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In gas turbine applications, forced vibrations of turbine blades
under resonant—or nearly resonant—conditions are undesirable.
Usually in airfoil design procedures, at least the first three blade
modes are required to be free of excitation in the operating speed
range. However, not uncommonly, a blade may experience reso-
nance at other higher natural frequencies. In an attempt to avoid
resonant oscillations, the structural frequencies are tuned away
from the excitation frequencies by changing the geometry of the
blade. The typical iterative design process—of adding and remov-
ing material through restacking the airfoil sections—is laborious
and in no way assures an optimal design. In response to the need
for an effective and fast methodology, the guided tuning of turbine
blades method (GTTB) is developed and presented in this paper. A
practical tuning technique, the GTTB method is based on struc-
tural perturbations to the mass and stiffness at critical locations,
as determined by the methodology described herein. This shifts the
excited natural frequency out of the operating speed range, while
leaving the other structural frequencies largely undisturbed. The
methodology is demonstrated here in the redesign of an actual tur-
bine blade. The numerical results are experimentally validated
using a laser vibrometer. The results indicate that the proposed
method is not computationally intensive and renders effective
results that jibe with experiments. [DOI: 10.1115/1.4024761]

1 Introduction

In gas turbine applications, rotating blades that operate under
resonant conditions may result in catastrophic failures. The most
common excitation source is the nonuniform pressure distribution
caused by gas flow around obstacles such as an upstream
static guide vane of a nozzle. If there are N evenly spaced vanes,
a downstream blade is excited N times per rotor revolution (N
engine orders). Other excitation sources could stem from mechan-
ical origins such as bearing support alignment and residual rotor
bow. Usually their influence may be significant as high as up to
the fourth engine order. A preliminary airfoil design is usually
tuned for the first three or four natural frequencies in order to
avoid resonance with these low engine orders. However, a blade

may experience resonance at the vane passing frequency, which is
a high engine order. This excited natural frequency is required to
be shifted outside of the operating speed range without greatly
disturbing the other frequencies.

In the open literature there has been a good deal of work on
mistuning frequency/mode calculations [1–3]. These commonly
deal with random structural perturbations away from the idealized
symmetric system, including the use of intentional mistuning
patterns to mitigate the harmful effects of random mistuning.
While these works are relevant, they do not suggest how to avoid
the problem of resonance.

There are several options for avoiding large amplitude vibrations
associated with resonance. The operating speed may be changed to
avoid a resonance condition, although this is a very restrictive
option. Alternatively, a platform damper may be attached to the
blade to reduce the mean amplitude (and stress level) [4–6]. Such
dampers are widely employed in industry. However, they become
less effective at a high frequency.

Alternatively, one may redesign the blade itself, as recently
suggested in Ref. [7]. This moves the structural frequencies away
from the engine order excitation, avoiding resonance. This is the
approach commonly taken by industry, although the specifics of
their redesign procedures are not publically available. It was
claimed in patents [8,9] that blade tuning was achieved through
filling a recess at the blade tip with a material, which is different
from that of the blade material. Journal publications that develop
clear redesign methodologies are scarce. This void in the open lit-
erature is part of the motivation for the present paper. The idea
here is to develop and demonstrate a consistent methodology that
“tunes” the blade geometry such that the natural frequency
changes and pushes the resonance condition out of the operating
speed range, as seen in Fig. 1. The task of tuning the blade is fur-
ther complicated by the following additional constraints:

1. Redesigning the geometry changes all of the frequencies
(eigenvalues). Thus, while a certain geometry change might
move the ith frequency out of the operating range, it might
also (inadvertently) move the jth frequency into the operat-
ing range. This undermines the tuning process. As such, the
goal is to move the desired frequency while leaving the
others largely unchanged. In Fig. 1, this would mean moving
point A to A0, while not appreciably changing the fundamen-
tal frequencies represented by B, C, D, and E.

2. The preliminary airfoil geometry, tuned for fundamental
modes, was developed to ensure good aerodynamic perform-
ance. As such, changes to the geometry in this tuning process
should not drastically impact the lift/drag characteristics of
the blade.

3. It is also assumed that modification to the upstream hard-
ware, for instance, the number of vanes on the stator or the
number of fuel nozzles, is not an option.

Using classical eigenvalue perturbation theory, the perturbations
are applied in such a way as to limit the changes to other frequen-
cies, as required by item 1. However, this method does not ensure
that item 2 is satisfied. Such an assurance would require a coupled
fluid-structure model. This high degree of specificity is outside the
scope of this work, whose aim is to develop and demonstrate a
redesign process to resolve a structural vibration problem.

The methodology is as follows: (i) The various engine order
excitations are identified. (ii) Using a finite element description of
the original blade geometry (pretuning), the free vibration eigen-
value problem is solved. This gives the natural frequencies and
mode shapes. (iii) A Campbell diagram is created, identifying all
resonant conditions but especially the one(s) inside the operating
speed range. The resonant conditions inside the operating range
are referred to as the offending frequencies. (iv) For all resonances
inside the operating range, the maxima of their associated mode
shape(s) are identified. (v) A small amount of material is added to
or removed from the blade at the maxima of the offending mode
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(see the previous step). This changes the mass and stiffness matri-
ces and; hence, impacts the natural frequencies. However, because
it takes place at a modal peak, the change in the eigensolution is
most noticeable in the offending frequency/mode; there is a
smaller change in the other frequencies/modes. The process
returns to step (ii) and the process continues until the offending
frequency is pushed outside of the operating range.

2 Analytical Justification

The fifth step of the GTTB method is to add or subtract material
from a blade in strategic locations in order to change the offend-
ing frequency, pushing the resonance condition outside of the
operating range of the engine, while leaving the other frequencies
largely undisturbed.

The eigenvalues and eigenvectors for a free vibration problem
are numerically obtained from the standard eigenvalue problem

� k0½M�f/0g þ ½K�f/0g ¼ 0 (1)

where /, [M], and [K] are normal modes, mass, and stiffness mat-
rices, respectively.

As usual, the frequencies squared are the individual eigenval-
ues. Adding or removing mass makes small changes to specific
terms of the mass and stiffness matrix; these terms must corre-
spond to the nodes at the physical location on the blade that is
being altered. Introducing these small perturbations [dK] and
[dM] to the net stiffness and mass yields

K½ � ¼ KO½ � þ dK½ � (2)

and

M½ � ¼ MO½ � þ dM½ � (3)

The subscript (O) in the preceding equations refers to the mass
and stiffness matrices from the previous iteration (or the unper-
turbed system if this is the first iteration of the GTTB process). It
is also assumed that nonzero elements of the perturbation matrices
are small in comparison to the same elements in the original mass
and stiffness matrices. Because these perturbations are small, it
can be assumed that the ith eigenvalue and eigenvector undergo
small changes

ki ¼ koiþdki (4)

and

/i ¼ /oi þ d/i (5)

In addition, provided the original mass and stiffness matrices are
symmetric and positive definite, we have the following:

/T
oi MO½ �/oi ¼ 1 (6)

and

/T
oi½KO�/oi ¼ koi ¼ x2

oi (7)

With these definitions, it can be shown [10,11] that the perturbed
eigenvalues and eigenvectors may be expressed as

ki ¼ koi þ /T
oi dK½ �/oi � koi/

T
oi dM½ �/oi

� �
(8)

/i ¼/oi � 1=2ð Þ /T
oi dM½ �/oi

� �
/oi

þ
X

j¼1;Nðj6¼iÞ
/T

oj dK½ � � koi dM½ �f g/oi

� �
/oj=ðkoj � koiÞ (9)

The goal is to add or subtract mass to produce a sufficiently large
change in the offending eigenvalue. To quantify the total change
in the eigenvalue, the total derivative is taken

dki ¼
dki

@kkl
dkkl þ

@ki

@mkl
dmkl (10)

which requires that the two partial derivatives be evaluated. These
are also referred to as the sensitivities of ki and /i with respect to
perturbations in [K] and [M]. These derivatives are

@ki

@kkl
¼ @

@kkl
koi þ /T

oi dK½ �/oi � koi/
T
oi dM½ �/oi

� �� �

@ki

@kkl
¼ @

@kkl
/T

oi dK½ �/oi

� �
¼ @

@kkl
/oi/oið ÞT dK½ �

With the symmetric [K] matrix, a partial with respect to kkl term
will change the k and l elements of the vector, leaving

@ki

@kkl
¼ 2� dklð Þ/oi kð Þ/oiðlÞ (11)

where dkl is the Kronecker d and the parenthetical subscript refers
to the specific element within the eigenvector.

Fig. 1 The effects of blade tuning in the Campbell diagram
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Similarly, for changes in the mass we obtain @ki=@mkl

@ki

@mkl
¼ @

@mkl
koi þ /T

oi dK½ �/oi � koi/
T
oi dM½ �/oi

� �� �

and

@ki

@mkl
¼ 2� dklð Þkoi/oi kð Þ/oiðlÞ (12)

To produce a change in a specific eigenvalue ki, Eq. (11) suggests
that one should examine the ith mode shape for an antinode
(choose the klth matrix elements to correspond to a spatial maxi-
mum in /). It is at this location that the stiffness should be
enhanced, since it produces the largest change to the eigenvalue
per unit stiffness perturbed. A similar observation is also true for
the perturbation in mass, as indicated by Eq. (12). The eigenvalue
perturbation bounds are scaled by the amplitude of the mode
shape.

While the perturbation of the eigenvalue ki depends solely on
the perturbation of the [K] and [M] matrices, the perturbation in
the eigenvector /i depends on the perturbations in [K] and [M]
but also on the differences between ki and the other eigenvalues;
see Eq. (9). However, the focus here is on changes in the
frequency, since that dictates resonance. Changes in mode shapes
are incidental.

Equation (8) provides a quantitative estimate of the new fre-
quency for a given perturbation in [K] and [M]. Ideally, the prob-
lem would be solved in reverse. The required change in ki would
be specified and the amount of material to be added/subtracted
would be calculated. This would be the ‘holy grail,’ knowing
exactly where to add material and by how much. An actual struc-
ture is simply too complex, meaning that there may be a large
number of geometry changes that could yield the desired change
in ki. To circumvent this uniqueness issue, an iterative approach is
taken. It is clear where material should be added/subtracted: at
antinodes of the mode shape associated with the offending fre-
quency. A small geometric change is made in this vicinity and the
eigenvalues are recalculated. If the updated eigenvalue hasn’t
changed by a satisfactory amount, the geometry is perturbed from
this updated configuration and the process is repeated until the
offending frequency falls outside of the operating range.

At this point, it is worth briefly discussing the specialized (but
highly studied) case of symmetry breaking and mode localization
[12,13]. Let us assume that the offending frequency is associated
with a highly localized mode. In this case, the choice of where to
add/remove material becomes particularly easy since the modal
peak is pronounced. The other half of the problem is the eigen-
value veering that often accompanies mode localization [14,15].
In the parameter region where the veering occurs, the strongly
coupled (veering) eigenvalues are close in value. Thus, both
would probably be “offending frequencies.” Therefore, if one
increases and moves outside of the operating speed range, the
other will also likely fall outside of the operating speed range.

3 Physical Example

In practice, it is preferable to subtract mass in order to shift a
resonant frequency above the upper bound of the operating speed
range to avoid excitation during engine speed up and ramp down.
Additionally, it circumvents the negative impact on blade fir tree
stress, on rotor inertia, and on blade-off containment requirements
caused by mass addition.

The model for this blade is shown in Fig. 2(a); the actual blade
(sitting in the test fixture) is shown in Fig. 5. The blade has a mod-
ulus and density of E¼ 207 GPa and q¼ 7.8� 103 kg/m3, respec-
tively. The finite element model uses tetrahedron elements and
each node has six degrees of freedom. The fir tree structure, at the
hub of the rotor, is fully fixed. The results of the first three steps
of the GTTB process are summarized in the Campbell diagram of

Fig. 1. This indicates that the structure has distinct eigenvalues
and that the nth frequency (labeled “A”) is in the operating speed
range, making it resonant. This is referred to as the offending fre-
quency. Beginning at step four, the nth mode shape /n is gener-
ated and examined for maxima. This is shown in Fig. 2(b). The
yellow/red areas correspond to modal peaks, while blue areas
have little displacement. Here, there is one principle modal peak
(red) and two secondary peaks (yellow), as labeled in Fig. 2(b).
Although all three areas may be perturbed, the focus here will
remain on the primary maxima.

Step number five requires that material perturbations be
imposed on the structure to shift this resonant frequency from the
current position inside the operating range to a position outside of
the operating speed range (to point A0). To accomplish this partic-
ular shift (going from A to A0) a frequency change of approxi-
mately 8% is required.

To ensure the consistency and integrity of the analysis, the finite
element mesh was never changed. To remove material from a
region, the density and modulus of the material in that region are
set to zero. In this particular case, the primary modal peak is bro-
ken into three bands of elements, as shown in Fig. 3, and identified
as V1, V2, and V3. Initially, only volume one (V1) is removed, by
zeroing out these material properties (E and q). This changes the
frequency by slightly more than 3% and is insufficient. Removing
volume two (V2) increases the net change to 5.5%, which is still
insufficient. Volume three (V3) is then removed and the total
percent change in the nth frequency is approximately 8.25%. These

Fig. 2 Turbine blade

Fig. 3 The trailing edge of the blade with subvolumes at the
primary modal peak
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iterative improvements are shown in Fig. 4. This structural rede-
sign pushes point A to A0 in the Campbell diagram, while leaving
the other frequencies largely undisturbed.

4 Experimental Validation

The test configuration is shown in Fig. 5. The fir tree portion of
the turbine blade is clamped in a rigid support fixture, which, in
turn, is clamped onto a shake table. The blade is acoustically
excited by a speaker that is placed just behind the blade. The
speaker is driven by an amplifier and a wave form generator. The
excitation is sinusoidal and the frequency is varied over the course
of the tests. The sensor is a scanning laser vibrometer. In the non-
scanning mode, this emits light toward one point on the test object
(the blade) and measures the phase difference from the projected
and reflected wave. This gives the velocity of that point. In the
scanning mode, the target point is varied. Provided the vibrations
are reasonably small and the response linear, the velocity distribu-
tion and the mode shape are the same (just 90o out of phase).
Hence, the measured field is the mode shape.

The experimental objective is to verify two things. First, the
natural frequency and mode shape of the untuned blade must be
verified. The second is to verify the natural frequency and mode
shape of the tuned blade after the previously specified amount of
material has been removed.

The first test involves adjusting the excitation frequency (in the
vicinity of the anticipated nth natural frequency) until a resonance
condition exists. This test showed that the actual frequency of the
untuned system differed from the model predicted frequency by
approximately 0.1%. This is in excellent agreement. The associ-
ated mode shape is shown in Fig. 6(a). The modal peaks corre-
spond to the red zones. This agrees favorably with the model
predicted mode shape in Fig. 2(b).

The next experiment follows the iterative approach taken in the
simulations. Material is machined off of the blade, at the pre-
scribed location, in small amounts. First, volume V1 (see Fig. 3) is
removed and the frequency is measured. This is followed by V2

Fig. 4 Percent of the frequency shift as a function of material volume removal at
the primary modal peak. The model predictions and experimental results are both
shown.

Fig. 5 The test configuration, including the laser vibrometer,
shaker table, support fixture, and blade

Fig. 6 (a) Measured mode shape of the baseline blade at point
A in the Campbell diagram. (b) The mode shape of the tuned
blade after the second iteration (with a 5.5% change in the
frequency).
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and V3. In all cases, the measured percent increase in the
frequency differed from the predicted percent increase in the
frequency by less than 0.1%. A head-to-head comparison of
the model results versus the experimental results is shown in
Fig. 4. Additionally, the experimental mode shape after the second
iteration is shown in Fig. 6(b). There is clear agreement between
the model and experiment.

5 Conclusions

At certain operating speeds, upstream components (e.g., stators)
can induce resonant vibrations in flexible turbine blades. To pre-
vent these situations the blades are often redesigned, such that
their resonance conditions fall outside of the operating range of
the engine. These redesign efforts are often done heuristically. In
this paper, a new approach to turbine blade redesign, referred to
as the guided tuning of turbine blades (GTTB), is described. This
technique is demonstrated in the redesign of an actual turbine
blade. The experimental evidence confirms the results produced
by the analysis. The test also indicated that the frequency sensitiv-
ity of the other modes, particularly to those adjacent to the tuned
frequency, is on the order of less than 1%.

The GTTB methodology uses general results from the perturba-
tion solution to the eigenvalue problem to provide a strategy for
the redesign process. Specifically, it requires that the user identify
the offending frequency and then add or remove mass from a
modal peak (antinode) of the associated mode. This produces a
large change in the offending frequency, while leaving the other
frequencies largely undisturbed. This can be done iteratively, until
the offending frequency leaves the operating speed of the engine.
Of course, since the blade profile is changed during this redesign,
one should re-examine the flow characteristics of the blade in
order to ensure that the redesign has not negatively impacted its
aerodynamic performance. Since a typical airfoil is designed for
the peak pressure ratio between the pressure side and the suction
side on the first two thirds of the blade chord, it is expected that a
modification to the blade trailing edge would not have a signifi-
cant impact on the blade performance. In order to reduce the stress
concentration effect, the modified trailing edge profile needs to be
smoothly recontoured.
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