An Investigation into
Professional Programmers’ Mental Representations of Variables

Jorma Sajaniemi
University of Joensuu
Department of Computer Science

PO.Box 111, 80101 Joensuu, Finland

Jjorma.sajaniemi @ joensuu.fi

Abstract

Very little is known about professional programmers’
mental representations of variables, yet this information
is vital in designing effective tools for program compre-
hension. In order to find out what types of information
programmers have about variables and their relations, we
conducted a knowledge elicitation study where professional
programmers studied programs and the resulting mental
representations were elicited using card sorting and inter-
views. The mental representations were based on four-
teen principles that can be organized in four main cate-
gories: domain-based, technology-based, execution-based,
and strategy-based. Most frequent information types dealt
with two execution-based criteria: behavior and utilization.

1. Introduction

Comprehension of programs encompasses the construc-
tion of a mental representation, which describes both the
program as a technical artefact and its relationship with the
application domain [18]. In the case of large programs, the
mental representation must be partial and its construction
is laborious. This task can be eased by tools which should
fit programmers’ mental representations and cognitive pro-
cesses in order to be effective [17, 19].

Programs consist of variables, operations working on
variables, control structures steering the execution of op-
erations, and larger constructs—like functions, classes,
modules, subsystems—giving a structure to collections of
smaller constructs. A central task in program comprehen-
sion is to understand what a piece of code does: what is
its purpose and how does the code achieve it. Code com-
prehension means dealing with variables and their tasks:
understanding relations between variables and how opera-
tions act on them. In a study among professional mainte-

Raquel Navarro Prieto
Universitat Pompeu Fabra
Estacio de la Comunicacio
Ocata 1, 08003 Barcelona, Spain
raquel.navarro@upf.edu

nance programmers [18], information about variables was
the most frequent information need. If code comprehension
is to be supported by tools, mental representations of vari-
ables and their relationships must be known.

However, very little is known about professional pro-
grammers’ mental representations of variables. Elementary
textbooks treat variables as memory boxes holding a value
that can be changed in arbitrary ways, and studies in the
psychology of programming has seen variables as carrying
out some unique task and having some unique data flow
relations with other variables. But variables are not used
in arbitrary ways and their tasks are not unique: the same
tasks and update patterns occur in programs over and over
again. It would be highly unexpected, if these tasks and
patterns would not be part of programmers’ mental repre-
sentation. Yet, these tasks and patterns have been neglected
in research.

In order to find out what types of information program-
mers have about variables and their relations, we conducted
a knowledge elicitation study where professional program-
mers studied programs and the resulting mental represen-
tations were elicited. Research in the last years by Cafias
and al. [4] has provided the theoretical and empirical bases
for the utilization and interpretation of the results of knowl-
edge elicitation techniques. After a series of experiments
they concluded that relationship judgments among concepts
were useful to gather knowledge about a user’s conceptual
model or information stored in the long term memory. Nev-
ertheless, the information gathered is not a complete picture
of the conceptual knowledge of the user, but rather a subset
that depends on the information that is used for the particu-
lar task in the working memory, i.e., a short term store used
to perform a task. Because of that Cafias and al. recom-
mend to complete the information obtained from the users’
judgments with other methods.

For knowledge elicitation we used card sorting, or
grouping, task. This method has been used in a wide range

of areas to extract the mental knowledge of a specific set of
people. In interaction design it is used to understand users’
mental models [13], in expert systems design it is used to
understand how knowledge providers conceptualize the do-
main elements [5], and in program comprehension it has
been applied to understand the difference between the men-
tal representations of experts and novices. In our case, we
completed the information gathered with the card sorting
task with interviews where the participants explained why
they sorted the variables in the way they did. This qualita-
tive information about reasons for grouping things together
has proven to be valuable in understanding the criteria used
by the participants [6]. Other examples of the use of in-
terviews to study program comprehension is Pennington’s
work (e.g., [10]).

The rest of this paper is organized as follows. Section 2
provides background by reviewing previous literature on
mental representation of variables. Section 3 describes the
investigation with results and discussion in Section 4. Sec-
tion 5 contains the conclusions.

2. Background

Very little is known about programmers’ mental repre-
sentation of variables. For example, Brooks [2, 3] suggests
that knowledge about variables comprises its name, type
(e.g., real or integer), and its purpose in the program, e.g,
to keep track of elapsed time. A salient part of the purpose
of a variable, and hence of its representation, is the relation-
ship between a variable and the corresponding application
domain concept. Brooks postulates a series of mappings
between different levels of a solution to a programming
problem: domain level, symbolic domain level, algorithmic
level, and program level. In this theory, program creation
and comprehension involve the construction of these map-
pings, and hence also the construction of variables and their
corresponding entities within the other levels.

The idea of several related representation levels is cen-
tral to later models of program comprehension, also. For
example, von Mayrhauser and Vans [18] present an inte-
grated program comprehension model containing several
representations of programs, each at a different level: do-
main, program text, and intermediate. Variables belong to
the program text level, and they exist in order to imple-
ment some need in the application domain level. The model
contains also a knowledge base—retained in long-term
memory—that describes, e.g., how programming goals can
be achieved by specific code fragments. The detailed con-
tents of plans is outside the scope of the model.

Pennington [10] describes several abstractions of pro-
grams possessed by expert programmers. Two of these
concern variables: the data flow abstraction, and the con-
ditionalized action abstraction. The data flow abstraction

describes how the initial data objects given as input to a pro-
gram are transformed into the outputs. The transformation
creates a data flow through each variable; thus knowledge
about this flow contains knowledge about data flow relation-
ships between variables. The second abstraction, condition-
alized action, is concerned with the states of a program: a
certain state triggers an action, execution of the action re-
sults in a new state, and so on. A major part of the state
consists of the values of all variables; thus conditionalized
action knowledge contains knowledge about relationships
between variables.

The knowledge types above concern unique variables in
unique programs. They are part of program knowledge as
opposed to more general programming knowledge that ap-
plies to theoretically all programs and is usually referred to
as programming plans, or schemas (e.g., [8, 10, 18]). Plans
represent stereotypic ways to achieve typical goals in pro-
gramming. Ehrlich and Soloway [8] suggest that variable
plans consist of such aspects as the variable’s role in the
program, the manner the variable is initialized and updated,
and a guard that may protect the variable against invalid up-
dates. As examples of roles they give counter variable, run-
ning total variable, and new value variable (that holds the
newest number given as input in a loop). Rist [12] has fur-
ther developed this idea and defines a plan as a set of actions
that achieve a goal, and a goal as a state to be achieved, e.g.,
to calculate a value or a series of values. His basic plans
deal with actions related to variables: prompt plan to obtain
an input, label plan to produce output, running total plan to
accumulate information, found plan to register some event,
and loop plan to iterate using a loop counter variable. Nei-
ther Ehrlich and Soloway nor Rist claim that their lists of
plans would be exhaustive.

The literature cited above has a strong cognitive ba-
sis and is supported by empirical experimentation. There
are more practical suggestions to categorize variables, also.
Green and Cornah [9] proposed a tool intended to clarify
the mental processes of maintenance programmers. Among
other features, the tool was supposed to reveal roles of vari-
ables listed tentatively as: constant, counter, loop counter,
most-recent holder, best-of holder, control variable, and
subroutine variable. Later, Sajaniemi [15] defined the role
of a variable to depend only on the behavior of a variable
(as opposed to its use) and found the following roles in
novice-level procedural programs: constant, stepper (a gen-
eralization of counters), most-recent holder, most-wanted
holder, gatherer, follower, one-way flag, temporary, and or-
ganizer. Ben-Ari and Sajaniemi [1] conducted an investiga-
tion demonstrating that computer science teachers can eas-
ily learn roles and assign them successfully in normal cases.
However, the psychological existence of roles has not been
studied before.

Somewhat related to roles is Hungarian notation [16],

which is a convention to encode information into a vari-
able name about its type, quantity, and use. Hungarian no-
tation is supposed to assist in remembering names, reading
code written by others, and speeding name selection, but
no studies into these effects have been conducted. Several
convention schemes exist and they are used in professional
programming.

In summary, programmers have been shown to have pro-
gram dependent knowledge about variables, like their re-
lationship with application domain entities and position in
data flow, and general programming knowledge concerning
variables, i.e., variable plans. The existence of knowledge
about specific roles or information encoded in Hungarian
notation is more speculative. The purpose of the current
study was to investigate on a broad range what types of in-
formation expert programmers possess about variables.

3. Investigation

In order to elicit expert programmers’ knowledge about
variables a card sorting investigation was conducted. Pro-
fessional programmers were instructed to get acquainted
with short programs and then asked to sort all variables into
groups based on their similarity. Participants were also in-
terviewed about the sorting criterion they used and the in-
terviews were audio recorded. The resulting groups and the
interviews were then analyzed.

Participants: Thirteen programmers with a background
between 3 and 24 years of professional programming (mean
13.7, mode 15) were recruited from software companies in
the Joensuu region in Finland. All participants knew the
programming language C well, had been programming in
several procedural or object-oriented languages, and were
unaware of the researchers’ prior work in the area of pro-
gramming knowledge. All participants were male. The par-
ticipants or their companies were paid a small fee for par-
ticipating in the investigation.

Materials: Five C programs having between 19 and
33 non-comment and non-blank program lines (mean 25.4,
mode 22) were prepared. All programs had a differ-
ent application domain, e.g., blood hormone testing or
day number format conversion. The beginning com-
ment of each program included an example of the ex-
ecution of the program: input and corresponding out-
put. Each program had an associated modification task;
the tasks were designed to be simple and not to require
the introduction of new variables. The materials can be
found at http://www.cs.joensuu.fi/"saja/var_roles/materials/
exp03/index.htm.

There was a total of 30 global scalar variables in the pro-
grams; all having the type int except a single char. Ta-
ble 1 gives short descriptions of all the variables. In order to
avoid too coarse granularity in the sorting task, participants

Table 1. Variables used in the investigation
sorted by program.

Variable Description

base constant set at variable declaration

currDigit numeric input read repeatedly

largePowerOfTwo | constant set at variable declaration

numericValue collects a number from single digits
given as input

powerOfTen controls for-loop; divided by 10 on
each round

powerOfTwo controls while-loop; divided by 2 on
each round

smallDigit smallest value so far in a number se-
ries generated in a loop

closest input value so far closest to a con-
stant

count descending while-loop counter

maxDelta greatest difference between two con-
secutive input values found so far

norm constant set with an assignment
statement

testRes numeric input read repeatedly

yesterday previous input

dayNbr data source generated repeatedly by
a random number generator

daysAtEnd sums up numbers given in an array

daysToBeginning the previous value of daysAtEnd

month keeps track of the number of rounds
in a loop

command single character input (’i” for incom-
ing ship etc.) read repeatedly

lastShip previous value of specific inputs

longest greatest value so far of specific in-
puts

pierLength constant set at variable declaration

ship numeric input read repeatedly and
initialized at the variable declaration

used keeps track of a total amount when
items are added and removed

current numeric input read repeatedly

currentMonth ascending for-loop counter starting
from 4

greatest greatest sum of three consecutive in-
put values found so far

monthsToProcess constant set with an assignment
statement

preceding input value before the previous one

previous previous input value

total a running total of inputs

were asked to form groups consisting of 3 to 8 variables.
The programs were designed so that the group size restric-
tion did not prevent participants from using sorting crite-
ria based on data flow, role, or form of assignment. If the
variables are sorted using position in data flow as the crite-
rion, the result consists of 5 groups containing 3—8 variables
each; sorting based on roles of variables yields 6 groups
containing 4-5 variables; and sorting based on the form of
assignment used to update the variable yields 5 groups con-
taining 4-7 variables.

For control purposes, several alternative naming con-
ventions were used for the variables, e.g., month,
smallDigit, pier_length, SHIP, INT greatest.
(For the sake of clarity, all variable names are writ-
ten throughout this paper using a single convention, e.g.,
pierLength.) Different naming styles were used within
each of the above theoretical groups. Even though it was
possible to use the naming convention as sorting criterion
(5 groups of 4-8 variables), we did not expect anybody to
do that.

Procedure: Participants were run individually. A ses-
sion started with a background questionnaire conducted by
the researcher. The participant was then given five sheets
of paper, each containing one program and its modification
task, and was asked to study the programs so that he under-
stood them well, and to make the modifications using a pen-
cil. The programs were laid side by side on a table and their
order was systematically varied. Participants were allowed
to study the programs in the order they wanted, but most of
them studied the programs in the given order. There was no
time limit for this phase, and the durations varied between
22 and 99 minutes (mean 45.9, mode 40).

The researcher then rearranged the program sheets in the
order they were originally presented to the participant and
laid cards representing the variables in the program on top
of each sheet. Each card had the names of the program and
the variable written on it. The researcher asked the partic-
ipant to sort the cards in groups of three to eight variables
so that “similar variables will go together”, and to apply the
same sorting criterion for all groups. The time used for the
sorting task was not limited and it varied between 8 and 35
minutes (mean 17.6, mode 15).

When the sorting task was ready, the participant was
asked to give a written explanation for each of his groups.
This was followed by an interview where the participant ex-
plained the sorting criterion he had used, the exact contents
of each group, and alternative sorting criteria he had thought
of or might consider to be appropriate.

During the interview, the participant was allowed to
move cards between groups. This occurred often, as some
of the programs were complicated and some variables had
for control purposes obscure (but meaningful) names, re-
sulting in obvious slips in sorting. For example, in order to

avoid superlatives in all names for extreme values, the vari-
able holding the smallest digit found so far was not named
smallestDigit but smallDigit and this resulted in
some cases in false recall of the meaning of the variable.
Participants were also asked to further divide groups having
more than 8 cards. In some cases the participant was unable
to do that; then the group was left unchanged.

Participants were allowed to put a variable in more than
one group by cloning its card, and to leave variables outside
any group. The number of extra cards varied between 0 and
21. Seven participants used no extra cards; three used 1-2
cards; and and the remaining three participants used 4, 17,
and 21 cards. Two participants left one or two cards outside
the groups. The total length of the sessions varied between
58 and 144 minutes.

4. Results and Discussion

The goal of the investigation was to elicit expert pro-
grammers’ knowledge about variables. The study is qual-
itative and does not attempt to capture, e.g., relative fre-
quencies of various sorting criteria among professional pro-
grammers. Instead, we have taken a descriptive approach
and used a relative low number of participants. Therefore,
in consequence with this approach we will emphasize the
descriptive analysis of the data: first, we perform a qualita-
tive analysis of sorting criteria based on the data from the
groupings and the interviews; second, we analyze the most
common groups made by the participants; third, we analyze
the grouping data using cluster analysis.

4.1. Sorting Criteria

We analyzed the groups, their descriptions, and the in-
terviews paying attention to the commonalities and differ-
ences both in the contents and in the words used. This way
we were able to identify a set of criteria that the participants
used in sorting variables. Even though the participants were
instructed to use a single sorting criterion for all groups, it
turned out that most of them used several criteria either hi-
erarchically or mixed in some more complicated way, e.g.,
a couple of groups based on one criterion and other groups
based on another criterion with subdivision based on yet an-
other criterion. This is in line with the findings of Cafias and
al. [4] who found that in knowledge elicitation tasks the lim-
its of working memory cause context effects in the selection
between various criteria for judgements. In the following,
we will describe each criterion separately from others.

The set of identified criteria is large and based on a wide
variety of principles. The only common feature of the cri-
teria is importance: every criterion conveys some informa-
tion that is important in some certain task. Consider, for

data unit
Domain-based
< data relationship

data type
Technology—-based < data hierarchy

scope

Sorting criterion phase in control flow
phase in data flow
visibility to user

Execution-based source
behavior
utilization
contribution

<

rogramming strate:
Strategy-based P g 9 i
testing strategy

Category Criterion principle

Figure 1. Sorting criterion principles used by
the participants or found during interviews.

example, the data type (int, f£loat, ...) as a sorting cri-
terion. The data type seems to be a simple decision that is
made when the need for a variable has raised. It is based
on the nature of the data, i.e., how large values are possible
and whether decimals are needed, and there seems to be no
need to think about it later on. However, when reporting
alternative sorting criteria, one participant stated:

P06: it [the data type] affects the accuracy of re-
sults

He thus considered data type as an important information
needed in writing expressions that operate on the variable,
i.e., data types of variables must be remembered long af-
ter the variable declaration has been written and hence they
form a sensible basis for sorting.

Figure 1 lists all sorting criterion principles used by the
participants or identified in the interviews as possible alter-
native criteria that the participants thought of using. The
criterion principles are meant to be non-overlapping and
they are organized in four main categories. Domain-based
criteria deal with issues related to the application domain,
technology-based criteria deal with the features of program-
ming languages, execution-based criteria are based on ac-
tivities that occur during the execution of a program, and
strategy-based criteria have their origins in the strategies
that the programmer applies when working with the pro-
gram. Each criterion principle, e.g., data unit principle, may
give rise to several sorting criteria with differences among
details. The rest of this subsection is devoted to a detailed
description of the various sorting criterion principles.

Domain-based criteria: Two participants mentioned
data unit as a possible sorting criterion and one used it to

form a subdivision of his primary sorting based on visibil-
ity to the user. There were different forms of the data unit
criterion: it was based either on the exact data unit (e.g., me-
tres, hours, seconds, ...) or using a coarser division based
on the conceptual unit (length, time, ...).

One participant thought of using data relationship as a
sorting criteria but because the application domains of the
programs were different, he abandoned it.

Technology-based criteria: Five participants mentioned
data type as an alternative sorting criterion. Nobody, how-
ever, actually used it because all variables except one were
integers. One participant mentioned scope (global vs. local)
as an alternative sorting criterion but did not use it because
all variables were global.

One participant used the naming convention as his sort-
ing criterion. This was against our expectations because the
materials were carefully prepared so that variables named
using the same convention had nothing in common. The in-
terview revealed that the participant worked in a company
that had a strict naming standard where the form of variable
names reveal the data hierarchy in a data base, and whether
the variable refers to an element in a data base or is a tem-
porary data element. Thus his sorting criterion was actually
based on data hierarchy and scope even though his tech-
nique did not work in the current situation.

Technology-based criteria are easy to use because the
required information can be found in the program text. It
is therefore obvious that programmers have this type of
knowledge about variables. In order to avoid the use of
such obvious criteria, the materials were designed to inhibit
the use of technology-based criteria. However, the exam-
ple at the beginning of this subsection demonstrates that
technology-based properties, e.g., data type, are important
for programmers.

Execution-based criteria: As seen in Figure 1, most
sorting criteria used by the participants were based on prop-
erties related to the dynamic behavior, i.e., the execution of
programs. One participant mentioned phase in control flow
as an alternative grouping criterion. He described this as:

P02: ... based on those blocks that are in the pro-
gram ...

R: What do you mean by blocks?

P02: Entities of the program that do different
things X; say lines one to five take care of some
task, and lines six to ten take care of another task
... or the textual structure of the program.

Thus, even though the criterion is based on the textual
form of the program, the block borders are determined by
functional entities or schemas for local goals.

Phase in data flow (used by 5 participants) and visibil-
ity to users (used by a single participant) are related but

yet different criterion principles. Visibility to users divides
variables into two groups: those visible to users (i.e., vari-
ables holding input and output), and internal variables. At
first this seems to be a coarser version of phase in data flow
which has a further division of input and output variables
into their own groups. However, participants using phase
in data flow criterion did not call the rest of the variables
as “internal” but “intermediate” or “auxiliary”” and they had
problems in deciding what to do with variables that take part
in the calculations but are also part of output. In the visibil-
ity to users case, this is not a problem: such variables belong
simply to the group of variables visible to users. Thus these
two criteria are conceptually different.

An interesting detail is the treatment of variables occur-
ring in expressions that are output. For example, one of the
programs contained the following statement:

printf ("Day %d is %d4.%d \n",
dayNbr, dayNbr-daysToBeginning,
month+1)

One participant using the phase in data flow crite-
rion put month and dayNbr in output variables but
daysToBeginning in auxiliary variables. When asked
during the interview, he reported that daysToBeginning
is an auxiliary variable because it is used in a calculation to
produce the actual output. However, month is not output
as such, either, but used in an expression to produce out-
put. But in this case the expression is much simpler and
only compensates for the difference between month num-
bers (starting from 1) and C array indexes (starting from
0). Thus, the distinction between output and intermediate
variables is not purely syntactical, i.e., it cannot be simply
decided based on whether a variable occurs within an ex-
pression or is output as such.

A related criterion is the source of variables: whether
they are obtained from a user or set by the program. This
was mentioned by one participant as an alternative criterion.
His point was that variables may affect the behavior of pro-
grams and it is important to know whose decision the effect
is based on: is it based on a user’s decision or the program-
mer’s decision.

Sorting criteria classified as behavior consider the inter-
nal life of variables; not the purposes they are used for but
how their own values are obtained. Eight participants used
this criterion to form a group for constants, i.e., variables
whose value does not change once initialized; five of these
participants formed other groups based on this principle,
also; and two participants mentioned behavior as an alter-
native criterion. Groups based on this principle include the
following:

e “counters” (P07, P11, P13)
e “total sums” (P03, P11)

e “greatest/smallest” (P03), “extreme values etc.” (P04),
“extreme values” (P07), “greatest etc.” (P11)
e “previous values” (P04, PO7), “history data” (P11)

A common behavior-based group was “input”, which
however can also be obtained by using the phase in data
flow criterion.

Two criterion principles—utilization and contribution—
deal with the purpose of a variable in the program. Utiliza-
tion is more specific and sorts variables according to their
own task whereas contribution sorts variables according to
the structure they participate in. For example, a group con-
taining loop counters is formed using a utilization criterion
while a group containing variables that participate in con-
trolling loops, i.e., loop counters and loop limits, is based
on a contribution criterion.

Six participants used utilization principles.
based on utilization criterion include:

Groups

e “loop counters” (P01, P04), “indexes and control”
(P02)

e “current item to limit loops” (P04)

e “intermediate variables for small use” (P03)

e “intermediate variables for important data to be used
later” (PO3)

e “calculation” (P0O5)

The group “input” can be considered to be based on uti-
lization but it can be obtained by other criteria, also.

Several participants mentioned or based groups on a
coarse utilization criterion dividing variables into two
groups: those used to control the execution of the program,
and those used for calculations whose results will be output
or otherwise needed in further calculations. In the case of
input, control variables consist of commands that tell what
to do next, and of values that define the number of rounds
in some loop; all other input values belong to the calcula-
tion group. One participant had a third group in this coarse
criterion: variables used for state maintenance.

Two participants used contribution principle: one as a
top-level abstraction for utilization-based groups; the other
had groups “influences loop control” and “influences con-
ditional statement control”.

Strategy-based criteria: Four participants based their
sorting criteria on some strategy they used in working with
programs. One based his criterion on the overall program-
ming strategy approach:

PO09: [I think] first about what is taken in and what
is tried to get out and then start to think about the
algorithm [...] and if there is iteration then what
there must be done, where to start from and where
to stop; that’s where the edges of loops come
from; and then I start to look inside the loop;
for example what auxiliary variables are needed

such that their values disappear in every round;
and then what intermediate results.

His groups were labeled accordingly: “input”, “output”,
“loop edges” etc.

Three participants based their criteria on their festing
strategy, i.e., how variables must be attended to when test-
ing and debugging. However, their strategies were not iden-
tical. One participant was interested where do variables ob-
tain their values from: through input, through calculation,
through both input and calculation, or none of these ways
(i.e., constants). Thus he had no group for output variables,
because the use of a variable was not interesting to him.
On the other hand, another participant had a different test-
ing strategy and different groups: input (because of safety
risks), constants (need no attention), loop counters (need to
be checked only once), output that can be wrong (where
debugging starts; does not include loop counters “[because
they] cannot be wrong”) etc.

4.2. Common Groups

The previous subsection was based on analysis of
groups, their descriptions, and the interviews. The goal of
this analysis was to identify all sorting criteria the partici-
pants considered meaningful. Another way to look at the
data is to find the most commonly occurring groups and an-
alyze what sorting criteria may lead to these groups. We
will now turn to this task.

The most often recurring group was “constant”. Eleven
participants put essentially the same variables in this group,
and they described it referring to the behavior of these vari-
ables. One of these participants put count both in this
group and in a loop counter group because, in his opinion,
there should have been two variables, a constant that defines
the number of loops and a separate loop counter.

Ten participants had a group for inputs. Five of them
did not restrict themselves to pure input but considered data
items obtained from a random number generator to be in-
put as well. Another difference concerned two variables
that obtained their first value through input but later values
through assignment. Three participants put these variables
in the input group.

The input group can be obtained by looking at the be-
havior of variables or their phase in the data flow. The
latter principle leads to groups “output” and “intermediate
(or auxiliary) results” which were common titles of groups.
Six participants formed an output group but the contents
of these groups are all different. Similarly, five partici-
pants had groups for intermediate or auxiliary variables but,
again, their contents were different. Thus the participants
used behavior-based criteria more consistently than phase
in data flow.

Eight participants had a group for loop counters. In ad-
dition to counters increasing or decreasing with a step of 1,
four participants included also counters traversing through
the powers of a base number. One of the participants that
did not include these two variables said that “they are kind-
of counters”. Loop counters can be identified based on their
behavior or utilization.

The rest of common groups were all based on the behav-
ior of variables. Six participants had a group for variables
storing history data; however, there were small differences
among these groups. Four participants had a group for vari-
ables holding the greatest or smallest value, and their groups
were very similar. Finally, three participants had a group for
total sums; one restricted this group to variables obtained
through simple addition whereas two participants accepted
more complicated operations, also.

All commonly occurring groups are thus based on ei-
ther behavior or utilization criterion. The utilization cri-
terion yields three common groups: input, output and in-
termediate results; the latter two groups having the largest
amount of variation. The behavior criterion yields all other
groups than output and intermediate results: constant, in-
put, loop counter, history data, greatest/smallest, and to-
tal sums. Other sorting criteria seem to yield groups with
varying names and contents; thus they do not appear among
common groups in this study.

4.3. Cluster Analysis

As noted above, the same groups may be obtained by
different sorting criteria. In order to obtain a general view
of the groups, we applied hierarchical cluster analysis. This
analysis method has been used by several researchers to un-
derstand if mental representations are organized following
a significant set of groups (e.g., [11, 14]). We used the pro-
gram EZCalc [7] to produce a dendrogram that depicts the
frequency of variables occurring in the same groups. This
technique does not allow a variable to be included in several
groups, so the following adjustments were made:

e For the participant with 21 extra cards, multiple occur-
rences of variables in the “computing” group were dis-
carded (because the participant said that those should
perhaps have been excluded but “I just started to make
it this way and did not want to start again”).

e The participant with 17 extra cards was excluded to-
tally because we could not find good reasons to ex-
clude the extra cards in any meaningful way.

o In all other cases with a card in two groups, the variable
was excluded from both groups and marked “the par-
ticipant does not understand what this card means”—
an option allowed by the analysis program.

Moreover, the participant who used naming convention
as his sorting criterion was excluded because this was a

monthsToProcess

base —

pierLength —f
largePowerOfTwo —
norm —f

dayNbr

fixed value

most-recent holder

previous =—

preceding —f
yesterday —f
lastShip —

follower

smallDigit =
closest

maxDelta ——
longest

most-wanted holder

T
currDigit ——
command —

current —
testRes —
ship —
—
]
ul

greatest —f
used —
numericValue —
total —

gatherer

count —
currentMonth —
stepper month —
powerOfTen —
powerOfTwo —
daysToBeginning —
daysAtEnd =

Figure 2. Result dendrogram of the hierarchical cluster analysis.

meaningless criterion for current materials.

Figure 2 depicts the results of the cluster analysis and
the relationship of the clusters with the role theory. In a
dendrogram, the sooner the lines emanating from variables
at the left hand side of the dendrogram are joined, the more
frequently the variables occur together in the groups formed
by the participants.

The first five variables are constants; monthsToPro-
cess is used to control the number of rounds in a loop
whereas the others are “magical values” with no special
control nature.

The next six variables hold starting values for process-
ing; others are for holding input except dayNbr, which is
obtained repeatedly from a random number generator.

The next four variables hold past values of input. The
variables previous and preceding come from a pro-
gram where input data flow goes through both of these vari-
ables. Input data flows through the other two variables in
the cluster, also, but only some of the values of lastShip
are used in later processing.

The next six variables find the largest, smallest or clos-
est value. Last three of them (maxDelta, longest,
greatest) look for the largest value. It seems odd that the
first variable, smallDigit, which looks for the smallest
value, is more loosely connected to the above three vari-
ables than closest, which looks for the closest value.

However, smallDigit occurs in the program that the par-
ticipants reported to be hardest to understand and its name
does not reflect its purpose well. Perhaps some participants
did not understand this variable well enough to sort it cor-
rectly.

The next three variables—used, numericValue, and
total—form alooser cluster. They combine the net effect
of input values using various calculations: used describes
the amount of pier usage when ships are coming in and go-
ing out, numericValue combines the effect of individual
digits when reading a number digit by digit, and total is
a standard running total. Variables in this group accumu-
late the effect of all the values in the input flow whereas
variables in the previous group pick a single value from the
input.

The next five variables do not directly depend on in-
put. The first two are loop counters limiting the number
of rounds in the loop whereas the third, month, counts
how many times the loop is executed. The last two—
powerOfTwo and powerOfTen—occur in the same pro-
gram and control the execution of a loop by being updated
with a division operator, e.g.,

for (powerOfTen = 100000000;
powerOfTen >= 1;
powerOfTen = powerOfTen / 10) {...}

The last two variables—daysToBeginning and
daysAtEnd—occur in a date format conversion program.
They keep track of the number of days at the begin-
ning and at the end of the current month in a loop go-
ing from January to December. DaysAtEnd is obtained
by summing up the number of days in individual months
and daysToBeginning stores the old value whenever
daysAtEnd is updated.

Regarding to the sorting criteria, the clusters are mostly
based on behavior principles, e.g., the first five variables do
not change once initialized etc. To some extent, the clus-
ters are also affected by the utilization principle. For ex-
ample, the first variable, monthsToProcess, is used in
a different context—to control the number of rounds in a
loop—than the other constants. In the clustering, the other
variables are more tightly connected. However, the differ-
ence attributed to the utilization criterion is small.

By looking at the knowledge types described in Sec-
tion 2, the clusters can be best explained by the role the-
ory [15], which is based on the behavior of variables. As
depicted in Figure 2, most of the variables are clustered
according to the roles fixed value, most-recent holder, fol-
lower, most-wanted holder, gatherer, and stepper.

4.4. Validity of the Research

There are some threats to the validity of the investiga-
tion. For example, the programs were small, all variables
were global, all except one were of the type int, and the
variables were named using English words. We would have
liked to use larger programs, but then the comprehension
task would have become too demanding. In order to avoid
effects of using a single application domain, several small
programs representing several domains were used instead
of a single larger program. Global variables representing
mainly a single type were used in order to avoid overly use
of technology-based criteria, which are self-evident. The
lack of data structures and pointers may have prevented the
use of some criteria but could not cause the use of artificial
criteria. Thus the restrictions of the programs may have re-
sulted in unobserving some criteria but not in false detection
of nonexistent criteria.

The naming of variables may affect grouping criteria.
To avoid such effects, varying naming conventions were
used and the use of similar grammatical constructs were
avoided. It would have been possible to use meaningless
variable names (v1, v2, ...) but then the comprehension
task would have been harder and misunderstanding of the
programs would probably have been frequent. Even in the
current form, some of the programs were reported by the
participants hard to understand.

In order to increase validity, the materials were designed
to support evenly all grouping criteria that were anticipated

in advance. The actual number and variability of criteria
was, however, so large that the materials could not support
all criteria evenly, that is, it was not possible to make groups
of three to eight variables using any single criteria alone.
On the basis of the results this is not a problem because the
participants did use several criteria simultaneously and they
were willing to violate group size restrictions when required
by the criteria they used.

The identification and analysis of the grouping criteria
could be biased by the researchers’ intuition and attitude.
This problem was tackled by applying several techniques
(criteria identification, common groups analysis, hierarchi-
cal cluster analysis) on the data. Moreover, the researcher
making the analysis has worked as a programmer and has
a long background in psychology of programming, which
provides him a good ability to interpret the interviews.

The participants were programming experts, which in-
creases the validity of the results. Some of them experi-
enced the modification task unnatural due to the presence of
the experimenter and lack of computer support. However,
this feeling of unnaturalness disappeared during the sorting
task, and the atmosphere of the interviews was open.

5. Conclusions

We have studied professional programmers’ mental rep-
resentation of variables by using a sorting task and inter-
views. In order to reveal what types of information pro-
grammers’ have about variables, we identified the sorting
criteria used in the sorting task or mentioned as a possi-
ble criterion in the interviews. The set of criteria is large
and based on 14 different principles that can be organized
in four main categories: domain-based, technology-based,
execution-based, and strategy-based principles. Each prin-
ciple gives rise to various criteria differing in details.

All frequent groups are based on two execution-based
principles: the behavior and utilization of a variable. Be-
havior refers to the internal life of a variable, i.e., how its
values are obtained. Utilization refers to the task that the
variable has in the program, e.g., the variable is a counter
controlling the execution of a loop. In the hierarchical
cluster analysis, the main clusters are formed according to
the behavior of variables; utilization affects subclustering
within the main clusters. The variation among utilization
criteria is however larger than among the behavior criteria.

Excluding data relationship, none of the criteria deals
with unique tasks or patterns in unique programs, which
is a central theme in past literature on program knowledge
[2, 3, 10, 18]. Instead, the criteria are general in the sense
that they apply to variables in all programs. This type
of knowledge has earlier been described as programming
knowledge in the form of plans [8, 12] or roles [9, 15].
Plans combine behavior with utilization and program code

extensions like guards that protect variables against invalid
updates. The earlier notion of roles [9] is a mixture of be-
havior and utilization, whereas the recent role concept [15]
is a clear example of a behavior criterion. The other criteria
identified in the present study have not been presented as
variable-related knowledge in previous literature.

Program comprehension tools should help programmers
to build mental representations by providing meaningful in-
formation about programs. We have identified fourteen in-
formation types that programmers possess about variables.
For the purposes of program comprehension, tools should
generate categorization of variables in all of these types au-
tomatically. The main categories of the information types
require, however, different approaches. Domain-based in-
formation types are the hardest to support because they re-
quire knowledge about the application domain and this kind
of information is hard, if not impossible, to be generated
automatically. Hence domain-based information should be
made explicit already in the programming phase by the use
of appropriate coding and documentation standards. In con-
trast, technology-based information types are easy to sup-
port because such information is explicit in programs, gath-
ered by compilers, and already partially available in current
programming environments.

There is a large variety of execution-based information
types but behavior and utilization seem to be the most com-
mon forms and should be supported by tools. The vari-
ation among behavior criteria was smaller than the varia-
tion among utilization criteria and thus behavior (e.g., roles)
seems to offer more promising possibilities for tool devel-
opment. Strategy-based information types should also be
supported because this type of information directly helps
programmers in their every-day routines, especially in test-
ing and debugging. Research into various ways of providing
these types of information to programmers is still needed.

6. Acknowledgments

This work was supported by the Academy of Finland un-
der grant number 206574.

References

[1] M. Ben-Ari and J. Sajaniemi. Roles of variables from the
perspective of computer science educators. In The 9th An-
nual Conference on Innovation and Technology in Computer
Science Education (ITiCSE 2004), pages 52-56. Association
for Computing Machinery, 2004.

[2] R. Brooks. Towards a theory of the cognitive processes
in computer programming. International Journal of Man-
Machine Studies, 9:737-751, 1977.

[3] R. Brooks. Towards a theory of the comprehension of
computer programs. International Journal of Man-Machine
Studies, 18:543-554, 1983.

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

(13]

(14]

[15]

[16]

(7]

(18]

(19]

J.J. Cafias, A. Antoli, and J. F. Quesada. The role of working
memory on measuring mental models of physical systems.
Psicologica, 22:25-42, 2001.

E. S. Cordingley. Knowledge elicitation techniques for
knowledge-based systems. In D. Diaper, editor, Knowledge
Elicitation: Principles, Techniques and Applications, pages
89-178. Chichester, U.K.: Ellis Horwood Ltd, 1989.

S. P. Davies, D. J. Gilmore, and T. R. G. Green. Are objects
that important? The effects of expertise and familiarity on
the classification of object-oriented code. Human-Computer
Interaction, 10:227-248, 1995.

J. Dong, S. Martin, and P. Waldo. A User Input and
Analysis Tool for Information Architecture. http://www-
3.ibm.com/ibm/easy/eou_ext.nsf/Publish/410, 2004.

K. Ehrlich and E. Soloway. An empirical investigation of
the tacit plan knowledge in programming. In J. C. Thomas
and M. L. Schneider, editors, Human Factors in Computer
Systems, pages 113-133. Norwood, NJ: Ablex Publishing
Company, 1984.

T. R. G. Green and A. J. Cornah. The Programmer’s
Torch. In Human-Computer Interaction - INTERACT 84,
pages 397-402. IFIP, Elsevier Science Publishers (North-
Holland), 1985.

N. Pennington. Stimulus structures and mental representa-
tions in expert comprehension of computer programs. Cog-
nitive Psychology, 19:295-341, 1987.

R. S. Rist. Plans in programming: Definition, demonstration
and development. In E. Soloway and S. Iyengar, editors,
Empirical Studies of Programmers, pages 28—47. Norwood,
NJ: Ablex Publishing Company, 1986.

R. S. Rist. Knowledge creation and retrieval in program de-
sign: A comparison of novice and intermediate student pro-
grammers. Human-Computer Interaction, 6:1-46, 1991.

J. Robertson. Information design using card sorting.
http://www.steptwo.com.au/papers/cardsorting/, 2001.

S. P. Robertson and C.-C. Yu. Common cognitive represen-
tations of program code across tasks and languages. Interna-
tional Journal of Man-Machine Studies, 33:343-360, 1990.
J. Sajaniemi. An empirical analysis of roles of variables in
novice-level procedural programs. In Proceedings of IEEE
2002 Symposia on Human Centric Computing Languages
and Environments (HCC’02), pages 37-39. IEEE Computer
Society, 2002.

C. Simonyi. Hungarian notation. http://msdn.microsoft.
com/library/en-us/dnvsgen/html/hunganotat.asp, 1999.

H. M. Sneed. Program comprehension for the purpose of
testing. In Proceedings of the 12th IEEE International Work-
shop on Program Comprehension, pages 162-171. IEEE
Computer Society Press, 2004.

A. von Mayrhauser and A. M. Vans. Industrial experience
with an integrated code comprehension model. Software En-
gineering Journal, 10:171-182, 1995.

A. Walenstein. Observing and measuring cognitive support:
Steps toward systematic tool evaluation and engineering. In
Proceedings of the 11th IEEE International Workshop on
Program Comprehension, pages 185-194. IEEE Computer
Society Press, 2003.

