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The mean spherical model for a Lorentz-Berthelot mixture of sticky
hard spheres
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Austria

~Received 12 June 1997; accepted 4 March 1998!

We have analyzed the Percus-Yevick~PY! and the mean spherical model~MSM! equation for an
N-component system of sticky hard spheres. The PY approximation leads to a set ofN(N11)/2
coupled quadratic equations for the unknown coefficients. While for this closure, the pair
distribution functions have to be calculatednumerically, we can proceed in the MSM one step
further if we assume a Lorentz-Berthelot-type rule for the interactions: then the structure functions
can be calculatedanalytically. We show that under these conditions in the limitN→` ~stochastic
limit ! the analyticity of the solution is preserved. General expressions both for the discrete and
continuous~polydisperse! case are presented. ©1998 American Institute of Physics.
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I. INTRODUCTION

In contrast to simple liquids,1 colloidal systems2 are—
due to their production process—polydisperse3 in size, i.e.,
every particle may be characterized by its diameter. A
consequence these particles will also be polydisperse
respect to their interactions. Such a system can be desc
essentially in two ways:~i! it can be considered either as a
N-component system, where each component is chara
ized by its size~e.g., diameter! and its interaction~e.g.,
stickiness! parameter~to which we refer to as the discret
model!. Such a description was probably first introduced
Vrij 4 and Blum and Stell3 in the late 1970s, when investiga
ing an N-component system of hard spheres~HS! with dif-
ferent size within the Percus-Yevick~PY! approximation. In
their work, Blum and Stell3 could show that—extending th
basic solution5—the PY equations can be solved leading
explicit analytical expressions of the structure functio
and—in a further step—to the scattering intensity of suc
system; in this approach the crucial point is the special st
ture of an N-dimensional matrixM which has to be in-
verted: only if M can be cast into a special form one c
write down a closed~and therefore exact! form of M21.
This inverse then helps to obtain explicit expressions for
structure function from the factorized Ornstein-Zernike~OZ!
equations and finally the full structural information.~ii ! As
an alternative, however, it might be more convenient to c
sider the caseN→` where each particle is uniquely chara
terized by a value of some random variableX. In our case—
and this was also done by Blum and Stell3—the most natural
choice is X5R, i.e., we introduce the particle size as
independent parameter replacing thus the component indi .
R is assumed to be distributed according to a probab
distribution functionf R(R). Blum and Stell3 introduced for
this transition the term ‘‘polydisperse.’’ In later work
Salacuse6 has cast this formalism into a more rigid fram
work, introducing the concept of random~stochastic! sys-
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tems. He also showed that expressions for both structural
thermodynamic quantities can be generalized from the
crete to the polydisperse case.6

In this contribution we show that it is in fact possible
extend the work of Blum and Stell from a system of HS to
system of sticky HS~SHS!. Such a system—introduced b
Baxter7—may be considered~mathematically! as the most
simple extension of HS by adding a short-ranged stron
attractive interaction~representing the ‘‘stickiness’’! to the
hard core;physically it represents an appropriate model8 to
describe colloidal systems: their interaction has turned ou
be very similar to those of SHS, i.e., strongly repulsive
short distances and attractive at the surface in a rather s
range.2,8 There is evidence that HS, SHS and charged h
spheres are the only systems where the polydisperse
can be done explicitly.

In this paper we consider anN-component system o
pure SHS. We first study the OZ equations for finiteN both
within the PY approximation and the mean spherical mo
~MSM!. A Lorentz-rule~viz., additivity of the hard-core di-
ametersRi j ! is imposed per construction right from the b
ginning, while no restriction is madea priori for the sticki-
ness parametersg i j . In the PY approximation we arrive at
set of N(N11)/2 coupled quadratic equations for the u
known coefficients of the structure functions. However,
this case the above mentioned matrixM cannot be casta
priori into a special form which is required to allow anana-
lytic inversion. Recently Herrera and Blum8 considered—in
a similar effort to go beyond simple HS—polydisper
charged particles with sticky interactions based on a P
MSM approximation. They achieve factorization ofM a
posterioriby assuming parameters of the species~which they
call ‘‘stickiness probabilities’’! to be independent.8 In the
MSM case~considering the SHS interaction as a limitin
case of a HSY system9!, however, such a transform forM is
possiblea priori if we impose on the coupling~stickiness!
parameters a Berthelot-type rule,1 i.e., g i j

2 5g i i g j j , i.e., an
assumption which is physically sound and mathematica
8 © 1998 American Institute of Physics
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convenient. Now, the matrixM can be inverted exactly fo
arbitrary N, which allows us finally to proceed to the sto
chastic case where the Berthelot rule now readsG2(@R
1R8#/2)5G(R)G(R8); this imposes some restrictions:
the size of the particles~i.e., the diameters! is distributed
according to a probability distributionf R(R), then the Ber-
thelot rule inducesa probability distributionf G(g) for the
stickiness; this means that their distribution can no longe
chosen independently. In contrast to the discrete case w
the stickiness is characterized by the set of$g i j %, the distri-
bution is now fixed by only two parameters~representing the
strength and the variance of the stickiness!. As an example
we present results for theG-distribution~or frequently called
Schulz distribution in this context10!, i.e., a standard prob
ability distribution used in this field. We furthermore prese
closed expressions for the structure functions for both
discrete and for the continuous~polydisperse! case.

The paper is organized as follows: in the subsequ
section we present the model and the factorization of the
equations. In the subsequent section the PY equation an
MSM are introduced and results are presented for a fi
number of components. We then discuss under which co
tions the matrixM can be inverted and how this can b
achieved using the Lorentz-Berthelot rule. In Section IV
present the results after applying the stochastic limit; ba
implications of the Lorentz-Berthelot rule on the relation b
tween size and stickiness of the particles are deduced.
paper is closed with concluding remarks. Appendix A co
tains all formulas required for the discrete case~finite N),
while Appendix B presents all the expressions required
an implementation of a computer code for the continuo
~polydisperse! case. Specialisation is done for the case wh
the diameters are distributed according to aG-distribution.

II. THE MODEL

A. Definition

We assume anN-component system of SHS, characte
ized by the number-densityr, the concentrationsci of spe-
cies i ( i 51, . . . ,N) with partial number-densitiesr i5cir.
The set of interactions is defined by7,11

bF i j ~x!55
`, r ,Ri j

2 ,

2 logFg i j

Ri j

~Ri j 2Ri j
2!

G , Ri j
2<r<Ri j ,

0, Ri j ,r ,

~1!

and taking the limit (Ri j 2Ri j
2)→0; theRi5Rii are the hard

core diameter. We furthermore defineRi j 5
1
2(Ri1Rj ) and

Si j 5
1
2(Ri2Rj ). For the Boltzmann-factor ei j (r )

5exp@2bFij(r)# we obtain7,11
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ei j ~r !5Q~r 2Ri j !1g i j Ri j d~r 2Ri j
2!. ~2!

Q(x) is the usual Heaviside step-function, i.e.,Q(x)50 for
x,0 andQ(x)51 for x.0. The Mayer functionf i j (r ) is
then given byf i j (r )5ei j (r )21. Theg i j are dimensionless
positive parameters and represent thus a measure of th
traction ~stickiness! between particlesi and j : in the limit
g i j 50 we recover the case of a mixture of simple HS,5 while
g i j→` represents the case of an infinitely strong adhes
between the spheres.

The definition of theRi j makes the spheres additiv
~Lorentz-rule!, while no restriction has been made up to no
for the g i j .

B. Wiener-Hopf factorization

If we want to calculate the structure of the system@in
terms of the partial pair distribution functions~PDFs! gi j (r )#
we have to solve the OZ equations, generalized to
N-component case

hi j ~r !5ci j ~r !1 (
k51

N

rkE dr 8 cik~r 8!hk j~ ur2r 8u! ~3!

along with a closure relation. In above equations thehi j (r )
5@gi j (r )21# and theci j (r ) are the total and direct correla
tion functions.

As done in Ref. 3 we use the Wiener-Hopf~Wertheim-
Baxter! factorization5,12 for the solution of the OZ equation
which transform—under the assumption thatci j (r )50 for
r .Ri j —into two sets of coupled matrix integral equatio
for the factor functionsQi j (r ):5

rci j ~r !52Qi j8 ~r !12p(
k51

N

rkE
Ski

min[Rki ,Rk j2r ]

dt

3Qki~ t !Qk j8 ~ t1r !, Si j ,r ,Ri j , ~4!

rhi j ~r !52Qi j8 ~r !12p(
k51

N

rkE
Sik

Rik
dt Qik~ t !hk j~ ur 2tu!

3~r 2t !, Si j ,r . ~5!

Drawing on parallels from the one component case7 for
SHS and from a study of anN-component system of HS5 we
start from the exact expression for thehi j (r ):

hi j ~r !5211l i j Ri j d~r 2Ri j
2!, 0<r<Ri j . ~6!

As a consequence theQi j (r ) are found to be polynomi-
als of second order forSi j <r<Ri j and 0 elsewhere, intro
ducing three unknown coefficients. Inserting the expressi
for the hi j (r ) and theQi j (r ) into Eq. ~5! and taking special
care at contact (Ri j ) we obtain for the factor functions5,11
Qi j ~r !5H ai

2
~r 2Ri j !

21~bi1aiRi j !~r 2Ri j !1l i j Ri j
2 , Si j ,r ,Ri j ,

0, elsewhere

. ~7!
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The coefficients are given in terms of

ai5
12j313Rij2

~12j3!2
2

12z i

12j3

, ~8!

bi52
3

2
Ri

2j2

1

~12j3!2
1

6z iRi

~12j3!
, ~9!

where we have used the abbreviations

ju5
p

6 (
i 51

N

r iRi
u , z i5

p

6 (
j 51

N

r jl i j Ri j
2 Rj . ~10!

We easily recover the case of hard spheres5 by putting l i j

50 ~and hencez i50! in Eqs.~8! and ~9!.
The next step is concerned with the determination of

structure of the system in terms of the partial correlat
functions. To this end we defineH̃ i j (s) andQ̃i j (s) via

H̃ i j ~s!5L @rhi j ~r !#~s!5E
0

`

dr e2srrhi j ~r !, ~11!

Q̃i j ~s!5E
Si j

Ri j
dr e2srQi j ~r !. ~12!

The Q̃i j (s) are found to be given by

Q̃i j ~s!5e2sSi j @aiw2~s;Rj !1~aiRi j 1bi !w1~s;Rj !

1l i j Ri j
2 w0~s;Rj !# ~13!

introducing the modified incomplete gamma functio
wa(s;x) (a50,1,2) that are listed in Appendix A.

A Laplace-transform of Eq.~5! yields after some lengthy
algebra the following~matrix!-equation:

(
l 51

N

@d i l 22pr l Q̃i l ~s!#F H̃ l j ~s!1
1

s2G
5

e2sRi j

s2
@ai1~aiRi j 1bi !s1l i j Ri j

2 s2#. ~14!

In deriving the above equation, special care has to be ta
for the terms containing thed-function introduced via the
ansatz~6!.

Furthermore, it must be pointed out that Pastore13 has
discussed~in a different context! the complete equivalence o
the original problem@solution of Eq. ~3!# and the above
equation ~14!: this is only ensured if the functionD(s)
5det@d i j 22pAr ir j Q̃i j (s)# has no zeros in the right ha
plane of the complexs-plane; it is possible to give a ver
simple local test to detect the presence of zeros in the r
half plane: as already remarked by Baxter5 D(0),0 is a
sufficient condition to find at least one zero there.

The parametersl i j introduced in the ansatz~6! and the
coefficients of theQi j (r ) remain yet undetermined.

The ultimate goal of this paper is to calculate the PD
this is only possible if we are able to invert Eqs.~14! so that
we can obtainexplicit expressions for theH̃ i j (s) and from
these the PDFsgi j (r ). To this end we have inverted th
matrix
e
n

en

ht

:

~M! i j 5Mi j 5@d i j 22pr j Q̃i j ~s!#. ~15!

Possibilities to achieve this~under certain assumptions! will
be discussed in the subsequent section.

III. EXPLICIT SOLUTION

In fact, the OZ equations~4! and~5! can be solved for an
N-component system of SHSanalyticallyboth within the PY
approximation and an approximation based on the MS
The solution of the OZ equation, along with one of these t
approximations fixes the yet undetermined parametersl i j .

A. Percus-Yevick equation

The PY closure relation

ci j ~r !5@11hi j ~r !#@12exp$bF i j ~r !%# ~16!

leads after some algebra to a set ofN(N11)/2 coupled qua-
dratic equations11

l i j Ri j 5g i j FaiRi j 1bi12p(
k51

N

rklk jRk j
2 Qik~Sik!G . ~17!

These equations have to be solved for thel i j , which are
then inserted into Eq.~14! @both directly and via theQi j (s)#.
Due to the nonlinear structure of Eq.~17! the unknown pa-
rametersl i j are explicitlydensity-dependent.

B. Mean spherical model

Apart from Baxter’s original definition~1!, the interac-
tion of SHS can be considered as a limiting case9 of a HSY14

interaction

bF i j ~r !52g i j z
Ri j

2

r
exp@2z~r 2Ri j !# for r .Ri j ~18!

and considering the limitz→`.9 Now, it is well known that
the MSM, defined by the closure relations

hi j ~r !521 r ,Ri j and ci j ~r !52bF i j ~r ! Ri j <r
~19!

can be solved analytically for a multicomponent HSY pote
tial for any finitez.14 The unknown coefficients appearing
the factor functions are solutions of a set of rather com
cated algebraic equations.14 Similar to the one-componen
case9 the above limit can be applied to these equations wh
leads to a MSM solution for SHS. In this paper we gener
ize this procedure to anN-component system and obtain th
simple solution

l i j 5g i j . ~20!

Thel i j are now, of course,density-independent, a fact which
will help us to proceed later to the polydisperse case.

C. Lorentz-Berthelot mixtures

We now come back to our previous problem, viz., to fi
the inverse of the matrixM defined in Eq.~15!. Using one
of the analytic solutions~17! or ~20! discussed above we ar
now able to calculateM21 for anyfinite number of compo-
nentsN; in practice, however, numerical limits restrict actu
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applications toN-values which are not too large: this hold
both for the MSM and the PY approximation~for the latter
see, e.g., Refs. 4 and 15!.

However, it has been shown3 that a matrix such asM in
Eq. ~15! can be inverted exactly forarbitrary N under spe-
cial conditions, viz., if the matrix can be cast into a form

Mi j 5d i j 2 (
n51

n̄

Ai
nBj

n , i , j 51, . . . ,N; ~21!

then (M21) i j 5Mi j
21 is found to be3,8

Mi j
215d i j 1

1

D(
m,n

n̄

Ai
mBj

nuummnuu ~22!

with

~D !mn5Dmn5dmn2(
i 51

N

Ai
mBi

n , n,m51, . . . ,n̄. ~23!

D5det D5det M anduummnuu is a cofactor ofD . All quan-
tities used in the above equations are functions ofs, which—
for simplicity—has been omitted as an argument.

A closer analysis of the PY approximation shows th
there is no hope to castM into the desired form~21!: due to
the structure of Eq.~17! a separation according to~21! into
‘‘ i ’’- and ‘‘ j ’’-components ofM is a priori impossible. For
completeness it should be mentioned that Herrera and Bl8

considered polydisperse charge particles with sticky inte
tions within the PY/MSM approximation. In order to make
matrix ~which corresponds to our matrixM) invertible for
an arbitrary number of components they make somead hoc
assumption on quantities they call stickiness probabili
which then makes a factorization in the above sense poss

However, in the MSM it isa priori possible to obtain the
special structure forM if we assume some further approx
mation for the stickiness parametersg i j : we take the solu-
tion of the MSM equations for SHS~20! and introduce a
Berthelot-type rule for the parametersg i j :

g i j
2 5g i i g j j . ~24!

Such an approximation is encountered frequently in bin
~or multicomponent! liquid systems1 and seems to us there
fore to be not only a mathematicallyconvenientbut also a
physicallysoundchoice. It is now guaranteed that the matr
M can be cast into the desired form~21! and therefore can
be inverted analytically for anarbitrary number of compo-
nentsN. This, in turn, allows us to proceed to the continuo
~polydisperse! case.

In our casen̄ turns out to be 5~while in the HS case3 it
was 2!; the rather lengthy expressions for theAi

m and Bi
n

which build upM along with the elements ofD are com-
piled in Appendix A. In this context we also would like t
point out that the decomposition into theAi

m and theBj
n is

not unique.
Now that the explicit form ofM is available, Eq.~14!

can be inverted. Interchanging the summation overn andm
with the matrix multiplication we obtain anexplicit expres-
sion for the Laplace-transforms of the total correlation fun
tions:
t

c-

s
le.

y

s

-

H̃ i j ~s!1
1

s2
5

e2sRi j

s2 FC i j 1
1

D(
m,n

n̄

Ai
m

B j
nuummnuuG , ~25!

where the elementsAi
m , B j

n , andC i j are given by

Ai
m5Ai

mesRi /2, ~26!

B i
n5(

j 51

N

Bj
nFaj S 11s

Ri

2
D 1s

Rj

2~12j3!

1g j i Rji
2 s2Ge2sRj /2, ~27!

C i j 5aiS 11s
Rj

2
D 1s

Ri

2~12j3!
1g i j Ri j

2 s2, ~28!

with n,m51, . . . ,5 andi , j 51, . . . ,N. The explicit expres-
sions for theB i

n ,n51, . . . ,5 in terms of thej-parameters
appearing in the matrixM are listed in Appendix A.

It is now straightforward to calculate the Fourie
transforms of the PDFs: via the general relation betwe
Fourier- and Laplace-transforms@Ref. 3 ~cf. errata! and Ref.
16# one then obtains

Hi j ~q!5
2pAr ir j

iq
@H̃ i j ~2 iq !2H̃ i j ~ iq !#5Si j ~q!2d i j ,

~29!

where theSi j (q) are the partial structure factors.
With these functions we can now proceed to calcul

the scattering intensityI (q), which—taking only the coher-
ent contribution—is given for anN-particle system by4,17,10

~and references quoted therein!

I ~q!5 (
i , j 51

N

Pi~q!Pj~q!Ar ir j@d i j 1Hi j ~q!#. ~30!

This equation applies when multiple scattering
negligible.17 Pi(q)5 f iBi(q) is the scattering amplitude o
speciesi and f i is the excess zero-angle scattering amplitu
The interparticle interference functionBi(q) is—for the case
of a spherosymmetric distribution of the scattering mate
v i(R) inside a particle of speciesi—simply the Fourier-
transform of v i(R).4 Examples for different distributions
v i(R) are given in Ref. 17.

IV. THE STOCHASTIC LIMIT

In their work on anN-component system of HS Blum
and Stell3 performed the limitN→`, introducing thus—
what they call—the ‘‘continuous-distribution’’ limit. In sub
sequent years this generalization was cast into a rigor
framework~i.e., a statistical mechanical description of pol
disperse systems! by Salacuse6 and also by Briano and
Glandt.18 In Ref. 6, a polydisperse system is defined as
‘‘system in which each particle is uniquely associated with
value of some characteristic parameterX, distributed accord-
ing to a probability distribution functionf X(x); X is a con-
tinuous random variable.’’ It was demonstrated there~and in
subsequent work! that several realistic systems can be d
scribed within this formalism very conveniently, as, e.
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when the number of discrete species of a fluid mixture
comes sufficiently large. This is for instance the case in c
loidal systems2 where—due to the production process—t
size of the particles can be described more conveniently
continuous distribution rather than a discrete number of p
ticles.

Dealing with a hard-core system, the diameterR is of
course the natural choice for the continuous random varia
X5R, R being distributed according to a probability distr
bution functionf R(R). The transition from a mixture with a
finite number of components to apolydispersesystem is
most readily realized via the prescription~stochastic limit!6

ci→ f R~R!dR, r i→r f R~R!dR, ~31!

whereci is the concentration of the particles with diame
Ri . Thus, f R(R8)dR8 represents the fraction of particles
the system with diameterR in the range@R8,R81dR8#.
Summations over characteristic quantitiesXi of speciesi
now become integrals

(
i 51

N

r iXi→rE
0

`

dR fR~R!X~R!; ~32!

f R(R) has the usual features of a probability distributi
function, i.e.,

f R~R!.0 for all R; E
0

`

dR fR~R!51. ~33!

The formalism of polydisperse systems has been extende
structural and thermodynamic properties in Refs. 6, 18,
19.

In the case of the MSM solution~along with the Lorentz-
Berthelot assumption for the stickiness! the transition~31!
can be performed byfully maintaining the analyticity of the
expressions presented in Sec. III C~Appendix B 1!. For in-
stance, expression~30! for the scattering intensity now read

I ~q!5rE
0

`

dR P2~R;q! f R~R!

1
2p

iq
r2E

0

`E
0

`

dR dR8 P~R;q!P~R8;q!

3@H̃~R,R8;2 iq !2H̃~R,R8; iq !# f R~R! f R~R8!,

~34!

with H̃ i j (s)→H̃(R,R8;s) andPi(q)→P(R;q).
Similar to the diameterRi ~which has become in the

stochastic limit the random variableR! the stickinessg i i

turns into a random variableG5G(R), which is—by defini-
tion of polydisperse systems—a function of the random v
able R. At the level of G the Berthelot-rule~24! now be-
comes

G2~ 1
2 ~R1R8!!5G~R!G~R8!, ~35!

which can be considered as a functional equation forG~R!
with the continuous solution being

G~R!5g0ezR. ~36!
-
l-

a
r-

le,

r

to
d

i-

The N parametersg i i in the discrete case are now in th
stochastic case reduced to two parametersg0 and z which
can be adjusted to experimental data.

Furthermore, ifR is distributed according to some prob
ability distribution functionf R(R) then

f G~g!5
1

zg
f RFz21 lnS g

g0
D G . ~37!

This means that the distribution of the stickiness is nowin-
ducedby the distribution of the particle-size,f R(R).

In additiong0 andz haveto be positive: the first one fo
physical reasons, i.e., to guarantee that the interaction is
tractive, the latter one for mathematical and physical reas
i.e., to guarantee that the mapping~36! is a monotonous one
and that the stickiness increases with increasing size of
particles.

The following two limiting cases are direct cons
quences of the formalism developed above:~i! for z→01

one finds

f G~g!5d~g2g0! ~38!

for any distribution f R(R) ~i.e., polydisperse in size bu
monodisperse in coupling! and ~ii ! the case of afinite num-
ber N of components is recovered by choosing

f R~R! } (
i 51

N

d~R2Ri !. ~39!

The advantage of the stochastic limit lies in the fact th
the continuous case can be treated~numerically! with much
less effort, than the discrete case with a larger numbe
components: given some probability distribution function f
the size,f R(R), it is sufficient to evaluate integrals, such a

mn~s!5E
0

`

dR fR~R!RnesR. ~40!

For several distributions these integrals can be evalua
analytically. These~general! expressions are summarized
Appendix B 1.

Finally we choosef R(R) to be aG-distribution, i.e.,

f R~R!5
1

DG~c!S R

D D c21

e2R/D; ~41!

D andc are positive parameters. Such a distribution for t
size of the particles has been frequently used in colloi
sciences; there it is rather known as Schulz distribution.10 It
has the mathematically appealing feature that within
present model all quantities required to calculate the sca
ing intensity can be calculated analytically; these express
are compiled in Appendix B 2.

V. CONCLUSION

In this paper we have presented the solution of the
equations for anN-component system of sticky spheres, u
ing the PY closure relation and the MSM. We have furth
more shown that the analyticity of the solution can be fu
maintained in the case of the MSM if we perform the s
chastic limit, i.e., if we consider a system of infinitely man
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components which are characterized by a probability dis
bution function for the diameters. This extension is possi
if we assume a Berthelot-type rule for the stickiness para
eters. It then turns out that closed expressions can be g
for the partial structure factor and hence for the scatter
intensity. These appealing features have been demonst
explicitly for the case that the particle size is distributed
cording to aG-distribution.

Note added in proof. We would like to point out that
during the refereeing process for this manuscript a paper
related problem has been published inThe Journal of Chemi-
cal Physics:20 the authors consider a multicomponent syst
of charged hard spheres~including the polydisperse limit! in
the mean spherical approximation.
i-
e
-

en
g
ted
-
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APPENDIX A: THE DISCRETE CASE

The explicit expressions for the quantitiesAi
n and Bi

n ,
n51, . . . ,5, i 51, . . . ,N which build up M according to
Eq. ~21! are as follows:
Ai
15aie

2sRi /2, Bi
152pr ie

sRi /2Fw2~s;Ri !1
Ri

2
w1~s;Ri !G ,

Ai
25

Ri

2~12j3!
e2sRi /2, Bi

252pr ie
sRi /2w1~s;Ri !,

Ai
35Ag i i

1

4
e2sRi /2Ri

2, Bi
35Ag i i 2pr ie

sRi /2w0~s;Ri !,

Ai
45Ag i i

1

2
e2sRi /2Ri , Bi

45Ag i i 2pr ie
sRi /2Riw0~s;Ri !,

Ai
55Ag i i

1

4
e2sRi /2, Bi

55Ag i i 2pr ie
sRi /2Ri

2w0~s;Ri !. ~A1!

The wa(s;x)’s (a50,1,2) are the modified incomplete gamma functions

w0~s;x!5
1

s
~12e2sx!, ~A2!

w1~s;x!5
1

s2
~12sx2e2sx!, ~A3!

w2~s;x!5
1

s3S 12sx1
1

2
s2x22e2sxD . ~A4!

The elementsD mn (m,n51, . . . ,5) of thematrix D are calculated from these quantities via Eq.~23! and are found to be
~1 is the unit matrix!

D51231
4S j200

a 1
1

2
j110

a D 4j100
a 4j001

a 4j011
a 4j021

a

2S j̄2101
1

2
j̄120D 2j̄110 2j̄011 2j̄021 2j̄031

S j2211
1

2
j131D j121 j022 j032 j042

2S j2111
1

2
j121D 2j111 2j012 2j022 2j032

S j2011
1

2
j111D j101 j002 j012 j022

2 ~A5!
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with

jabg5
p

6(
i

r iwa~s;Ri !Ri
b~Ag i i !

g,

jabg
a 5

p

6(
i

r iaiwa~s;Ri !Ri
b~Ag i i !

g, ~A6!

j̄ abg5
1

~12j3!
jabg .

The coefficientsB i
m ,m51, . . . ,5 andi 51, . . . ,N de-

fined in Eq.~27! are given by

B i
1512S 11s

Ri

2
D S j200

a 1
1

2
j110

a D16S j̄210

1
1

2
j̄120D s13F S j2211

1

2
j131D12S j211

1
1

2
j121DRi1S j2011

1

2
j111DRi

2GAg i i s
2, ~A7!

B i
2512S 11s

Ri

2
D j100

a 16j̄110s13@j12112j111Ri

1j101Ri
2#Ag i i s

2, ~A8!

B i
31b512S 11s

Ri

2
D j0b1

a 16j̄0~b11!1s13@j0~b12!2

12j0~b11!2Ri1j0b2Ri
2#Ag i i s

2, b50,1,2.

~A9!

APPENDIX B: THE CONTINUOUS CASE

In the polydisperse case the discrete quantities chara
izing the component by the indexi now becomecontinuous
functions of the diameterR, which now characterizes thi
species. Formally this transition will be specified, for i
stance, byai→a(R).

1. General expressions

In order to calculate the scattering intensity~34! one has
to calculate the following expressions~where the integrals
extend over the range@0,̀ #!:

ju5
p

6
rE dR fR~R!Ru,

z i→z~R!5
p

24
rg0ezR/2E dR8 f R~R8!R8~R1R8!2ezR8/2,

~B1!

ai→a~R!5
12j313Rj2

~12j3!2
2

12z~R!

12j3

, ~B2!

bi→b~R!52
3

2
R2j2

1

~12j3!2
1

6z~R!R

~12j3!
, ~B3!
er-

jabg5
p

6
rg0

g/2E dR fR~R!wa~s;R!RbegzR/2,
~B4!

jabg
a 5

p

6
rg0

g/2E dR fR~R!a~R!wa~s;R!RbegzR/2,

j̄ a,b,g5
1

~12j3!
ja,b,g ,

Ai
1→A1~R!5a~R!, A i

2→A2~R!5
R

2~12j3!
,

~B5!

A i
3→A3~R!5 1

4Ag0ezR/2R2,

A i
4→A4~R!5 1

2Ag0ezR/2R,

A i
5→A5~R!5 1

4Ag0ezR/2,

B i
1→B1~R!512S 11s

R

2 D S j200
a 1

1

2
j110

a D
16S j̄2101

1

2
j̄120D s13Ag0F S j2211

1

2
j131D

12S j2111
1

2
j121DR1S j2011

1

2
j111DR2GezR/2s2,

~B6!

B i
2→B 2~R!512S 11s

R

2 D j100
a 16j̄110s

13Ag0@j12112j111R1j101R
2#ezR/2s2, ~B7!

B i
31b→B 31b~R!512S 11s

R

2 D j0b1
a 16j̄0~b11!1s

13Ag0@j0~b12!212j0~b11!2R

1j0b2R2#ezR/2s2, b50,1,2, ~B8!

C i j→C ~R,R8!5a~R!S 11s
R8

2
D 1

R

2~12j3!
s

1
1

4
g0ez~R1R8!/2~R1R8!2s2. ~B9!

The calculation ofD , D and of the cofactorsuummnuu
follows Eq. ~A5!. Then

F H̃ i j ~s!1
1

s2G→F H̃~R,R8;s!1
1

s2G
5

1

s2
e2s~R1R8!/2FC ~R,R8!

1
1

D(
n,m

n̄

An~R!Bm~R8!uumnmuuG .

~B10!
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Due to the fact thatC (R,R8) can be split up into a produc
of R- and R8-dependent quantities the double-integral~34!
can befactorized.

2. G-distribution

In this subsection we specialize the expressions de
oped for the polydisperse case in the preceding subsectio
the case thatf R(R) is aG-distribution~41!.10 To this end it is
very convenient to describe quantitiesm̄a(s) defined as

m̄n~s!5E
0

`

dR fR~R!RnesR. ~B11!

They are found to be

m̄n~s!5c•~c11!¯~c1n21!S 1

D D cS 1

D
2sD 2n2c

.

~B12!

For s50 them̄n(s) become the momentsmn of the distribu-
tion f R(R), i.e.,

m̄n~0!5mn5c•~c11!¯~c1n21!Dn. ~B13!

Hence

ju5
p

6
rmu , u50, . . . ,3, ~B14!

z~R!5
p

24
rg0ezR/2@R2m̄1~z/2!12Rm̄2~z/2!

1m̄3~z/2!#, ~B15!

a(R) andb(R) are then obtained from Eqs.~B2! and ~B3!.
Furthermore,

j0,b,g5
p

6
rg0

g/21

s
@m̄b~zg/2!2m̄b~zg/22s!#, ~B16!

j1,b,g5
1

sFj0,b,g2
p

6
rg0

g/2m̄b11~zg/2!G , ~B17!
l-
to

j2,b,g5
1

sFj1,b,g1
p

12
rg0

g/2m̄b12~zg/2!G , ~B18!

jabg
a 5

1

12j3

jabg1
3j2

~12j3!2
ja~b11!g

2
3

12j2

p

6
rg0

1/2@ja~b12!~g11!m̄1~z/2!

12ja~b11!~g11!m̄2~z/2!1jab~g11!m̄3~z/2!#.

~B19!
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