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ABSTRACT
A frequent task facing a MAS designer is to efficiently divide
resources amongst multiple agents. We consider a setting in
which a single divisible resource, a.k.a. “cake”, needs to be
divided amongst n agents, each with a possibly different val-
uation function over pieces of the cake. For this setting, we
address the problem of finding divisions that maximize the
social welfare, focusing on divisions where each agent gets a
single contiguous piece of the cake. We provide a constant
factor approximation algorithm for the problem, and prove
that it is NP-hard to find the optimal division, and that the
problem admits no FPTAS unless P=NP. These results hold
both when the full valuations of all agents are given to the
algorithm, and when the algorithm has only oracle access
to the valuation functions. In contrast, if agents can get
multiple, non-contiguous pieces of the cake, the results vary
greatly depending on the input model. If the algorithm is
provided with the full valuation functions of all agents, then
the problem is easy. However, if the algorithm needs to
query the agents for information on their valuations, then
no non-trivial approximation (i.e. < n) can be guaranteed.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; F.2.2 [Nonnumerical Algorithms and Prob-
lems]: Computations on discrete structures

General Terms
Algorithms, Theory

Keywords
Cake cutting, multiagent resource allocation, welfare maxi-
mization

1. INTRODUCTION
Consider a group of agents sharing a common resource,

e.g. deep sea exploration robots sharing a sonar device, Mars
rovers sharing a drilling tool, or astronomers sharing the
Hubble telescope. The utility obtained from using the re-
source may vary depending on the time and the duration it
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is used, and between agents. Furthermore, some agents may
prefer the resource at one time while others prefer it at a dif-
ferent time (e.g. some prefer Hubble in winter while others
gain more from it in the summer). The basic question we
address here is how to divide the use of such a resource be-
tween the different agents so as to maximize the total utility
obtained from the resource? We consider this problem both
in the setting where agents need to get the resource for one,
uninterrupted interval, and for the case where agents may
make use of the resource by combining multiple nonconsec-
utive time intervals.

A natural setting for analyzing the above problem is that
of cake cutting, where a single divisible good needs to be
divided between several agents with possibly different pref-
erences regarding the different parts of the good, or “cake”.
The cake cutting problem was first introduced in the 1940’s,
where the original goal was to give each of the n agents
“their due part”, i.e. a piece worth at least 1

n
of the entire

cake by their own measure. Since then, other objectives
have also been considered, with the majority of them re-
quiring that the division be “fair”, under some definition of
fairness (e.g. envy-freeness).

Here, we address the fundamental problem of maximizing
social welfare in cake cutting. Given a shared resource and
the valuation functions of the agents for this resource, the
problem is to find an allocation that maximizes the utilitar-
ian welfare, i.e. the sum of individual utilities. Much of our
focus is on the case where each agent needs to get a single
contiguous piece of the good. The contiguity requirement
is natural in many settings, e.g. dividing time (as in the
examples above), spectrum, and real-estate.

1.1 Results
We study the problem of maximizing the utilitarian wel-

fare in cake cutting. We consider two models of input. In
the first, the algorithm can only query the agents about their
valuations; in the second, the valuations are given explicitly
to the algorithm, and are assumed to be piecewise-constant.

We show that for the setting where each agent’s piece must
be contiguous, the problem of maximizing utilitarian welfare
is NP-hard in the strong sense, in both input models. This
result also implies that there is no FPTAS for the problem,
unless P=NP. We furthermore show that this hardness result
holds even when the agents’ valuations are from the more-
restricted class of piecewise-uniform functions.

For the model in which the algorithm gets the full valu-
ations from the agents, we provide an 8-approximation al-
gorithm that runs in polynomial time, and show that the
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problem of finding the optimal division is fixed-parameter
tractable. Both algorithms can also be adapted for the
model in which the algorithm needs to query the agents; in
this case, we lose a factor of (1 + ε) in the obtained welfare,
where ε is a precision parameter also given to the algorithm.

Finally, we consider the case where the contiguity require-
ment is dropped, i.e. each agent may get any collection of
intervals. Unlike with connected pieces, we show in this set-
ting that the situation varies greatly depending on the model
of input. When the valuations are given explicitly to the al-
gorithm (and are piecewise-constant), the problem can be
easily solved in polynomial time. However, if the algorithm
has only oracle access to the valuations, it is impossible to
do any better than an n-factor approximation.

1.2 Related Work
Cake cutting problems were introduced in the 1940’s [21],

and were studied in many variants since then. Originally,
the goal was to divide the cake fairly. Many algorithms were
proposed for this problem, including a number of “moving
knife” algorithms, which perform an infinite number of val-
uations by continuously moving a knife over the cake (for
some examples, see [22, 14] and [5]). In addition to the
algorithmic results, there has also been work on existence
theorems [13, 22], lower bounds for the complexity of such
algorithms [20, 23, 18], and a number of books on the sub-
ject, e.g. [6, 19].

In more recent years, the issue of social welfare in cake
cutting has also begun to receive some attention. The study
of this subject was initiated by Caragiannis et al. [7] which
aimed to quantify the degradation in social welfare that may
be caused by different fairness requirements; the same ques-
tion was studied for connected pieces in [2]. Some other
works that have studied the social efficiency of cake cut-
ting are Zivan [24], which suggests a way to trade some of
the fairness for more efficiency, and the very recent work by
Maya and Nisan [17], which studies the welfare attainable
by truthful cake cutting mechanisms (without money) for
two agents and piecewise-uniform valuations. Also related
are the works of Guo and Conitzer [15] and Han et al. [16],
which study the welfare achievable by truthful mechanisms
for dividing a set of divisible goods, a setting close (but not
identical) to cake cutting.

Especially relevant to our work are the works by Cohler et
al. [11] and Bei et al. [4]. These papers study the problem of
maximizing utilitarian welfare while maintaining some fair-
ness requirement; both works consider a model in which
the algorithm has the full valuation functions of the agents.
[11] studies the problem of finding a division that maxi-
mizes the welfare among all envy-free, non-connected di-
visions. They show that for piecewise-constant valuations
the problem can be solved in polynomial time using an LP,
and provide approximation algorithms for more general val-
uation functions. [4] studies the problem of finding a di-
vision that maximizes the welfare among all proportional
divisions. Their work is closer to ours in that it focuses on
connected pieces; there is also some similarity in the results,
as they show that this problem is NP-hard. Interestingly,
[4] also shows hardness of approximation for a factor O(

√
n)

(with non-normalized valuations), even if all valuation func-
tions have only two “steps”; this is in contrast to our results,
showing that without the proportionality requirement, the
optimal welfare can be approximated within a constant.

Our work here can be also viewed as a part of the large
body of work on the problem of multiagent resource allo-
cation. This line of work studies the problem of welfare
maximization in different allocation settings; for a survey of
this literature, see [10].

2. MODEL AND DEFINITIONS
Valuation Functions. In our model, the cake is represented
by the interval [0, 1]. Each agent i ∈ [n] (where [n] =
{1, . . . , n}) has a non-atomic (additive) measure vi(·), map-
ping each measurable subset of [0, 1] to its value according
to agent i. For most of this work, we are only interested in a
value of intervals in [0, 1], and thus simply write vi(a, b) for
the value of the interval between a and b. (Note that since
vi is non-atomic, single points have no value, and we need
not worry about the boundary points a and b themselves.)

An additional common assumption in the cake-cutting
literature is that the valuations are normalized, i.e. that
vi(0, 1) = 1 for all i. We present our results here assuming
that this indeed holds. However, we stress that our results
hold (with small modifications to the algorithms or complex-
ity) for arbitrary valuations as well.

Social Welfare. A social welfare measure is a mapping from
each possible vector of the agents’ individual utilities to some
real number, aiming to measure how good each division is
for the whole society. Let x be a division (to be formally
defined shortly); we write ui(x) to express the value agent
i obtains from the piece she receives in x. We focus on the
utilitarian welfare u(x) =

∑
i∈[n] ui(x), which is simply the

sum of the agents’ individual utilities.

Connected Divisions. In this work, we put most focus on
divisions in which every agent gets a single interval of the
cake. Formally, a connected division of the cake [0, 1] be-
tween n agents can be defined as a vector

x = (x1, . . . , xn−1, π) ∈ [0, 1]n−1 × Sn

(where Sn is the set of all the permutations of [n]), having
x1 ≤ x2 ≤ · · · ≤ xn−1. This is interpreted as making n − 1
cuts in positions x1, . . . , xn−1, and allocating the n result-
ing intervals to the agents in the order determined by the
permutation π. Note that the space X of all such divisions
is compact; since the utilitarian welfare is continuous in X
(as the agents’ valuation functions are all non-atomic), we
get that u(x) obtains a maximum over X.

Our main problem is thus the following: given the agents’
valuations, what is the (connected) division that maximizes
the utilitarian welfare? For the analysis of this problem, it
is useful to consider its decision version, defined as follows.

Connected Utilitarian Optimum (CUO)
Instance: A set {vi}ni=1 of non-atomic measures on

[0, 1], and a bound B.
Problem: Does there exist a connected division x

having u(x) ≥ B?

Complexity and Input Models. In order to analyze the com-
plexity of our problem, we must first define how the input
is represented. In most of the cake cutting literature, mech-
anisms are not explicitly given the agents’ valuation func-
tions; instead, the mechanism can query the agents on their
valuations (see e.g. [14, 19, 23]). Typically, two types of
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queries are allowed. In the first, an agent i is given points
0 ≤ a ≤ b ≤ 1 and is required to return the value vi(a, b). In
the second type of query, an agent i is given a point a ∈ [0, 1]
and a value x and is required to return a point b such that
vi(a, b) = x; we denote this by v−1

i (a, x).1 In this work, we
refer to this input model as the “oracle access” model.

In contrast, some more recent works (e.g. [9, 11, 4]) con-
sider a model in which the agents give complete descriptions
of their valuations to the mechanism. It is usually assumed
that the functions have some simple structure, so they can
be represented succinctly. Specifically, for each agent i, let
νi : [0, 1]→ [0,∞) be a value density function, such that

vi(X) =

∫
X

νi(x)dx

for every measurable subset X ⊆ [0, 1]. Following [9], we
say that a valuation function vi(·) is piecewise-constant if
its value density function νi(·) is a step function, i.e. if [0, 1]
can be partitioned into a finite number of intervals such
that νi is constant on each interval. If, in addition, there
is some constant ci such that νi(·) can only attain the val-
ues 0 or ci, we say that vi(·) is piecewise-uniform.2 Any
piecewise-constant valuation function vi(·) can be therefore
represented by a finite set of subintervals of [0, 1] together
with the value νi attains in each interval. We refer to the
model in which the valuations are given in full to the algo-
rithm as the “explicit data” model, and assume that in this
model, all valuations are piecewise-constant.

Our hardness results show that the decision problem de-
fined above is computationally hard, even when the valua-
tion functions are of the simplest type—piecewise-uniform—
and are given explicitly to the mechanism. In contrast, our
positive algorithmic results hold (with some small loss in
precision) for the more general oracle model as well. The
running time of our algorithms in this case additionally de-
pends on a precision parameter ε.

The Discrete Variant. A convenient preprocessing step in
our algorithms will be to reduce the problem into one that is
purely combinatorial. More precisely, we consider a discrete
analogue of the problem, where one is additionally given a
set of points in [0, 1] and is only allowed to make cuts at
points from this set. An alternative interpretation is to con-
sider, instead of a continuous cake, a sequence of indivisible
items; a connected division in this setting gives each agent
a consecutive subsequence of these items. As in the contin-
uous case, the valuations of the agents are assumed to be
additive. The decision version of this discrete variant of our
problem (which we too show to be computationally hard) is
defined as follows:

Discrete-CUO
Instance: A sequence A = (a1, . . . , am) of items, a

set {vi}ni=1 of valuation functions of the
form vi : A→ R

+, and a bound B.
Problem: Does there exist a connected division x

having u(x) ≥ B?

1Note that using only one type of query it is possible to give
approximate answers (in polynomial time) to queries of the
other type using binary search.
2In this case the constant ci is uniquely determined by the
total fraction of [0, 1] in which νi(x) 
= 0, since we assume
that the valuation of the entire cake is 1.

3. ALGORITHMS
We show two algorithms for the problem of finding a con-

nected cake division with high utilitarian welfare. The first
algorithm (described in Section 3.2) runs in polynomial time,
and is guaranteed to find a division achieving at least 1/8
of the highest possible welfare. The second algorithm (de-
scribed in Section 3.3) finds a division with optimal welfare,
and runs in time that is polynomial in the number of items,
but exponential in the number of agents n.

Both our algorithms work on instances of the discretized
variant of the problem. Therefore, we begin by showing (in
Section 3.1) how a continuous cake can be “discretized” into
a sequence of items in polynomial time. For the explicit
data model, this can be done in such a way that the optimal
welfare in the discretized instance is as high as that of the
original instance. For the oracle access model, on the other
hand, we give a procedure that additionally gets a precision
parameter ε, and produces an instance in which the optimum
welfare is at least (1− ε) times that of the original instance.

3.1 Discretizing a Continuous Cake
As in Cohler et al. [11], given n piecewise-constant valua-

tion functions, we denote by I the set of all boundary points
in these valuations, together with the points {0, 1}. Let J be
the set of intervals created by every two consecutive points
in I; note that all the value density functions of the agents
are constant over each of the intervals in J . It is easy to
observe that for any division x of the cake, there is a division
x′ using only points from I, and having u(x′) ≥ u(x). We
therefore set A = J , keeping the order and the values for all
the agents as in J , to obtain a discretized instance in which
the optimum welfare is just as high as in the original cake.

However, this method cannot be used in the oracle model
(where the valuations may not even be piecewise-constant).
Instead, we use Algorithm 1 below to produce a partition
of the cake into a sequence of items. At each step, let a be
the position of the last (rightmost) cut. Algorithm 1 asks
each agent i for the leftmost point bi such that the value
vi(a, bi) = ε/(n − 1); it then makes a cut at the leftmost of
these points, and repeats the process.

Algorithm 1: Discretization Procedure

Data: Oracle access to vi(·) for each i ∈ [n], and ε > 0.
begin

a←− 0
C ←− {0}
while ∃i : vi(a, 1) > ε

n−1
do

for i ∈ [n] do

bi ←− v−1
i

(
a, ε

n−1

)
b←− mini bi
C ←− C ∪ {b}
a←− b

C ←− C ∪ {1}
return C

Again, the sequence A of items is simply the set of inter-
vals created from each two consecutive points in the set C
returned by the procedure. The following lemma establishes
that the set C can be computed efficiently, and that the loss
in welfare due to this process is small.
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Lemma 1. Let {vi(·)}i∈[n] be a cake instance, and con-
sider some precision parameter ε. Then:

1. Algorithm 1 runs for a total time of O(n3/ε) on this
instance.

2. Let x be a division of the original cake; then there exists
a division y making cuts only at points in the set C
returned by Algorithm 1, and having u(y) ≥ u(x)− ε.

Proof. For item (1), note that in each iteration of the
while-loop, the value

∑
i∈[n] vi(a, 1) decreases by at least

ε
n−1

; since at the beginning we have
∑

i∈[n] vi(a, 1) = n,

there can be at most O(n2/ε) iterations. The claim follows
by noting that in each iteration we make ≤ 2n queries.

For item (2), let x be a division of the cake. We define
the division y as follows. For every cutpoint xj of x, set yj
to be the leftmost of the points in C that are to the right
of xj , and keep the permutation similar to that of x. Let
k be the agent getting the leftmost piece in both divisions;
clearly uk(y) ≥ uk(x). Since for any two points c′, c′′ ∈ C
and any agent i, vi(c

′, c′′) ≤ ε
n−1

, we also have that for all

other agents i 
= k it holds that ui(y) ≥ ui(x) − ε
n−1

; this

immediately implies item (2).

Note that this also allows a multiplicative approximation
of the optimal welfare: to achieve an approximation factor
of (1 + ε) (with ε ≤ 1), run Algorithm 1 with parameter
ε′ = ε/2. Let u∗ be the optimal welfare attainable in the
original instance, then by Lemma 1, the obtained instance
has a division with welfare at least

u∗ − ε

2
≥ u∗ − ε

1 + ε
=

u∗ + ε(u∗ − 1)

1 + ε
≥ u∗

1 + ε
,

where the last inequality holds since u∗ ≥ 1 (as we can
always just give the whole cake to one agent).

3.2 A Polynomial-Time Approximation Algo-
rithm

Given a sequence A of m discrete items, together with the
value of each of these items for each of the agents, we show
how to find a connected division achieving at least 1/8 of
the optimal utilitarian welfare.

We use the notation (s, t) to refer to the consecutive se-
quence of items {s, s + 1, . . . , t − 1, t}; hence, e.g. vi(s, t) =∑t

j=s vi(j). In the course of the algorithm, we (tentatively)

assign agents sequences of items; at each point, (ci, di) is
the (possibly empty) sequence assigned to agent i at the
moment. We also use the notation V−k(s, t) to refer to the
sum of values that the items of (s, t) have in the eyes of their
(tentative) owners at this time.

Our algorithm works iteratively, where in the t-th itera-
tion it finds a good division for the first t items. We begin
with the trivial null allocation of 0 items. Assuming that
we have a good allocation for the first t− 1 items, for every
s ≤ t (in ascending order), we search for an agent k whose
value for the interval (s, t) exceeds the cost of giving this
interval to her. This cost is comprised of two components.
The first component is the value of a piece (ck, dk) that k
herself may currently own, and has to give up in order to
get the new piece (s, t). The second component is the sum
V−k(s, t) of values that the other agents who currently own
items in (s, t) derive from these items. We only give the
segment (s, t) to agent k if her value for this interval is at

Algorithm 2: Discrete Welfare Approximation

Data: n valuation vectors of the form vi : [m]→ R
+.

begin
∀i ∈ [n] : ci ←− 0 , di ←− 0
for t = 1, . . . ,m do

for s = 1, . . . , t do
while
∃k ∈ [n] : vk(s, t) ≥ 2

[
vk(ck, dk) + V−k(s, t)

]
do

ck ←− s , dk ←− t
(ci, di)←− (0, 0) for all i with ci ≥ s
di ←− c− 1 for i with ci < s ≤ di

return
{
(ci, di)

}
i∈[n]

least twice the cost of giving it to her. When no more such
changes exist, we increase s. Iteration t ends when we are
done with the interval (t, t), at which point we begin itera-
tion t+1, considering the first t+1 items, starting with the
interval (1, t+ 1).

Clearly, for each interval (s, t) we need only consider each
agent i once (in the while-loop), and thus the algorithm
clearly halts in polynomial time. We now show that at the
end of iteration t, no interval ending at t is ever “attractive”
for any agent i.

Lemma 2. For an iteration t, denote by costtk(s, t) the
cost of giving (s, t) to agent k at the end of iteration t. Then
for any s ≤ t and k ∈ [n] it holds that

costtk(s, t) >
vk(s, t)

2
.

Proof. Fix some t, s ≤ t, and k ∈ [n]. Clearly, once
the inner for-loop of the algorithm is done with the interval
(s, t), the cost of giving (s, t) to k is more than half of vk(s, t).
It thus suffices to show that this cost does not decrease at
least until iteration t is over.

It is convenient to reformulate this cost: this new formu-
lation will also have two components. The first component
will be the value of items in (s, t) that are currently held
by all agents (including k); we denote this by V (s, t). The
second component will be the value of k’s items that are not
taken into account in V (s, t), i.e. the items before s that k
owns; we denote this value by vk(< s).

Consider some change in the cost of (s, t) to k that has
occurred within iteration t, after we were done with (s, t).
This change must be the result of giving some interval (s′, t)
(with s′ > s) to an agent j ∈ [n]. We distinguish between
two cases:

• j 
= k: In this case, the value vk(< s) clearly does not
change. In addition, the value V (s, t) strictly increases:
V (s′, t) must increase, and V (s, s′− 1) either does not
change, or that agent j herself loses some value there,
which must be (more than) fully compensated by the
increase in V (s′, t). Therefore, the cost of giving (s, t)
to k must increase.

• j = k: In this case, vk(< s) vanishes, but this decrease

(plus any decrease in V (s, s′−1), which can only result
from k herself having to give up items there) must be
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fully compensated by the increase in V (s′, t). Again,
the cost of giving (s, t) to k strictly increases.

To analyze the approximation ratio of the algorithm, we
use indicator variables xj

i , for i ∈ [n] and j ∈ [m]. We will

have xj
i = 1 if and only if agent i has owned the item j at

the end of some iteration t.

Lemma 3. Let {(cAi , dAi )}i∈[n] be the allocation returned
at the end of Algorithm 2, then∑
i∈[n]

vi(c
A
i , d

A
i ) ≤

∑
i∈[n]

∑
j∈[m]

xj
i · vi(j) ≤ 2 ·

∑
i∈[n]

vi(c
A
i , d

A
i ) .

Proof. The first inequality is trivial; we prove the sec-
ond inequality by induction on the number of items m. This
inequality clearly holds if m = 1, as we have only one iter-
ation, and the values xj

i describe exactly the allocation at
the end of this iteration.

Suppose that this is true for some m, and consider the al-
gorithm’s operation on an input with m+1 items. Consider
the penultimate iteration t = m of the algorithm on this
input, and fix the values {(ci, di)}i∈[n] and {xj

i}i∈[n],j∈[m] as
they are at the end of this iteration. Since the operation of
the algorithm until this point is identical to its operation on
an appropriate input with only m items, we have that∑

i∈[n]

∑
j∈[m]

xj
i · vi(j) ≤ 2 ·

∑
i∈[n]

vi(ci, di) ;

we show that all the changes made in the iteration t = m+1
maintain this inequality.

Note that any change in these values must be the result
of an allocation change. Suppose that such a change was
made, allocating an interval (s,m + 1) to some agent k.
The result of this change is that the left-hand side sum∑

i∈[n]

∑
j∈[m] x

j
i · vi(j) increases by at most vk(s,m + 1).

In addition, the right-hand side expression
∑

i∈[n] vi(ci, di)

gains vk(s,m+ 1), but loses the cost of giving (s,m+ 1) to
k. However, from the condition in the algorithm, we know
that this cost is at most half of vk(s,m+ 1). Therefore, the
expression

∑
i∈[n] vi(ci, di) gains at least vk(s,m+1)/2, and

the inequality is maintained.

Theorem 1. The division returned by Algorithm 2 ap-
proximates the optimal welfare to a factor of 8.

Proof. Fix a discrete cake instance. Let
{
(cAi , d

A
i )
}
i∈[n]

be the final output of Algorithm 2 on this instance, and
let
{
(c∗i , d

∗
i )
}
i∈[n]

be the optimal division for this instance.

Denote by OPT =
∑

i∈[n] vi(c
∗
i , d

∗
i ) the utilitarian welfare

achieved by the optimal division.
For each agent k, consider the iteration t = d∗k in which

the rightmost item given to k in the optimal division was
first considered. From Lemma 2 we have that

vk(c
∗
k, d

∗
k) < 2 · costd∗kk (c∗k, d

∗
k) ;

recall that cost
d∗k
k (c∗k, d

∗
k) = vk(c

d∗k
k , d

d∗k
k ) + V

d∗k
−k(c

∗
k, d

∗
k) is the

cost of giving (c∗k, d
∗
k) at the end of the iteration t = d∗k.

We can first observe the first component of these costs has∑
k∈[n]

vk(c
d∗k
k , d

d∗k
k ) ≤

∑
k∈[n]

∑
j∈[m]

xj
k · vk(j) ,

as for each agent k, the expression
∑

j∈[m] x
j
k · vk(j) sums

the values of all the items k has owned during the algorithm,
including the items she had at the end of the iteration t = d∗k.

For similar reasons we have that

∑
k∈[n]

V
d∗k
−k(c

∗
k, d

∗
k) ≤

∑
k∈[n]

d∗k∑
j=c∗

k

∑
i �=k

xj
i · vi(j)

≤
∑
k∈[n]

∑
j∈[m]

xj
k · vk(j)

where the second inequality holds since for any two agents
k 
= k′ the sequences (c∗k, d

∗
k) and (c∗k′ , d∗k′) must be disjoint,

as the optimal division cannot give the same item to more
than one agent.

Combining all this, we have:

OPT =
∑
k∈[n]

vk(c
∗
k, d

∗
k) < 2 ·

∑
k∈[n]

cost
d∗k
k (c∗k, d

∗
k)

= 2 ·
( ∑

k∈[n]

vk(c
d∗k
k , d

d∗k
k ) +

∑
k∈[n]

V
d∗k
−k(c

∗
k, d

∗
k)

)

≤ 2 ·
( ∑

k∈[n]

∑
j∈[m]

xj
k · vk(j) +

∑
k∈[n]

∑
j∈[m]

xj
k · vk(j)

)

= 4 ·
∑
k∈[n]

∑
j∈[m]

xj
k · vk(j) ≤ 8 ·

∑
i∈[n]

vi(c
A
i , d

A
i )

where we plug in Lemma 3 to obtain the last inequality.

3.3 A Fixed-Parameter Tractable Algorithm
Sometimes, the social efficiency of the division may be

highly important, and even a constant-factor approximation
may be unsatisfactory. We show an algorithm that finds the
optimal discrete division, in time exponential in the num-
ber n of agents, but polynomial in the number m of items.
Using the terminology of the theory of Parametrized Com-
plexity [12], we say that such an algorithm is fixed-parameter
tractable with respect to the number n of agents. This may
be applicable when the number of agents is relatively small,
even if the number of items is significantly larger.

Theorem 2. For discrete cake instances, it is possible to
find a division achieving the optimal utilitarian welfare in
time 2n · poly(n,m).

Proof. We use a dynamic programming approach. Our
algorithm creates a table U having a row of length m for
each pair (S, k), where S ⊆ [n] is a non-empty subset of

agents, and k ∈ S. Denote by u
(S,k)
j the value in the j-th

column of row (S, k) in U . The value u
(S,k)
j will be the largest

total utility obtainable by dividing the first j items between
the agents of S, where the last item j is given to agent k.

Therefore, the maximum welfare is maxS,k

{
u
(S,k)
m

}
.

It therefore remains to show that the values in U can
be computed in polynomial time. We begin with the first
column, in which we consider only the first item. For every

k ∈ [n], we have u
({k},k)
1 = vk(a1); for any S 
= {k} the

pair (S, k) is invalid and we set u
(S,k)
1 = −∞. Now, suppose

that we have filled in the values in the first j columns, and

consider u
(S,k)
j+1 . If k /∈ S, again (S, k) is invalid, and we set

u
(S,k)
j+1 = −∞. If k ∈ S, then the maximum value is obtained
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by either extending k’s piece in the best division of the items
1 through j in which k gets item j, or by taking the best
division of items 1 through j between the agents S \ {k},
and giving item j + 1 to k. Formally,

u
(S,k)
j+1 = max

{
u
(S,k)
j + vk(aj+1) ,

max
i∈S\{k}

{
u
(S\{k},i)
j

}
+ vk(aj+1)

}
.

We get that the value of each table entry can be computed
in time O(n), and therefore filling the entire table U and
finding the utilitarian optimum can be done in time 2n ·
poly(n,m), as stated. Once we have the optimal welfare, the
actual division can be easily computed by backtracking.

4. HARDNESS

Theorem 3. Both CUO and Discrete-CUO are NP-
complete in the strong sense.

This holds even if the valuation functions of the agents are
piecewise-uniform, and are given explicitly to the algorithm.

Proof. We show a polynomial-time reduction from 3DM
to CUO. In the problem of 3DM one is given three sets
X,Y, Z of the same cardinality n, and a set E ⊆ X×Y ×Z,
and needs to decide whether there is some E′ ⊆ E that
covers every element ofX∪Y ∪Z exactly once. GivenX,Y, Z
and E, we construct a set of piecewise-uniform valuations
and a bound B as an input for CUO.
For convenience, we represent the cake by the interval[

0, 4|E|] rather than [0, 1]. We will think of the cake as being
sectioned into |E| “sections” of length 4, where the right half
of each section is used for separation from the next section.3

The set of agents we create has agents of three types: “triplet
agents”, “ground sets agents” and “separation agents”. In
what follows we describe the valuation functions of all the
agents, by their type; for the bound, we set B = |E|+2− n

|E| .

• Triplet Agents: For each z ∈ Z we create an agent.
Let ei = (xj , yk, z�) ∈ E be a triplet. The agent cre-
ated for z� has value 1

|E| for the left half of the i-th

section
(
4(i − 1), 4(i − 1) + 2

)
, and value 0 for the

remainder of this section. All other agents z�′ with
�′ 
= � have value 1

|E| for the right half of the i-th sec-

tion
(
4(i− 1) + 2, 4i

)
and value 0 for the remainder of

this section.

• Ground Sets Agents: For each x ∈ X, let mx be the
number of triplets in E in which x appears; we create
mx− 1 identical agents for x. Let ei = (xj , yk, z�) ∈ E
be a triplet. The agents created for xj have value 1

|E|
for first quarter

(
4(i−1), 4(i−1)+1

)
of the i-th section,

and value 0 for the remainder of this section. The
agents created for xj′ with j′ 
= j all have value 1

|E| for

the third quarter
(
4(i− 1)+ 2, 4(i− 1)+ 3

)
of the i-th

section, and value 0 for the remainder of this section.

Similarly, for each y ∈ Y , let my be the number of
triplets in E in which x appears; we create my − 1

3Indeed, the last section needs not have such a “separation
half”; however, we leave it there in order to treat it identi-
cally to all the other sections.

identical agents for y. Let ei = (xj , yk, z�) ∈ E be a
triplet. The agents created for yk have value 1

|E| for

the second quarter
(
4(i−1)+1, 4(i−1)+2

)
of the i-th

section, and value 0 for the remainder of this section.
The agents created for yk′ with k′ 
= k all have value
1

|E| for the fourth interval
(
4(i− 1) + 3, 4i

)
of the i-th

section, and value 0 for the remainder of this section.

• Separation Agents: We finally create |E| separation
agents s1, . . . , s|E|. Each such agent si has value 1 for

the right half of the i-th section
(
4(i− 1) + 2, 4i

)
, and

value 0 for the remainder of the cake.

Figure 1 illustrates the structure of the preferences in one
segment. In this example, we consider some triplet ei =
(xj , yk, z�) ∈ E, and show the preferences of the agents for
the section of the cake created for ei.

4(i− 1) 4i

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
︸ ︷︷ ︸ ︸ ︷︷ ︸

1
|E| for xj

1
|E| for yk

1
|E| for xj′

with j′ �= j

1
|E| for yk′

with k′ �= k

1
|E| for z�

1 for si
1

|E| for z�′ with �′ �= �

Figure 1: The valuations of the agents for the section
created for ei = (xj , yk, z�) ∈ E. There are mxj − 1
identical agents for xj and myk − 1 identical agents
for yk.

Note that this construction indeed creates agents with
piecewise-uniform valuations, and can be computed in poly-
nomial time. Furthermore, all the numbers created in this
instance can clearly be represented using a number of bits
logarithmic in the input size.

Suppose first that (X,Y, Z,E) ∈3DM, and let E′ ⊆ E be
a cover of X∪Y ∪Z. We can give the entire right half of each
section i to the agent si. This contributes a sum of |E| to
the utilitarian welfare. Now, for each z ∈ Z there is a unique
ei ∈ E′ in which z appears. Give the (unique) triplet agent z
the left half of the i-th section, i.e. the interval

(
4(i−1), 4(i−

1)+2
)
. This contributes n

|E| more to the utilitarian welfare.

Finally, consider the ground sets agents. For every x ∈ X,
there is a unique ei ∈ E′ in which x appears; hence, there
are mx−1 triplets ei′ ∈ E \E′ in which x appears. Since no
piece of the left half of the corresponding sections was given
so far, we can give the first quarter

(
4(i′ − 1), 4(i′ − 1) + 1

)
of one of these sections to each of x’s agents. Similarly, we
have my−1 sections corresponding to triplets ei′ ∈ E \E′ in
which y appears; in all of these sections, the second quarter(
4(i′ − 1) + 1, 4(i′ − 1) + 2

)
is still available (and worth

1
|E| to all of y’s agents). Thus, each ground sets agent can

receive a piece of value 1
|E| , and these agents contribute the

missing amount 2(|E|−n)
|E| to the utilitarian welfare, which is

now |E|+ 2|E|−n
|E| = B, as required.

Conversely, suppose that (X,Y, Z,E) /∈3DM; we wish to
prove that in this case, no division has utilitarian welfare
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≥ |E| + 2 − n
|E| . Consider a utilitarian welfare maximizing

division. Such a division must clearly give each agent si
her entire desired piece, as the cost of giving (some of) it
to another agent will always exceed the gain. Thus, in such
a division, the entire right half of each section is given to
a separation agent, and no other agent can receive a piece
intersecting two or more sections. The utilitarian welfare

so far is |E|, and to get it to B = |E| + 2|E|−n
|E| , we must

give each of the remaining agents a piece of value exactly
1

|E| , as none of them can now get a piece with larger value.

Let E′ ⊂ E be the set of triplets/sections from which the
triplet agents receive their pieces of value 1

|E| ; it must be

that the entire left half of each of these sections is now fully
consumed. Now, note that since (X,Y, Z,E) /∈3DM, it has
to be that in every E′ ⊆ E of cardinality n that covers all of
Z, there is either some x ∈ X or some y ∈ Y that appears
twice; w.l.o.g. assume that it is x ∈ X. This implies that the
pieces given to the triplet agents contain at least two interval
desired by the agents created for this x, out of the total mx

such intervals found in the left halves of the sections. Since
we have mx − 1 agents for this x, it follows that we cannot
give each of them a piece of value 1

|E| , and therefore we

cannot achieve a utilitarian welfare of B = |E|+ 2|E|−n
|E| .

The proof forDiscrete-CUO is analogous, and can easily
be obtained by a straightforward partitioning of the cake
created in the reduction into discrete indivisible chunks.

The strong NP-hardness of CUO andDiscrete-CUO im-
plies the following corollary:

Corollary 4. There is no FPTAS for neither CUO nor
Discrete-CUO.

5. MAXIMIZING WELFARE WITH NON-
CONNECTED PIECES

We now turn to analyze the problem of welfare maximiza-
tion when each agent may get a collection of intervals. We
begin by noting that when the agents’ valuations are given
explicitly, the problem of finding the division that maximizes
the utilitarian welfare is easily solvable.

Proposition 5. In the explicit data model, it is possi-
ble to find a division maximizing the utilitarian welfare in
polynomial time.

Proof. Again, we can use the discretization method de-
scribed in Section 3.1 to obtain a discretized instance A in
which the optimal welfare is just as high as that of the origi-
nal instance. In the discretized instance A, the division that
gives each item to the agent who values it the most clearly
maximizes the welfare.

In contrast to this positive result, we show that maximiz-
ing welfare is impossible if instead of receiving the explicit
valuation functions, we only get oracle access to the valu-
ations. Note that by simply giving the entire cake to one
agent, we can achieve an approximation of factor n to the
utilitarian optimum; in what follows, we show that this is
actually the best that can be done, as no deterministic algo-
rithm can guarantee a better approximation. We stress that
this result holds for any finite algorithm, and thus does not
depend on any complexity assumptions.

Theorem 6. For any ε > 0, no deterministic algorithm
working in the oracle input model can approximate the utili-
tarian welfare to a factor of n−ε, when non-connected pieces
are allowed.

Proof. Let B be a deterministic cake division algorithm
working in the oracle input model, and fix some n ∈ N and
ε > 0. Consider the operation of the algorithm on the set
of preferences in which all agents value the entire cake uni-
formly. In this case, the utilitarian welfare obtained cannot
exceed 1. We will now show that for any ε′ > 0 we can
construct a different set of preferences on which B must
output the same division (with the same welfare), but for
which there exists a division achieving utilitarian welfare of
(1− ε′)n. The theorem will follow by choosing ε′ = ε/n.

Let 0 = p0 < p1 < . . . < pk−1 < pk = 1 be the set of
(distinct) points that appear in the operation of B on the
input above. In other words, {pi}ki=0 is the set of all points
a, b for which the algorithm makes a query vi(a, b) or receives
an answer b = v−1

i (a, x), and all the points c in which the
algorithm makes cuts in its output division. We create a new
instance in which the total value each agent assigns to every
interval (pj , pj+1) remains the same, but the division of this
value within the interval is “rearranged”. For each agent,
the value of each such interval in the original instance (as
well as in the new instance) is �j = pj+1 − pj . We divide
this interval into n + 1 “slivers”: the i-th sliver (1 ≤ i ≤ n)

is worth �j − ε′
k

to agent i, and zero to everyone else. The

(n+1)-th sliver of the interval is worth ε′
k
for all the agents.

Formally, for each agent i and each 0 ≤ j ≤ k, set

v′i

(
pj +

i− 1

n+ 1
· �j , pj +

i

n+ 1
· �j
)

= vi(pj , pj+1)− ε′

k

v′i

(
pj +

n

n+ 1
· �j , pj+1

)
=

ε′

k

and have agent i give value of 0 to any other piece.
We now have that for every i ∈ [n] and every 0 ≤ j ≤

j′ ≤ k it holds that v′i(pj , pj′) = vi(pj , pj′); furthermore, for
every i ∈ [n], every 0 ≤ j ≤ k and every x ∈ R such that B
makes a query v−1

i (pj , x) when executed on the preferences

�v we have v′−1
i (pj , x) = v−1

i (pj , x). Consider the operation

of the algorithm B on the set of valuations �v′. The first
query of B on this instance is clearly identical to its first
query on the instance �v, since before any queries are asked
B cannot distinguish between the two instances. However,
as we have observed, the answer to B’s first query with the
new instance �v′ is identical to the answer with the original
instance �v. Since B is deterministic, this implies that the
next query asked by B on �v′ is identical to that asked on �v.
Continuing in this manner, we get that the entire operation
of B is identical on both instances.

In particular, this implies that the cut points in the di-
vision produced for �v′ are all from the set {pj}kj=0; in such
a division the utilitarian welfare is always exactly 1. How-
ever, any division giving each agent all of the “slivers” that
are only desired by her yields utilitarian welfare > (1− ε′)n,
and the theorem follows.

6. OPEN PROBLEMS
In this work we have taken the first steps in studying the

problem of maximizing the utilitarian welfare in cake cutting
with connected pieces. However, some interesting related
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questions remain open. For example, we conjecture that the
approximation ratio for maximizing utilitarian welfare can
be improved; it may also be interesting to see if stronger
inapproximability results can be shown. Other interesting
extensions include:

• Finding a Utilitarian-Optimal Proportional Di-
vision: Bei et al. [4] have shown that finding the divi-
sion maximizing welfare among all proportional divi-
sions is hard to approximate within a factor of O(

√
n).4

However, [4] do not provide an approximation algo-
rithm for this problem. Here, we show that without the
proportionality restriction, the optimal welfare can be
approximated within a constant factor. Can our algo-
rithm be adapted to find socially-efficient proportional
divisions that are not too far from the optimum?

• Maximizing Egalitarian Welfare: The egalitarian
welfare measure eg(x) = mini∈[n] ui(x) considers the
minimum utility of any agent in the division instead
of summing these utilities. Maximizing the egalitarian
welfare has been considered in allocation of discrete
goods (e.g. [3, 1, 8]), and seems a difficult problem.
Almost all of our results have analogues for egalitarian
welfare as well, with the only exception being The-
orem 1: the best approximation algorithms we have
for egalitarian welfare achieve linear-factor approxi-
mations. Closing this significant gap is therefore an
interesting (and possibly challenging) open question.

• Strategic Behavior: One implicit assumption in our
work was that we have access to the (true) valua-
tions of the agents. However, in reality the agents
may have incentive to lie about their valuations. Maya
and Nisan [17] study this problem for two agents and
piecewise-uniform valuations. The question of what
welfare guarantee can be achieved by a truthful mech-
anism in a more general setting is therefore still open.

• 2-Dimensional Cake: The cake cutting literature
has generally assumed a one-dimensional cake; indeed,
for the purpose of maintaining fairness, which was its
main focus, a 2-dimensional cake can be simply “pro-
jected” onto one dimension, and divided fairly accord-
ing to the projection. However, this may result in a
significant loss of welfare. Therefore, maximizing wel-
fare in allocation of 2-dimensional cakes may require
completely different tools and techniques.
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