likelihood func­
tion (30) 
spatial mode number 
time, seconds 

/• = external input for dis­
crete SISO closed-loop 
system (30, Fig. 4) 

ri„> r2„ = nth spatial cosine and 
sine coefficients of the 
external input (Fig. 4) 

u = input of discrete SISO 
model (13) 

ui„> "2„ = «th spatial cosine and 
sine coefficients of 87, 
(5) 

y = output of discrete SISO 
model (13) 

.Vi„> yin = «th spatial cosine and 
sine coefficients of 8<t>, 
(5) 

Pi = poles of A (z) whose 
magnitudes are > 1 (32) 

= dummy signals used in 
derivation of closed-loop 
prediction (Section 2.4) 

/3 = vector of instruments in 
AML method (29) 

t] = parameter vector in 
AML method (27) 
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Fig. 4 Feedback loop layout and notation 

model captures the experimentally observed behavior extraor­
dinarily well, quantitative prediction of system dynamics is not 
as yet possible a priori. Instead, experimental searches and 
parameter identification techniques are used to aid in control 
system design. Parameter identification using spectral analysis 
techniques allows open-loop dynamics to be determined (Pad-
uano, 1992), but such methods fail during closed-loop oper­
ation. In order to extend the operating range, it becomes 
necessary to identify the unstable dynamics: this identification 
must necessarily be done during closed-loop operation. In­
formation about unstable compressor dynamics is also of in­
terest from a experimental fluid mechanics point of view; such 
information has never before been measured. 

This paper presents the results of applying an instrumental 
variable parameter identification procedure to the active con­
trol research compressor during closed-loop operation at var­
ious values of <j> (some of which are unstable). The instrumental 
variable (IV) technique (Ljung, 1987) was chosen for this study 
because of its flexibility. For instance, it can be adapted to 
MIMO or non-standard systems. Also, with proper filtering, 
the IV estimates can be made to approach the maximum li­
kelihood estimates. Finally, with careful choice of instruments, 
the problems normally associated with IV identification during 
closed-loop stabilization can be alleviated. These issues will 
presented in Section 2, after a brief description of the system 
dynamics. In Section 3, experimental results will be shown for 
the active control research compressor. 

1.2 Dynamic System Description. As described above, 

we assume that the system state can be completely characterized 
by (/> and the perturbation 84>(6,t) at some axial station. </> can 
be fixed in an experimental environment by a throttle down­
stream of the compressor. This defines the system operating 
point, and "equilibrium" is defined as axisymmetric flow, i.e., 
8ct> = 0. We are interested in the dynamics of 8<t>(d,t) and the 
stability of the equilibrium point. We are also interested in the 
forced dynamics of this system, that is, the transfer charac­
teristics between 8y(8,t) and 8<p(d,t). 

Hynes and Greitzer (1987), Epstein et al. (1989), and Pad-
uano (1992) all present a linearized fluid mechanical model for 
this distributed system. It can be shown that this model has a 
modal structure which allows the system to be "diagonalized" 
as follows: If we represent the functions 5</> and 8y in terms 
of their spatial Fourier series: 

8<p(e,t) = ^„(t)'eJne 

8y(6,t) 
n*0 

(3) 

then the transfer characteristics between y„ and <j>„ are com­
pletely decoupled, i.e., 

Us)=Gn(s)'yn(s), forn= 2, - 1, 1, 2, • • •. (4) 

This represents a tremendous simplification of the distributed 
dynamics and allows standard control techniques to be applied. 
Furthermore, the system dynamics are dominated by the lower 
modes; by feeding back only the first few modes (In! = 1, 2, 
3), substantial improvement in operating range can be achieved 
(Paduanoet al., 1991). 

The system diagonalization can also be represented in terms 
of Fourier sine and cosine coefficients, so that all terms in the 
equations are real. If we represent the input and output func­
tions as 

n>0 n>0 

8y(6,t) = J]ulriU)'Cos(nd) + J]u2n(t)-sm(ne), (5) 

Nomenclature (cont.) 

7» 

5 = 

«th spatial Fourier coef­
ficient of <$7, (3) 
perturbation quantity 

8y{9,t) = circumferential distribu­
tion of IGV deflection, 
degrees 

v = additive (colored) noise 
random process (13, 21) 

8<t>(6,t) = circumferentially non­
uniform 4> perturbation, 
(2) 

4> = compressor axial flow 
coefficient, (1) 
annulus averaged flow 
coefficient, (2) 
«th spatial Fourier coef­
ficient of 5</>, (3) 
regressors vector (system 
inputs and outputs) in IV 
prediction (14) 
regressors matrix for ro­
tating stall nth mode (36) 
circumferential position, 
radians 

<t> = 

4>n = 

* = 

* „ = 

0 = parameter vector in IV 
prediction equation (14) 

a„ = stability parameter for 
wthmode of continuous 
rotating stall model (8, 
10) 

o>rSn = rotation frequency for 
nth mode of continuous 
rotating stall model (8, 
10) 

£ = white noise random proc­
ess (21) 

f = vector of instruments in 
IV method (16) 

f„ = matrix of instruments 
for rotating stall nth 
mode (41) 

>p = regressors vector in 
AML method (27) 

(") = prediction or estimation 
(•)f = filtered version of argu­

ment 
(•)T. = transpose 
(• )„ = «th mode version of the 

argument 

( • ) c 

( • ) / 

( • ) , / 

£ { • ) 

z\-\ 
-'H 

IGV 
IV 

RIV 

AML 

NF 
TR 
ML 

ROC 
ac 

snc 
uc 

uac 

= alternate signal which is 
highly correlated with the 
argument 

= ith column of matrix ar­
gument, ixh element of 
vector argument 

= (/, j) element of matrix 
argument 

= expected value 
= Z-transform 
= inverse Z-transform 
= inlet guide vane 
= instrumental variable 
= refined instrumental vari­

able 
= approximate maximum 

likelihood 
= noise-free 
= test-repeat 
= maximum likelihood 
= region of convergence 
= anticausal 
= stable, noncausal 
= unstable, causal 
= unstable,, anticausal 
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then the transfer characteristics become 

= lT„(s)]. 
"2„ 

for n = 1, 2, (6) 

where T„(s) is skew-symmetric because of the symmetry of 
the annulus: 

[T„(S)]: 
Gr„(s) 

GiAs) 

-Gh,(s) 

GrAs) 

G„(s)=GrAs)+jGiAs). (7) 

The structure of G„(s) is predicted by the fluid mechanical 
model, and is best expressed by giving the ODE for the system. 
Again, we can use either the complex Fourier coefficient rep­
resentation or the real MIMO representation: 

^„ = {o+jo>rs)^4>n+ (br+jbi)„>yn+jgin'y„ (8) 

or, using the identities </>„= l/2(yi„-j)>2„) and 7,,= 1/2 
("i„-y'«2„): 

(9) 

These two representations each have their advantages: The 
complex form is compact and contains no redundant param­
eters. It also automatically satisfies the symmetry conditions 
in the annulus. The real system, on the other hand, is standard 
from the point of view of control theory—it has no complex 
numbers, and the two-state nature of the system is clear (<£„ 
consists of a phase and a magnitude, so the system (8) isn't 
strictly SISO). 

The physical significance of a„ and iorSn can be seen by sub­
stituting the homogeneous solution to (8) into (3), for some 
mode n: 

">1»" 

_>v 
a 

_ " r a 

+ 

- w « 
a n 

>i„~ 

.A,. 

~br -ft/1 

> b n 

uh, 

_"2„_ 
+ 

"0 

Ji 

-gi 

0 
n 

U\„ 

> V 

b<$>(B,t)=ejm'e J"8.o^n+j-urs,,)' - eJ(,ne + urSn)ttea„t (10) 

The second equality shows that «„„•? alters the phase of the 
wave, causing it to rotate; thus co„n is the 'rotating stall fre­
quency' for the «th mode. It is also clear that o„*t alters the 
size of the rotating wave in (10); thus an is the rotating stall 
stability parameter for the nth mode. 

Techniques exist to convert these continuous state-space sys­
tems to discrete systems for the purpose of identification using 
digitally sampled data (Astrom and Wittenmark, 1984). In this 
paper we will convert freely from continuous to discrete-time 
systems and back without emphasizing the details of such con­
version. The discrete-time equivalent system for the above 
dynamics can be written as: 

yin 

.A.. 

B„(z) 

~An(z)' 

UiAz) 

«2„(Z) 
+ v(z) 

where 

B„(Z)-

A„(z)=(l+alz~l+a2z~2)„, 

(&1 + & 2 <r 1 ) ( l+ j r 1 ) -(b3 + b4z~l + b5z-2) 

(bi + b ^ + bsz'2) (bi + ^z-'Kl+z-1) 

(11). 

z is the Z-transform variable and n is the mode number. We 
have also added v(k) to model disturbances. We will be con­
cerned here with the identification of the parameter set 

9 n = [tfi a2bi b2 ft3 b4b5]n, n=\,2, (12) 

The discrete-time parameters 9„ can subsequently be converted 
to the continuous domain, giving ars, wrs, bn ft,-, and gv in (8) 
and (9). We would like to accomplish this identification task 

for unstable dynamics, during closed-loop stabilization. Sec­
tion 2 describes our approach to this problem. 

2 Instrumental Variable Method 

The organization of this section is as follows: Section 2.1 
reviews the basic IV method for SISO systems. Section 2.2 
outlines Young's Refined IV-Approximate Maximum Likeli­
hood (RIV-AML) method. Modifications to this approach nec­
essary to handle the closed loop case are discussed in Section 
2.3, and modifications for unstable plants are discussed in 
Section 2.4. Finally, a brief discussion of how the MIMO 
estimation for the rotating stall system is efficiently computed 
appears in Section 2.5. 

2.1 Basic IV Procedure. Consider the system 

B(z) 
y(z)-

A(z) 
• u(z) + v(z) (13) 

where: 

+ a2z + 
- 2 , 

•) , 

• • ) , 

A(z)=(l+alz-1 

B{z)=(bl + b2z~' + bi 

and v(k) represents the (possibly colored) noise corrupting the 
measurements. We can build a one-step-ahead predictor for 
this system: 

?(k) = <i>T(k)-Q, (14) 

where: 

<t>(k) = [-y(k- 1) -y(k-2) • • • u(k) u(k-2) u(k-2) • • •}T, 

©=[<?! a2 • • • bx b2 b3 • --]T 

and the ( ) indicates prediction or estimation. The prediction 
error can then be written as 

e(k)=y(k)-^T(k)-Q. (15) 

The instrumental variable (IV) method (Ljung, 1987) finds the 
value of 9 which will cause the error to be uncorrected with 
some chosen set of instruments 

f(*) = [fi(*) fc(*) 

This condition can be written as follows: 

1 
& = ^l\-J]t(k).e(k)=0 

N; 

(16) 

(17) 

where sol {• j indicates that 9 is the value of 9 for which the 
equation in brackets is satisfied. Substituting in Eq. (15): 

6 = sOl)-]rit(k)(y(k)-<i>T(k).&) = 0 (18) 

The philosophy of the IV approach is this: If the instruments 
are chosen to be related to the system inputs and outputs, and 
9 does not satisfy (17), then there is additional information 
about the input-output dynamics left in the prediction error. 
Therefore, a good estimate of 9 should extract this infor­
mation, making the correlation in (17) disappear. 

The solution to (18) is 

9 = £)f(A:)*r(Ar) ^Erww (19) 

The IV method will have good convergence and consistency 
properties if the following two conditions are met: 

N 
2]f(A:)* r(A:) nonsingular (20a) 

(20ft) E 2f(*W*) =0 
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Condition (20a) guarantees invertibility in (19), and also 
indicates that f is correlated with the system dynamics, which 
is necessary for Eq. (17) to yield good estimats. In fact, if 
l(k) = $ ( £ ) , then (20a) is satisfied trivially and the estimate 
becomes the least-squares estimate of 9 . 

Condition (206) specifies that the instruments be uncorre­
lated with the noise, so that colored noise will not corrupt the 
estimates. This condition is often not met in the least-squares 
case ($(k) = $ ( £ ) ) , hence the need for a different set of in­
struments. Prefiltered versions of the elements of $(k) are 
usually used in this case. Ljung (1987) gives a complete de­
scription of the IV method, its convergence and consistency 
properties, and methods for constructing instruments which 
are uncorrelated with the noise. 

2.2 Young's Refined Instrumental Variable—Approxi­
mate Maximum Likelihood (RIV-AML) Technique. Many 
filtering schemes have been proposed for constructing the in­
struments f (k) in the IV procedure. Young (1984) has devel­
oped a particularly attractive set of prefilters and instruments 
in the context of maximum likelihood estimation, for the fol­
lowing noise model: 

C(z) 
viz)- 'Hz). (21) 

D(z) 

In this formulation, both C(z) and D(z) are monic, and £ (k) 
is an uncorrelated sequence with Gaussian amplitude distri­
bution over the sample interval: 

£~N(0,L2.I) £ = K ( l ) , « 2 ) , • • • , f ( m 

In Young's approach, the input-output data is first prefil­
tered, which introduces a new set of variables: 

D . . f. . D ft y iz)=——^'y(z)\ uJ{z) = 
A'C A'C 

•u(z); 

B 
fS(z)=--Az) (22) 

Young shows that, with these definitions, the maximum-
likelihood estimate can be stated as the solution of an IV 
problem: 

e = 
. k=\ 

(23) 

where 

Uk) = [-yf(k-l) ~yf(k-2)---

uf(k) uf(k-\)uf(k-2)---]T 

and 

3>f(k) = [-yf(k-\) -yf(k-2)---

uf(k) uf(k-\)uf(k-2)---]T, 

In other words, if the above defined variables and instruments 
are used, then 9 is the maximum likelihood estimate. This is 
called the refined IV, or RIV, estimate. 

Of course, the polynomials A (z), B(z), C(z), and D(z) in 
Eq. (22) are not known a priori. Initial estimates of these must 
be made, and the RIV method applied iteratively to improve 
the estimates. The parameters in 9 constitute the updates for 
A and B in such a scheme, so iteration on 9 is sufficient as a 
search on the maximum likelihood estimates of A and B. C 
and D, on the other hand, are not estimated by the procedure. 
Therefore, an estimation algorithm for C and D must be added 
to the iteration. 

Young provides an approximate maximum likelihood ap­
proach to do exactly that. It provides a way to estimate C and 
D, based on the current estimates of A, B, C, and D. The 
basic philosophy is to form an error term based on the current 
estimates A and B. This error term is then considered to be 
the output of a dynamic system driven by white noise, and the 
dynamics are estimated using a procedure similar to the RIV 

procedure described above. The specifics of this procedure, 
called approximate maximum likelihood (AML), are as fol­
lows: 

We first take the prediction error e(k) in (15) as a meas­
urement of i>(k): 

B(z) 
v(z)=y(z)- 'u(z) 

A(z) 

=*v(z)=y(z)-y(z) 

= e(z). 

The dynamics in (21) are then written 

D(z)-v(z) = C(z)-Hz). 

A "one-step-ahead predictor" for this system is 

u(k)=<p rj 

(24) 

(25) 

(26) 

where: 

<p=[-v(k l)Hk-
l7" 

2) (27) 1) -v(k-2)---Hk-

ri = [dld2---ClC2--

To compute an approximate maximum likelihood estimate of 
the noise system, prefilter as follows: 

1 
vf(k) = 

C(z) 
•v(k) 

D(z) 

C(z) ' " " 'C(z)' 

The estimate for the noise model is then: 

If ?(k)--
1 

•Uk) i/(k) 

v-
1 N 

r£P(k)<pT(k) N; * = i 

(28) 

(29) 

•l-V(k- 1) -vf(k-2) • • • lf(k- 1) lf(k-2) • • - ] 7 

where: 

0(Ar) = 

The notation here has been made as similar to the IV notation 
as possible, to show the parallel between this procedure and 
the RIV procedure described above. Note that we used some 
set of past estimates A, B, C, and D to allow us to best estimate 
rj, which is the updated estimate for C and D. Young gives 
more detail about the properties of the estimates, and also 
gives a recursive algorithm for its application. 

We now have an estimation procedure for C and D, which 
can be integrated into the iteration for the maximum likelihood 
estimates of A and B. The complete RIV-AML recursion al­
gorithm, then, is (Young, 1984) 

1. Begining with initial estimates for A(z), B{z), 
C(z), and D(z). 

2. Use the AML procedure (Eqs. (24)-(29)) to up­
date C and D. 

3. Use the RIV procedure (Eqs. (22)-(23)) to update 
A and B. 

4. Go to 2, repeat with the new values of A and B. 

One purpose of the filters in Eqs. (22) is to eliminate as 
much as possible the effect of the colored noise on the outputs. 
Such "prewhitening" attempts to insure that /(k) is uncor­
related with the disturbances v(fc)../(fc) must be uncorrelated 
with v(k) in order to satisfy Eq. (20b), becauseyf(k) is a part 
of the instruments. The filtered inputs i/(k), which make up 
the remainder of the instruments, must also be uncorrelated 
with v{k) in order to satisfy Eq. (20/?). During open-loop 
operation, this condition is automatically satisfied, because 
£ (k) in Eq. (21) is uncorrelated with u(k). During closed-loop 
operation, however, v(k) and u(k) are correlated (this will be 
shown in the next section). The above method must, therefore, 
be modified for closed-loop identification. This is the subject 
of the following section. 
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Impulse responses Z I _J } 

Pole plot for , , 
A(z) 

ROC (T> causal, unstable f'uc'̂  

ROCfTf) noncausal. stable f'snc') 

ROCfnD anticausal. unstable f uac') 

Fig. 5 Example of different impulse responses associated with the 
same transfer function. The inverse Ztransform of A(z) can be computed 
over any of the three regions of convergence (ROCs) shown (I, II, or III). 
The impulse response in each case is the sum of the truncated expo­
nentials at right. 

2.3 Choice of Closed-Loop Instruments. Figure 4 shows 
the layout and notation for closed-loop operation. The system 
dynamics remain as in Eq. (13). In addition, we introduce the 
external input signal, r(k), and the following feedback law: 

uiz) = GAz)'lr(z)-Ge-y(z)], (30) 

where Gc(z) and Gs(z) are rational transfer functions rep­
resenting dynamics in the feedback and forward path. For the 
rotating stall controller, these dynamics are well defined, so 
here we will assume that they are known. Since y(k) is cor­
rupted by v(k), u(k) will now be correlated with the noise, 
and Eq. (20ft) will be violated: 

u(z) = G,- (r(z) -Gc. l^-u(z) + v(z) 

E \j]ttk)v(k) U , 

because f (k) contains u(k). This is a very real problem which 
does not constitute a mere theoretical technicality. In a high-
gain feedback situation such as occurs during stabilization of 
unstable dynamics, it renders the IV methods described so far 
useless. Fortunately, these methods regain their applicability 
if the proper substitutions are made to insure that the instru­
ments fulfill Eqs. (20). 

Soderstrom et al. (1987) and Wang and Cao (1988) discuss 
in detail the problem of closed-loop estimation, and the meth­
ods they describe will be used here. The idea is to replace 
\y(k), u(k) j in the computation of the instruments with some 
{yc(k),uc{k)} which are highly correlated with their respective 
counterparts (condition (5.20a), but which are uncorrelated 
with the disturbances (condition (5.206)). The two methods 
used to accomplish this are described below. In both cases, we 
assume r(k) is a known external excitation. 

Method I: Test-Repeat (TR) Instrumental Variable. This 
method, introduced by Wang and Cao (1988), achieves un­
correlated instruments by repeating the experiment twice, with 
identical r(k) in both cases. The measured inputs and outputs 
for the two tests are denoted \u(k),y(k) j and {uc(k),yc(k)j. 
The procedure is to use one of these input-output pairs to 
compute the instruments, and the other to compute the esti­
mates. The RIV-AML estimation proceeds exactly as described 
in Section 2.2, using \uc(k), yc(k)} to compute the instru­
ments and [u(k), y(k) j to compute the parameter estimates 
(the roles of the two input-output pairs can be switched). 

Using identical r(k) in the two tests insures high correlation 

between the instruments and the measurements, and poses no 
particular difficulty in a digital control environment. Also, 
because v(k) and vc(k) are incurred at different times, they 
are uncorrelated, which means that the instruments (from the 
first test) will be uncorrelated with the disturbances (from the 
second test) even if the system is operating closed loop. Wang 
and Cao (1988) prove these claims, and discuss the consistency 
properties of the Test Repeat (TR) method. 

Method II: Noise-Free (NF) Instruments. Both Wang and 
Cao (1988) and Soderstrom et al. (1987) discuss this method, 
which uses noise-free (NF) simulation of the test to generate 
the instruments. In this case {uc(k), yc{k)} comes from a 
simulation, using an a priori estimate of the system dynamics 
(i.e., 9) . vc(k) will thus be identically zero. The same input 
r(k) is then applied to the real system to get [u(k), y(k) ]. 
The RIV-AML algorithm can now be applied, using [uc(k), 
yc(k)) to compute the instruments and [u(k), y(k)) as the 
measurements (in this case the roles of the two input-output 
pairs cannot be switched). 

The same reasoning applies here as in the TR case. The 
noise-free instruments will naturally be uncorrelated with the 
noise from the experiment (condition (20a)). The degree of 
correlation between the instruments and the measurements 
(condition (20b)) will depend on the accuracy of the a priori 
estimate of the system dynamics, but (except in trivial cases) 
some correlation will exist. Closed-loop operation changes none 
of these observations. Soderstrom et al. (1987) and Wang and 
Cao (1988) discuss NF estimation more rigorously. 

2.4 Modification of the RIV-AML Prefilters for Unstable 
Plant Dynamics. The test-repeat instrumental variable (TR/ 
IV) and the noise-free instrumental variable (NF/IV) methods 
allow indentification of system dynamics during closed-loop 
operation, even when the plant is unstable. Experience with 
these methods has suggested, however, that the covariance of 
the estimates can be large for standard choices of instruments. 
Therefore, we have combined the TR and NF methods with 
the RIV-AML method to obtain more accurate estimates. If 
the open-loop plant is stable, this presents no problem: the 
hybrid techniques, termed TR/RIV-AML and NF/RIV-AML, 
can be synthesized without additional modifications. However, 
if the open-loop plant is unstable, many of the prefilters re­
quired by the RIV-AML procedure (Eqs. (22) and (24)) are 
also unstable—they contain \/A(z), which is unstable if im­
plemented as a causal filter. 

To use the TR/RIV-AML and NF/RIV-AML procedure 
when the open-loop plant is unstable, we must modify the 
prefiltering scheme to avoid filters which are unstable. This 
problem is primarily one of understanding the prefilters in the 
context of the maximum-likelihood (ML) problem, and ap­
plying them properly. To develop the RIV-AML method, 
Young (1984) first writes the log-likelihood function for the 
observations y(k), and then reduces the ML problem to the 
minimization of the following term: 

L = 
D B 
C\y~A'U 

D B 

CV~A'U 

The RIV and AML prefilters are then formulated by writing 
dL/daj = 0, dL/dbj = 0, etc. Thus the prefilters contain I/A 
because the log-likelihood function contains the prediction 
error 

y~I'U 

When the closed-loop system is stabilizing an open-loop 
unstable plant, we are faced with the following proiblem: y(k) 
and u(k) are "stable" signals: that is, their Z-transforms.)'(z) 
andw(z) converge on the unit circle (IzI = 1). But B(z)/A (z) 
is unstable; that is, it is the Z-transform of a causal impulse 
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response, and it contains poles outside the unit circle. Given 
these conditions, can we compute an estimate of y(k) based 
onu(k),A(z), and .B(z) alone? If we can, then the prediction 
error can be formulated, and the prefilters necessary for the 
RIV-AML procedure can be found. 

To answer this question, consider our system representation 
(13,21): 

. , B(z) . , C(z) y, , 
A{z) D(z) 

(31) 

We can break A (z) into a polynomial whose roots are stable, 
times a polynomial whose roots are unstable: 

where: 

A(z)~A,(z)'Au(z), (32) 

As(z)=Jl (l-vj-z-1); \VJ\<1, 
j 

Au(z) = JJ (l-p,-z-1); l p , l s l . 

This factorization of A (z) allows us to rewrite (31) to reflect 
the possibility that the noise dynamics are affected by the 
unstable poles: 

B(z) ..,_, , E(z) 
y(z)-

Au(z)As(z) 
•u(z) + 

Au(z)F(z) 
•Hz). (33) 

where E/F is defined such that C/D = E/AUF. Generality is 
retained in this formulation because E(z) cancels any poles 
of Au(z) that are not part of D(z). The transfer function E/ 
F is stable if the system is stabilizable, so we can write: 

y(z)-
1 

Au(z) 

1 

~'Au{z) 

B{z) . .E(z) , . . 
As(z) 

Mz)\ 

F(z) 
(34) 

where q(z) is bounded for \z\ = 1, because of the our con­
ditions onAs (stated in (32)), E/F (stated above), u(k) (its Z-
transform converges on the unit circle), and £ (k) (stated after 
(21)—the important point being that £ (k) is a finite-duration 
(windowed) sequence). We have also specified that a feedback 
system is stabilizing the plant, so that y(z) converges for I z I = 1. 
Thus, by studying (34), one concludes that q(z) must contain 
zeros which cancel the unstable poles of 1A4„. We write this 
condition as follows: 

q(z)=Au(z)-w(z) (35) 

>y(z)-
l 

Au{z) 
.[Au(z)-w(z)]. 

where w(z) also converges for Izl = 1. The pole-zero cancel­
lation implied by (35) can be derived constructively (although 
somewhat tediously) by writing the closed-loop transfer func­
tion from any external signal (such as r(z) or £(z)) to.y(z). 

The representation (35) can be used to motivate a filtering 
scheme as follows: l/Au(z) is the (two-sided) Z-transform of 
at least two distinct impulse responses (Oppenheim and Schafer, 
1989): 1) a causal, unstable impulse response, which we will 
call hc, and 2) an anticausal, stable impulse response, which 
we will call hac. The Z-transform of hc converges in the region 
of convergence (ROC) Izl > max (/?,), while the Z-transform 
of hac converges in the ROC Izl <min(p,) (see Fig. 5). The 
ambiguity of the Z-transform is usually cleared up by invoking 
causality: because (31) represents a causal dynamic system, we 
known that the physically meaningful inverse of lA4„(z) is 
hc(k), and that the convolution corresponding to (35) is: 

y(k) = hc(k)*[hA(k)*w(k)], 

where * indicates convolution and 

(36) 

hc(k)=Z~ 
Au(z) 

ROC: Izl >max(p,) , 

hA(k)=Z-'{Au) ROC: all z. 

As we have noted, hc(k) is causal, but because the poles of 
lA4„(z) lie outside the unit circle, hc(k) grows without bound 
as £— oo. However, it can be shown that the causal, unstable 
impulse response hc(k) can be replaced by its anticausal, stable 
counterpart hac(k), if a pole-zero cancellation such as (35) 
occurs. We can write this statement as follows: 

hac(k)*[hA(k)*w(k)] = hc(k)*[hA(k)*w(k)] (37) 

where 

hac{k)=Z~ 
AAz) 

ROC: lz l<min(p, ) . 

Note here that the ROC overlaps the unit circle. Computing 
the inverse Z-transform over this ROC results in an impulse 
response which is bounded for all k (Oppenheim and Schafer, 
1989). Thus we expect that replacing hc with hac will yield a 
stable (although noncausal) way to predict y(k). 

Substituting (37) into (36), we have the following equation 
for y(k): 

y(k) = hac(k)*[hA(k)*w(k)]. (38) 

Since all of the sequences in this equation are stable, their Z-
transforms exist on the unit circle, and we can convert back 
to the Z-domain: 

y(z) = 

*y(z) = 

1 

Au(z) 

B(z) 

A(z) 

B(z) 

A(z) 

-lAAz)-w(z)] 

C(z) 
•u(z) + 

'u(z), 

D(z) 
Hz). 

(39) 

where we denote the Z-transform of hac as 1/AAz) la« to 
distinguish it from the Z-transform of hc. The operations be­
tween transfer functions implied by (39) are valid for the trans­
fer functions and signals we have defined, because they all 
converge on the unit circle. The subscript "snc" is used to 
indicate that we will use a stable, noncausal time-domain im­
plementation of the filter—the anticausal part coming from 
the unstable poles, and the causal part coming from the stable 
poles. Figure 5 is an example of the regions of convergence 
associated with l/A(z), and the corresponding impulse re­
sponses. 

We have shown how the transfer function between u (z) and 
y(z) must be altered when the open-loop plant is unstable. It 
can be shown that all of the filtering and prediction described 
in Section 2.2 can be similarly altered, without changing the 
maximum-likelihood results of Young (1984). Thus, our scheme 
is noncausal when the plant is unstable, and must be imple­
mented off-line, but otherwise it proceeds as described in Sec­
tions 2.1-2.3, with \/A(z) replaced by 1/A(z) lSnc-

2.5 Application to the MIMO Rotating Stall System. The 
rotating stall system described in Eq. (11) is both multi-modal 
and MIMO. The multi-modal nature of the system requires 
dynamics to be identified for each mode number n. This iden­
tification can be done mode-by-mode, since the dynamics are 
decoupled. Equation (11) also shows that each mode consti­
tutes a two-input two-output system. This adds complexity, 
but otherwise requires no modification to the procedure. Some 
specifics of the rotating stall analysis will be given, as an il­
lustration and to demonstrate an algorithmic simplification. 

The one-step ahead predictor for the system described in 
Eq. (11) is: 
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where: 

Vn(k) • 

A , 
•K{k)>Qn 

(40) 

to initialize these algorithms. Typically the procedure is to use 
estimates of A, B, C, jmd D from a more stable 4> as initial 
guess for a less stable 4>-

Numerical results appear in_ Tables 1 and 2 for operating 
points between </> = 0.40 and </> = 0.55, for n=\ and 2. Also 
shown for comparison in these tables are parameter estimates 
obtained using the spectral estimation techniques described by 

-yx{k-\) -yx(k~2) u ^ + u^k-l) u{{k-\) + ui(k-2) 

-y2(k-2) -y2(k~2) u2(k) + u2(k- 1) u2(k- \) + u2(k-2) 

Q„={a\ a2bi b2 b3 b4 b5]l 

-u2(k) 

« i ( * ) 

-u2(k-l) 

ui(k-l) 

-u2{k-2) 

ux{k-2) 

The instruments must match the dimension of the measurement 
matrix: 

Uk)-
S2„ 

fll(*) fcl(*) 

fl2<*) tll(k) 

hdk) 
Mk) 

(41) 

Equations (17) through (28) proceed as before, with the un­
derstanding that the summations now contain matrix multi­
plications rather than scalar and inner products. Equation (19) 
can be made more efficient computationally by breaking up 
the matrices £„(k) and $,,(£) into their constituent vectors. 
The resulting solution to the IV problem is as follows: 

S„ = [Ef, •* [>Ef 2 •*2r„]-'-[Sri„^i„ + £r2„-x2„], (42) +Ef2„-*2r„]-1-[Er,„^i„+Er2„-x2„], 

where subscripts k have been suppressed. 

3 Results and Discussion 

The techniques above were used on data collected from the 
active control research compressor. The pressure rise-flow 
coefficient characteristic for this compressor is shown in Fig. 
6. Points below $s=0.45 are unstable, so these data points are 
taken with the system operating in closed loop. Data points 
in the stable regime can also be taken in closed loop. This has 
been done and the pressure rise of the compressor is essentially 
unaffected by the controller. 

A typical closed-loop IV parameter identification experiment 
is conducted as follows: First, the control system is initialized 
and closed-loop operation begins. Next, the downstream throt­
tle is used to manually set the flow coefficient to the value at 
which the test will be run. This may or may not be an open-
loop unstable operating point. The external signal [r\(k) 
>2 W ] J i s then applied, and measurements are made of [«i (k) 
u2(k)\land \yi(k) y2{k)]l. The test can then be repeated for 
the TR method. The complete data set is then put through the 
TR/RIV-AML procedure or the NF/RIV-AML procedure de­
scribed in Section 2. Estimates of A, B, C, and D are needed 

0.5 

0.4-

I 
£ 0.3 

0.2 

Stall With Control of 
First Mode Only 

/ 
Stall Without Control 

Mf»«***» ( 

Stall With Control 
of First and Second 
- Spatial Modes 

0.3 0.7 0.4 0.5 0.6 
Flow Coefficient, $ 

Fig. 6 Pressure rise characteristics for the active control research com­
pressor 

Paduano (1992) (during open-loop operation above 0 = 0.45). 
_ A portion of a typical data set appears in Fig. 7, taken at 
0 = 0.40 for a mode number of one (n= 1). The command is 
a band-limited pseudo-random binary signal of magnitude 10° 
on each channel of the input vector [r{ r2]„. The bandwidth 
of the input is limited to w= 1.1 (50 Hz), which is about five 
times the natural frequency (o>ra,) of the system. The actual 
IGV deflections, [u\ u2]f,, are responding to both this command 
and the feedback signal, as shown in Fig. 4 and in Eq. (29). 
It is apparent from the differences between [H r 2 ]^ = 1 and [ux 

u2]
T

n= i that the feedback signal is a major part of the excitation 
to the system. The outputs Oi y2]l=i are also shown in Fig. 
7. 

Table 1 Parameter estimates, n = 1 

-©
• 

0.475 
0.500 
0.525 
0.550 

* 
0.400 
0.425 
0.450 
0.475 
0.500 
0.525 

0 
0.400 
0.425 
0.450 
0.475 

4> 
0.475 
0.500 
0.525 
0.550 

-e
-l 

0.400 
0.425 
0.450 
0.475 
0.500 
0.525 

0 
0.375 
0.400 
0.425 
0.450 
0.475 

Spectral estimates (from (Paduano, 1992)) 
a 

-6 .27 
-15.58 
-26.50 
-36.37 

a 

5.50 
0.61 

-1 .62 
-4 .96 

-13.50 
-26.27 

a 

4.95 
1.26 

-1 .79 
-4 .88 

Table 2 

Spectral 
a 

-32.46 
-52.38 
-77.44 
-93.17 

a 

-4 .40 
-13.42 
-27.63 
-36.97 
-49.78 
-75.22 

a 

0.91 
-3 .42 

-13.31 
-24.81 
-37.48 

«Vs 

67.29 
71.71 
65.98 
50.81 

br 

-4 .81 
-5 .55 
-5 .70 
-5 .57 

NF/RIV-AML estimates 
«> ra 

52.27 
56.99 
63.54 
66.42 
67.20 
60.36 

br 

-3 .00 
-3 .10 
-3 .56 
-3 .91 
-4 .75 
-4 .90 

TR/RIV-AML estimates 
0>rs 

55.15 
59.86 
63.32 
68.53 

br 
-3 .19 
-2 .80 
-3 .69 
-3 .97 

b, 
2.03 
2.18 
1.05 

-0.84 

b, 
1.01 
1.36 
1.49 

2.14 
2.14 
1.17 

*/ 
0.90 
0.80 
1.50 
2.03 

Parameter estimates, n = 2 

sstimates (from (Paduano, 1992)) 
«>« 

157.37 
168.26 
188.59 
181.28 

br 

-11.57 
-12.68 
-15.93 
-16.36 

NF/RIV-AML estimates 
<»ra 

137.44 
144.45 
152.40 
157.67 
159.42 
152.07 

br 

-8 .07 
-9 .12 

- 10.27 
-11.24 
-11.36 
-11.34 

TR/RIV-AML estimates 
Mrs 

123.16 
137.27 
144.14 
151.65 
158.56 

br 

-7 .28 
-7 .90 
-8 .91 
-9 .94 

-11.27 

b, 
-0 .54 
-1 .28 
-2 .16 
-3 .76 

b, 
0.91 
0.62 
0.13 
0.01 

-0 .22 
-2 .16 

b, 

0.63 
1.01 
0.60 
0.17 

-0.25 

gi 

-0.055 
-0.061 
-0.059 
-0.059 

gi 

-0.029 
-0.033 
-0.039 
-0.044 
-0.050 
-0.051 

gi 

-0.036 
-0.035 
-0.038 
-0.044 

gi 

-0.048 
-0.050 
-0.060 
-0.065 

gi 

-0.038 
-0.042 
-0.044 
-0.047 
-0.044 
-0.041 

gi 

-0.057 
-0.039 
-0.041 
-0.043 
-0.047 

Journal of Dynamic Systems, Measurement, and Control DECEMBER 1993, Vol. 115 / 701 
Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



External Command First Fourier Cosine and Sine Coefficients 

0.2 0.4 0.6 0.8 1 

Time, seconds 

1.2 1.4 

IGV Deflection First Fourier Cosine and Sine Coefficients 

u,j(k) 0 

Velocity Perturbation First Fourier Cosine and Sine Coefficients 

0.2 0.4 0.6 0.8 1 

Time, seconds 

Fig. 7 Results of a typical identification run. Solid lines are experi­
mental data, dashed lines are predictions based on the parameter es­
timates (noise-free simulation) 0 = 0.40. 

An important step in a parameter identification procedure 
is model and parameter validation. Here we present several 
results which indicate that the system structure and identified 
parameters do in fact model the system well. The first is shown 
in Fig. 7, where a simulation based on the parameter estimates 
is used to predict the values of uk and yk. This is not the output 
of a one-step ahead predictor, which would rely on past meas­
urements to make the prediction. Rather, it is a simulation 
based solely on rk, the identified parameters of <£ = 0.40, and 
the controller and sensor dynamics. The fit is quite good, even 
though the simulation is noise-free, while the experiment is 
not: uk and yk in the experiment are responding to excitation 
noise in the compressor. Fits of this quality can be gotten 
regardless of whether the data to be fit is used to get the 
estimates. Since the noise free simulation results are used as 
the instruments in the NF/RIV-AML method, Fig. 7 also serves 
to validate that a high degree of correlation in fact exists 
between the instruments and the measurements. 

EE^:^^d 
10' 

Frequency, Hz 

Fig. 8 Comparison of spectral estimation results (Paduano, 1992) and 
IV parameter identification results. Solid line is an empirical transfer 
function estimate, dashed line is a transfer function derived from pa­
rameters which were identified during closed-loop operation. o = 0.475. 

flow coefficient 

Fig. 9 Parameter variations with flow coefficient, o-Open-loop param­
eter estimates (from (Paduano, 1992)); *-TR/RIV-AML results; x -NF / 
RIV-AML results. 

The closed-loop IV methods (TR/RIV-AML and NF/RIV-
AML) are designed to operate in a regime where the spectral 
estimation procedure presented by Paduano (1992) gives poor 
results, that is, during stabilization of unstable operating points. 
However, closed-loop data sets can be taken at flow coeffi­
cients which are open-loop stable. Such tests can be used to 
verify that closed-loop IV methods properly account for the 
loop closure and still provide good estimates. Figure 8 shows 
the results of such a test. A spectral estimate (based on open-
loop data, using the techniques in Paduano (1992)) is compared 
to both a TR/RIV-AML and NF/RIV-AML estimate (based 
on •closed-loop data). Good agreement between the frequency 
responses is obtained. This agreement is important, because 
IV-based estimates of G„{s) not only use the estimated pa­
rameters, but also assume a certain model structure. Since 
spectral estimates are parameter-free and assume no specific 
model structure, this comparison verifies both the parameter 
estimates and the model structure. 

Finally, the estimates of the parameters from various meth; 
ods can be compared graphically, to see if the trends with (j> 
are smooth. Figure 9 shows o\ and u>rsi as a function of flow 
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coefficient, plotting spectral, TR/RIV-AML, and NF/RIV-
AML results on the same plot. Within reasonable error bands, 
all of the estimation methods yield the same curves. 

The data presented here are a small sample of the data taken, 
and are intended only to demonstrate the practical applicability 
of the identification methods. A complete presentation of the 
data, together with detailed discussion of the physical signif­
icance of the parameter estimates, appears in Paduano (1992), 
and requires a more complete description of rotating stall mod­
eling. For this discussion, the relevant conclusion of the ex­
periments is that the methods presented here yield consistent, 
accurate results, with good convergence properties and little 
sensitivity to the stability of the plant. Established prediction 
error methods, such as those provided in (Ljung, 1987), have 
similar properties (for the data sets tested). These methods 
utilize nonlinear search schemes to minimize prediction error, 
instead of the least-squares type approach utilized by IV meth­
ods. Only a thorough comparison of these two approaches 
would allow one to judge their relative merits. Wellstead (1981) 
also discusses a scheme for non-parametric estimation of for­
ward-path transfer functions during closed-loop operation. 
This method would allow one to deduce the desired plant 
dynamics (using transfer-function fits to the nonparametric 
estimates (Paduano, 1992)), if sufficient care were taken to 
model other contributions to the forward-path transfer func­
tion. Again, the relative merits of Wellstead's method and the 
method presented here can only be determined by a thorough 
comparison. 

4 Conclusions 
By combining various extensions to the basic instrumental 

variable approach, a scheme for estimating parameters in an 
unstable system operating closed loop has been developed. This 
scheme was successfully applied to a model for the distributed 
dynamics of an experimental axial compressor. Thus the use­
fulness of the procedure and the validity of the model were 
both verified experimentally. 
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