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The mean spherical model for a Lorentz-Berthelot mixture of sticky
hard spheres
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We have analyzed the Percus-YevigkY) and the mean spherical mod®SM) equation for an
N-component system of sticky hard spheres. The PY approximation leads to aN@tl of1)/2
coupled quadratic equations for the unknown coefficients. While for this closure, the pair
distribution functions have to be calculatedmerically we can proceed in the MSM one step
further if we assume a Lorentz-Berthelot-type rule for the interactions: then the structure functions
can be calculatednalytically. We show that under these conditions in the liMit> (stochastic

limit) the analyticity of the solution is preserved. General expressions both for the discrete and
continuous(polydispersg case are presented. €998 American Institute of Physics.
[S0021-960698)51122-1

I. INTRODUCTION tems. He also showed that expressions for both structural and
thermodynamic quantities can be generalized from the dis-
In contrast to simple liquid,colloidal system&are—  crete to the polydisperse cae.
due to their production process—polydispérsesize, i.e., In this contribution we show that it is in fact possible to

every particle may be characterized by its diameter. As &xtend the work of Blum and Stell from a system of HS to a
consequence these particles will also be polydisperse witeystem of sticky HSSHS. Such a system—introduced by
respect to their interactions. Such a system can be describ&hxter—may be consideredmathematically as the most
essentially in two waysfi) it can be considered either as an simple extension of HS by adding a short-ranged strongly
N-component system, where each component is charactedttractive interactior(representing the “stickiness”to the
ized by its size(e.g., diameterand its interaction(e.g., hard core;physicallyit represents an appropriate mdtte
stickines$ parameter(to which we refer to as the discrete describe colloidal systems: their interaction has turned out to
mode). Such a description was probably first introduced byP€ very similar to those of SHS, i.e., strongly repulsive at
vrij4 and Blum and Stellin the late 1970s, when investigat- short gléstances_ and _attractive at the surface in a rather small
ing an N-component system of hard sphefetS) with dif- ~ ange There is evidence that HS, SHS and charged hard
ferent size within the Percus-YevidRY) approximation. In  SPheres are the only systems where the polydisperse limit

their work, Blum and Stellcould show that—extending the €20 be done explicitly.

: : : : In this paper we consider aN-component system of
basic solutioR—the PY equations can be solved leading to . ; 2
explicit analytical expressions of the structure functionsPY'® SHS. We first study the OZ equations for firiteboth

and—in a further step—to the scattering intensity of such within the PY approximation and the mean spherical model

system; in this approach the crucial point is the special struc?(-MSM)' A Lorentz-rule(viz., additivity of the hard-core di-

ture of anN-dimensional matrix.# which has to be in- ametersk;j) is imposed per construction right from the be-

verted: only if.Z can be cast into a special form one canginning, while no restriction is made priori for the sticki-
write down a Lc/lcj)se dand therefore exartorm of ./~ ness parameterg; . In the PY approximation we arrive at a
A0 .

. . L . set of N(N+1)/2 coupled quadratic equations for the un-
This inverse then helps to obtain explicit expressions for thEI?<nown coefficients of the structure functions. However, in

structure function from the factorized Ornstein-Zernik&) this case the above mentioned matri% cannot be cash
equations and finally the full structural informatiofii.) As priori into a special form which is required to allow ana-

an alternative, however, it might be more convenient to Conlytic inversion. Recently Herrera and Blroonsidered—in
sider the casél—c where each particle is uniquely charac- 5 gimilar effort to go beyond simple HS—polydisperse
terized by a value of some random variallein our case—  charged particles with sticky interactions based on a PY/
and this was also done by Blum and Steithe most natural g approximation. They achieve factorization of a
choice isX=R, i.e., we introduce the particle size as an posterioriby assuming parameters of the specigsich they
independent parameter replacing thus the component indexca|| “stickiness probabilities) to be independerit.in the

R is assumed to be distributed according to a probabilityviSM case (considering the SHS interaction as a limiting
distribution functionfg(R). Blum and Stefl introduced for  case of a HSY systet)) however, such a transform forZ is

this transition the term “polydisperse.” In later work, possiblea priori if we impose on the couplingstickiness$
Salacus® has cast this formalism into a more rigid frame- parameters a Berthelot-type rdig.e., 7i2j =%ii7jj, i.e., an
work, introducing the concept of randofstochastit sys-  assumption which is physically sound and mathematically
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convenient. Now, the matrixZ can be inverted exactly for gj(r)=0(r—Rj)+v;R;ér—R;). 2

arbitrary N, which allows us finally to proceed to the sto-
chastic case where the Berthelot rule now re&@f§[R
+R']/2)=G(R)G(R’); this imposes some restrictions: if
the size of the particlesi.e., the diametejsis distributed
according to a probability distributiofiz(R), then the Ber-
thelot ruleinducesa probability distributionfg(y) for the
stickiness; this means that their distribution can no longer b
chosen independently. In contrast to the discrete case whe
the stickiness is characterized by the sef gf}, the distri-
bution is now fixed by only two parameterepresenting the
strength and the variance of the stickinegss an example
we present results for tHe-distribution(or frequently called
Schulz distribution in this conteX, i.e., a standard prob-
ability distribution used in this field. We furthermore present _ o
closed expressions for the structure functions for both thg' Wiener-Hopf factorization
discrete and for the continuodpolydispersg case. If we want to calculate the structure of the systém
The paper is organized as follows: in the subsequenterms of the partial pair distribution functiofBDFs9 g;;(r)]
section we present the model and the factorization of the OXve have to solve the OZ equations, generalized to the
equations. In the subsequent section the PY equation and ttiNvcomponent case
MSM are introduced and results are presented for a finite
number of components. We then discuss under which condi-
tions the matrix.7Z can be inverted and how this can be
achieved using the Lorentz-Be_rtheIot rule. In S?Ct?oﬁ a W?along with a closure relation. In above equations thér)
_pres_ent_the results after applying the stochastic Ilm!t; ba5|c:[gij(r)_1] and thec;;(r) are the total and direct correla-
|mpI|cat|pns of the_Lo_rentz-BertheIot rl_JIe on the relation be'tion functions.
tween size and st_lcklness of_the particles are deduced. The ' Aq done in Ref. 3 we use the Wiener-Hap¥ertheim-
paper is closed with concluding remarks. Appendix A con-

O (x) is the usual Heaviside step-function, i.8.(x)=0 for
X<0 and®(x)=1 for x>0. The Mayer functionf;;(r) is
then given byf;;(r)=e;(r)—1. The y;; are dimensionless
positive parameters and represent thus a measure of the at-
traction (stickines$ between particles and j: in the limit
&ij = 0 we recover the case of a mixture of simple H8hile
i — represents the case of an infinitely strong adhesion
etween the spheres.

The definition of theR;; makes the spheres additive
(Lorentz-rulg, while no restriction has been made up to now
for the v;; .

N

hij(r):Cij(r)+gl Pkf dr ci(rhy(fr=r'l) (3

tains all formulas required for the discrete cdfiaite N),

while Appendix B presents all the expressions required fo
an implementation of a computer code for the continuou%rt
(polydispersgcase. Specialisation is done for the case where

the diameters are distributed according tb -gistribution.

Il. THE MODEL
A. Definition

We assume ahl-component system of SHS, character-
ized by the number-density, the concentrations; of spe-
ciesi (i=1,... N) with partial number-densitiep; = c;p.
The set of interactions is defined by

0, r<Rj.
BP;(x)=1 —log ’yi-L , Rjsr=Rj, (1
' "(Ry-RpT
0, Rij<r,

and taking the limit R;; —R;;) —0; theR;=R;; are the hard
core diameter. We furthermore defirﬁejzé(RiJer) and
Sj= %(Ri—Rj). For the Boltzmann-factor e;(r)
=exd — BP;(r)] we obtair**

a 2 2
E(r_Rij) +(bi+aRj) (r —Ryj) + N Rjj,

Qij(r)=
0,

r

S;<r<R

Baxtey factorizatior™*2 for the solution of the OZ equations
which transform—under the assumption thg(r) =0 for
r>R;j—into two sets of coupled matrix integral equations
he factor functiongQ;;(r):*

min[Rki ,Rkj—f]

N
re(r)= _Qi’j(r)+277kzl PKJ

Ski

X Qui(DQg(t+r), §<r<Ry, (4)

N
Ri

rhi(n=—-Q(n+2m> Pkf "t Qi(Dhy([r—t))
k=1 Sik

X(r—t), S;<r. ®)

Drawing on parallels from the one component ¢ese
SHS and from a study of aN-component system of HSve
start from the exact expression for thg(r):

As a consequence th@;;(r) are found to be polynomi-
als of second order fog;<r<R;; and O elsewhere, intro-
ducing three unknown coefficients. Inserting the expressions
for the h;;(r) and theQ;;(r) into Eq.(5) and taking special
care at contactR;;) we obtain for the factor functions!

ij

Y

elsewhere



9500 J. Chem. Phys., Vol. 108, No. 22, 8 June 1998 C. Tutschka and G. Kahl

The coefficients are given in terms of (2)ij=M;; =[5 —27ij6”($)]. (15)
1-&+3Rié& 12 ® Possibilities to achieve thi@under certain assumptionwill
' (1—£5)2 1_53’ be discussed in the subsequent section.
3 2 1 6¢iR; Il. EXPLICIT SOLUTION
bi=— ERi &2 2 , 9 .
(1-§3)° (1-§3) In fact, the OZ equationg}) and(5) can be solved for an

N-component system of SH&halyticallyboth within the PY

where we have used the abbreviations L A
approximation and an approximation based on the MSM.

T " ad ) The solution of the OZ equation, along with one of these two
fu:gi:1 PR}, éi:ggl piNijRiR; - (100 approximations fixes the yet undetermined paramexgrs
We easily recover the case of hard spheisg putting Njj A. Percus-Yevick equation
=0 (and hence;=0) in Egs.(8) and(9). The PY closure relation
The next step is concerned with the determination of the Cij(r)=[1+hy; () ][ 1—exp BD;; (1)}] (16)

structure of the system in terms of the partial correlation
functions. To this end we defirﬁ”—(s) and 6”(5) via leads after some algebra to a setNgiN+ 1)/2 coupled qua-

dratic equations

Hii(s)=2[rh;; -4 “Srhy (), 11 N
i) () fo re ) 4 NijRij = vij aiRij+bi+27TkZl Pk)\ijﬁjQik(Sik)- (17)

Rij . .
Qij(s):f Ldr e S"Q;;(r). (120  These equations have to be solved for ke, which are

Sij then inserted into Eq14) [both directly and via th&;; (s) ].
Due to the nonlinear structure of E(L7) the unknown pa-

The Q;j(s) are found to be given by rameters; are explicitly density-dependent

Qij(s)=e *Si[a;pa(S;R)) + (&R + by ¢1(S;Ry)

5 B. Mean spherical model

+\ijRijeo(siR))] (13 o o _
Apart from Baxter’'s original definitior{1), the interac-

introducing the modified incomplete gamma functionstion of SHS can be considered as a limiting Casiea HSY!*
04(s:X) (¢=0,1,2) that are listed in Appendix A. interaction

A Laplace-transform of E(q5) yields after some lengthy

algebra the followingmatrix)-equation: z

R&
ﬁ@ij(r):_’yijZJqu_Z(r_Rij)] f0rr>Rij (18)
r

N
~ ~ 1
,Zl Lon=2mpQu(s)] Hij(s)+ 5 and considering the limit—.® Now, it is well known that
the MSM, defined by the closure relations
e SR _ _
= P [ai+(aiRij+bi)S+)\ini2jSZ]. (14) hij(r)__l r<Rij and Cij(r)__ﬁq)ij(r) R'Jgr(lg)
S

In deriving the above equation, special care has to be takeffn Pe solved anzilg/tlcally for a multicomponent HSY poten-
for the terms containing thé-function introduced via the tal for any finitez.™ The unknown coefficients appearing in
ansatz(6). the factor func_tlons are solu_tlo_ns of a set of rather compli-
Furthermore, it must be pointed out that Pastbreas cated algebra|c.equat|0ﬁ‘é.S|m|lgr to the one-component
discussedin a different contextthe complete equivalence of casd the above limit can be applied to these equations which
the original problem[solution of Eq.(3)] and the above !eads_to a MSM solution for SHS. In this paper we ggneral—
equation (14): this is only ensured if the functiod(s)  'Z€ this procedure to aN-component system and obtain the

=de{5i,-—27-r\/pip16ij(s)] has no zeros in the right half simple solution

plane of the comples-plane; it is possible to give a very Nij=ij - (20
simple local test to detect the presence of zeros in the rig B Lo .
half plane: as already remarked by BaRter(0)<0 is a hf‘he)\IJ are now, of coursejensity-independena fact which

sufficient condition to find at least one zero there. will help us to proceed later to the polydisperse case.

The parameters;; introduced in the ansat®) and the _
coefficients of theQ;;(r) remain yet undetermined. C. Lorentz-Berthelot mixtures

The ultimate goal of this paper is to calculate the PDFs:  We now come back to our previous problem, viz., to find
this is only possible if we are able to invert Eq$4) so that  the inverse of the matrix defined in Eq(15). Using one
we can obtairexplicit expressions for thél ij(s) and from  of the analytic solutiongl7) or (20) discussed above we are
these the PDFg;j(r). To this end we have inverted the now able to calculatez~* for anyfinite number of compo-
matrix nentsN; in practice, however, numerical limits restrict actual
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applications toN-values which are not too large: this holds

both for the MSM and the PY approximatidfor the latter
see, e.g., Refs. 4 and )15

However, it has been showthat a matrix such as7 in
Eqg. (15 can be inverted exactly faarbitrary N under spe-
cial conditions, viz., if the matrix can be cast into a form

Mij=8;— > A/B/, i,j=1,... N;
v=1

(21
then (2~ 1);;=M;;* is found to bé®
1 1e .
Mij "= dij + 5% ArBjlIm,, || (22)
with
N
(Drr=DH"= 5MV—E ABY, v,u=1,...v. (23
=1

D=det Z=det.# and||m,,|| is a cofactor of~. All quan-
tities used in the above equations are functions, efhich—
for simplicity—has been omitted as an argument.

C. Tutschka and G. Kahl 9501
- 1 e sRyl 1l -
Hij(s)+ il Zi+ EME,V 23 m |, (29)
where the elementsZ*, .77, andZ}; are given by
A= AFeSRI2 (26)
N
R R
A=2 Bllaj| 1+s— | +s——
=1 2 2(1—&,)
+7;iRis? e 7R, 27)
(= RJ Ri 22
y/ij—ai 1+s— +S—+’yinijS s (28)
2(1-&,)
with v,u=1,...,5 and,j=1,... N. The explicit expres-
sions for the.#! ,v=1,...,5 interms of the¢-parameters

appearing in the matrix# are listed in Appendix A.

It is now straightforward to calculate the Fourier-
transforms of the PDFs: via the general relation between
Fourier- and Laplace-transformiRef. 3 (cf. errata and Ref.

A closer analysis of the PY approximation shows that16] one then obtains

there is no hope to cas# into the desired forni21): due to
the structure of Eq(17) a separation according {@1) into
“i”-and " j"-components of 7 is a priori impossible. For

completeness it should be mentioned that Herrera and Blum

277\/Pin

Hij(q)= T[ﬁij(_iq)_ﬁij(iQ)]:Sij(Q)_ Sij »

(29

considered polydisperse charge particles with sticky interaoyhere theS;;(q) are the partial structure factors.

tions within the PY/MSM approximation. In order to make a

matrix (which corresponds to our matrix#) invertible for
an arbitrary number of components they make sathdroc

With these functions we can now proceed to calculate
the scattering intensity(q), which—taking only the coher-
ent contribution—is given for ai-particle system b/"1°

assumption on quantities they call stickiness probabilitieSand references quoted thergin
which then makes a factorization in the above sense possible. N

However, in the MSM it isa priori possible to obtain the
special structure forZ if we assume some further approxi-
mation for the stickiness parameteyg: we take the solu-
tion of the MSM equations for SH&0) and introduce a
Berthelot-type rule for the parameteys:

%2,' =Y Vjj - (24)

Such an approximation is encountered frequently in binary

(or multicomponentliquid system$ and seems to us there-
fore to be not only a mathematicalgonvenientout also a

physicallysoundchoice. It is now guaranteed that the matrix

7% can be cast into the desired for(®1) and therefore can
be inverted analytically for aarbitrary number of compo-

nentsN. This, in turn, allows us to proceed to the continuous

(polydispersg case.

In our casev turns out to be Fwhile in the HS casgit
was 2; the rather lengthy expressions for thé¢ and B/
which build up.# along with the elements o/ are com-
piled in Appendix A. In this context we also would like to
point out that the decomposition into ti#¢* and theB; is
not unique.

Now that the explicit form of Z is available, Eq(14)
can be inverted. Interchanging the summation avand u
with the matrix multiplication we obtain aaxplicit expres-

Pi(a)P;(a) Vpip[ 8+ Hij(a)]. (30)

(@)= >

i,j=1
This equation applies when multiple scattering is
negligible?” P;(q)=f,B;(q) is the scattering amplitude of
species andf; is the excess zero-angle scattering amplitude.
The interparticle interference functid)(q) is—for the case
of a spherosymmetric distribution of the scattering material
i(R) inside a particle of species—simply the Fourier-
transform of w;(R).* Examples for different distributions
wi(R) are given in Ref. 17.

IV. THE STOCHASTIC LIMIT

In their work on anN-component system of HS Blum
and Steff performed the limitN—o, introducing thus—
what they call—the “continuous-distribution” limit. In sub-
sequent years this generalization was cast into a rigorous
framework(i.e., a statistical mechanical description of poly-
disperse systemsby Salacuse and also by Briano and
Glandt!® In Ref. 6, a polydisperse system is defined as a
“system in which each particle is uniquely associated with a
value of some characteristic parametedistributed accord-
ing to a probability distribution functioriy(x); X is a con-
tinuous random variable.” It was demonstrated th@ned in

sion for the Laplace-transforms of the total correlation func-subsequent wopkthat several realistic systems can be de-

tions:

scribed within this formalism very conveniently, as, e.g.,
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when the number of discrete species of a fluid mixture beThe N parametersy;; in the discrete case are now in the
comes sufficiently large. This is for instance the case in colstochastic case reduced to two parametgysand z which
loidal system$where—due to the production process—thecan be adjusted to experimental data.

size of the particles can be described more conveniently by a Furthermore, ifR is distributed according to some prob-
continuous distribution rather than a discrete number of parability distribution functionfr(R) then

fa(y)=5-1fr — (37

course the natural choice for the continuous random variable, Zy Yo

X .R’ R be|_ng distributed acco_r(_jmg toa propablllty (_j|str| This means that the distribution of the stickiness is riow
bution functionfr(R). The transition from a mixture with a S . .
- . ; ducedby the distribution of the particle-sizér(R).
finite number of components to polydispersesystem is " o ’
most readily realized via the prescripti¢stochastic limif® In addition y andz haveto be positive: the first one for
y P P physical reasons, i.e., to guarantee that the interaction is at-

ci—fr(R)AR, pi—pfr(R)dR, (31) tractive, the latter one for mathematical and physical reasons,
i.e., to guarantee that the mappi(86) is a monotonous one

wherec; is the concentration of the particles with diameter g that the stickiness increases with increasing size of the
R;. Thus,fr(R’)dR’ represents the fraction of particles in particles.

ticles.
Dealing with a hard-core system, the diameeis of _1 {21 In( 7) _

the system with diameteR in the range[R’,R’+dR’]. The following two limiting cases are direct conse-
Summations over characteristic quantiti¥s of speciesi quences of the formalism developed abofi¢:for z—0*
now become integrals one finds
N
” fa(y)=6(y=0) (39
> pixﬁpf dR fR(R)X(R); (32) N _ _ .
i=1 0 for any distribution fg(R) (i.e., polydisperse in size but

monodisperse in couplingand (ii) the case of dinite num-

fr(R) has the usual features of a probability distribution ber N of components is recovered by choosing

function, i.e.,

N
f(R)>0 for allR: fwdR fo(R)=1. 33 fr(R) « 2 8(R-R). (39
0

) ) The advantage of the stochastic limit lies in the fact that
The formalism of polydisperse systems has been extended e continuous case can be treatadmerically with much

structural and thermodynamic properties in Refs. 6, 18, angbss effort, than the discrete case with a larger number of

19. components: given some probability distribution function for

In the case of the MSM solutiof@long with the Lorentz-  yq gize £ (R), it is sufficient to evaluate integrals, such as
Berthelot assumption for the stickingshe transition(31)

can be performed bfully maintaining the analyticity of the
expressions presented in Sec. lll(8ppendix B 1. For in-
stance, expressiai30) for the scattering intensity now reads

my(s)= f :dR fr(R)R"eSR. (40)

For several distributions these integrals can be evaluated

o analytically. These(general expressions are summarized in
|(0|):Pfo dR P*(R;q)fr(R) Appendix B 1.
Finally we choosd i(R) to be al'-distribution, i.e.,
277 © oo 1
+.—2fdedR’PR; P(R’; 1 [R\%
|q P 0o Jo ( Q) ( q) fR(R): DF(C) B e R/D; (41)
X[H(R,R";—iq)—H(R,R’;iq)]fr(R) fr(R"), D andc are positive parameters. Such a distribution for the

(34) size of the particles has been frequently used in colloidal
sciences; there it is rather known as Schulz distributfoi.

with ﬁij(s)—fH'(R,R’;s) andP;(q)—P(R;q). has the mathematically appealing feature that within the
Similar to the diameteR; (which has become in the present model all quantities required to calculate the scatter-
stochastic limit the random variabl@) the stickinessy;; ing intensity can be calculated analytically; these expressions

turns into a random variablé=G(R), which is—by defini- are compiled in Appendix B 2.
tion of polydisperse systems—a function of the random vari-
able R. At the level of G the Berthelot-rule(24) now be-

comes V. CONCLUSION

In this paper we have presented the solution of the OZ
equations for atN-component system of sticky spheres, us-
ing the PY closure relation and the MSM. We have further-
more shown that the analyticity of the solution can be fully
maintained in the case of the MSM if we perform the sto-
G(R) = yoe™R. (36) chastic limit, i.e., if we consider a system of infinitely many

G?(3(R+R")=G(R)G(R"), (35

which can be considered as a functional equationG¢R)
with the continuous solution being



J. Chem. Phys., Vol. 108, No. 22, 8 June 1998 C. Tutschka and G. Kahl 9503

components which are characterized by a probability distiACKNOWLEDGMENTS
bution function for the diameters. This extension is possible ] . o
if we assume a Berthelot-type rule for the stickiness param-  11is work was supported by thes@rreichische For-

eters. It then turns out that closed expressions can be giveifhungsfonds under Project No. P11194-PHY. The authors
e indebted to Professor G. Stell for bringing Ref. 10 to

for the partial structure factor and hence for the scatterin%;f_ g . - .
intensity. These appealing features have been demonstratk Ir Iatctjeméo”- Computational aid by R. Danzmayr is ac-
nowledged.
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Note added in proofWe would like to point out that
during the refereeing process for this manuscript a paper on 8ppeNDIX A: THE DISCRETE CASE
related problem has been published’ime Journal of Chemi-
cal Physics® the authors consider a multicomponent system  The explicit expressions for the quantitié¢ and B!,
of charged hard spheré¢mcluding the polydisperse limitin v=1,...,5,i=1,... N which build up.#Z according to

the mean spherical approximation. Eqg. (21) are as follows:
|
1_, a—SR2 1 SR/2 Ri
Ajl=ae , Bi=2mp;e ea(S;R) + E%(S;Ri) ,
2 Ri —sR/2 2 sR/2
A; e R Bi=2mpie* " pi(siRy),

2(1-¢&3)
1
A= YiiZe_SR"/ZRiz. BY=yi2mpie*2pq(siRy),
4 1 —-sR/2 4 SR/2 .
Ai=Vvi5e€ R, Bi=V»i2mpiesiRipo(siR),
1
A =\yige B2 BI=\yi2mpie R gy(siR). (A1)

The ¢,(s;X)’s (=0,1,2) are the modified incomplete gamma functions

1

eo(s;X)= S (1—-e79, (A2)
1

P1(siX)=—(1—sx—e"*), (A3)
S
1 1

a(S:X)=—| 1—sx+ =s?x?—e 5|, (A4)
s 2

The elementsZ*” (u,v=1, ...,5) of thematrix & are calculated from these quantities via E28) and are found to be

(1 is the unit matrix

4

1
Eoot 55210) 480 A&5n A& 4&0n
_ 1— _ _ _ _
2| &210t 55120 2&110 26011 28021 26031

7=1-3

1
Eomt 56131) §121 G022 €032 boaz (A5)

2

1
5211+§§121) 26111 28012 28002 2é032

1
Eoo1t 55111) €101 Soo2 o1z €ox
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with

2 Piea(SiRIRE(Vyi)?,

aﬁy

2 pidi e (S;RIRP(Vyi)?, (AB)

aBV

ga[%y: gafﬂy'

(1-¢&5)

The coefficients 2! ,u=1, ...
fined in Eq.(27) are given by

,5 andi = . N de-

/5’12

R; 1
1+32 gzoo+ €310] +6| €210

1— 1
+ Eflzo s+3 (§221+ §§131 +2

Eo11

1
+3 §121 R+ (A7)

&1t 5 §111) }%5

, Ri —
BE= 12( 1+ S?) oot 6£1105+ 3[ £1211 26111R;
+ E10R? IV Y3 S, (A8)

#EE=12)

R;
l+s— )fo,gl“‘ 6o (p+1)1ST 3 €og+2)2

5=0,1,2.
(A9)

+2&0g+1)2Ri+ fo,ezRiz] ¥ii s,

APPENDIX B: THE CONTINUOUS CASE

In the polydisperse case the discrete quantities character-
izing the component by the indexnow becomecontinuous
functions of the diameteR, which now characterizes this
species. Formally this transition will be specified, for in-
stance, bya;—a(R).

1. General expressions

In order to calculate the scattering intengi3#) one has
to calculate the following expressioriehere the integrals
extend over the range,~]):

a
b-gp | R RRY

fi—>§(R)=2£4pmeZR’2J dR’ fr(R)R'(R+R')%e*R 2,

(B1)
1-6+3RE  12(R)
a,—a(R)= — , (B2)
R (1-&;)? 1-¢&
3 1 6/(R)R
bi—b(R)=—-=R? + : B3
R g e .

C. Tutschka and G. Kahl

gaﬁY 6 p,yg/ZJ drR fR( R)¢a(3; R) RﬁeszIZ'

(B4)

giﬁvzgpyglzj dR fr(R)a(R)¢,(s;R)RPe”?R?,

ga,ﬁ,yz ga,ﬂ,‘y!

(1-&)

R
2= A R)=a(R), 42— 7A(R)=—,
2(1-¢&;) (B5)

23— R = Wy R?,

%\/’y—erRIZR,

A ZAR)=
42— 2%R)=

S B R)= 12( 1+ sR) ( oot = ! gm)

_ 1 1
6| &2107T 55120) s+3 \/70 €t > §131)

z RIZSZ ’

1 1
2| Expt 55121 R+| &o011 55111) R%|e

(B6)

.ﬁ’ ﬁZ(R) 12 1+S floo"‘ﬁflloS

+3\yol é1o1+ 2611 R+ £1R?1E2R2?, (BT)

R
B B3TE(R) = 12(1"‘5 )5031+6§O(3+1

+ 3yl €o(gr2)2t 280(p+1)2R

+&0paR?1e?™%s%, p=0,1,2, (B9)

!

l+s— |+
2

R

Zii—2(RR)=a(R) ms
— &3

1 ,
+ Z,yOeZ(RJrR )/2(R+ R,)ZSZ. (Bg)

The calculation of, D and of the cofactorg/m,,||

follows Eq.(A5). Then

~ 1 —~ 1
Hij(s)+ 5 |—=| H(RR';s)+ —
S S

— izefs(RJr R’)/2 g(R,R,)

1 v

U

(B10)
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Due to the fact that(R,R’) can be split up into a product

of R- and R’'-dependent quantities the double-integt24)
can befactorized

2. I'-distribution

In this subsection we specialize the expressions devel- £ 1 362
oped for the polydisperse case in the preceding subsection to

the case thaftig(R) is al“-distribution(4_1).10 To thisend itis
very convenient to describe quantities,(s) defined as

m(s)= f dR f(R)R"eR (B11)
0
They are found to be
_ 1 C 1 —Nn—cC
mn(s)=c~(c+1)---(c+n—1)<5) (5—5
(B12)

Fors=0 them,(s) become the moments, of the distribu-
tion fr(R), i.e.,

m,(0)=m,=c-(c+1)---(c+n—1)D". (B13)
Hence
v
&=gpMy, u=0,....3, (B14)
a — J—
{(R) = 570 v0e™ [ RPmy(2/2) + 2Rmy(2/2)
+my(2/2)], (B15)
a(R) andb(R) are then obtained from Eq&82) and (B3).
Furthermore,
T ol — —
bop.y=g PY3 5[My(zyI2) —my(zy2-5)],  (B16)
1 Ty
fl,ﬁ,yzg 0,9~ gPYg Mg, 1(2y/2) |, (B17)
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1 T —
€205 €180 ToP VS Mp2(2712) |, (B19)

apy=7 5 apyt Eapr1)y

1-4;

3 =

1/ m.
= &y m,(z/2)
1-¢,6 P)’oz[ (B+2)(y+1)M1

(1-&)?

T 250‘(,3*' D(y+ 1)52(2/2) + Ea,;(er 1)53(2/2)].
(B19)
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