
Functional Type Assignment for Featherweight Java
To Rinus Plasmeijer, in honour of his 61st birthday

S.J. van Bakel and R.N.S. Rowe

Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2BZ, UK

s.vanbakel@imperial.ac.uk, r.rowe@doc.ic.ac.uk

Abstract. We consider functional type assignment for the class-based object-
oriented calculus Featherweight Java. We start with an intersection type assign-
ment systems for this calculus for which types are preserved under conversion.
We then define a variant for which type assignment is decidable, and define a
notion of unification as well as a principal typeing algorithm.
We show the expressivity of both our calculus and our type system by defining an
encoding of Combinatory Logic into our calculus and showing that this encoding
preserves typeability. We thus demonstrate that the great capabilities of functional
types can be applied to the context of class-based object orientated programming.

Introduction

In this paper we will study a notion of functional type assignment for Featherweight
Java (FJ) [15]. We will show its elegance and expressiveness, and advocate its use in
type assignment systems for fully fledged Java; of course it would need to be extended
in order to fully deal with all the features of that language, but through the system we
present here we show that that should be feasible, giving a better notion of types.

Type assignment has more than shown its worth in the context of functional pro-
gramming, like ML, Clean [11, 17], and Haskell. Not only are types essential for effi-
cient code generation, they provide an excellent means of (an abstract level of) error
checking: it is in most programmers’ experience that once the type checker has ap-
proved of a functional program, said program will be almost error free.1 But, more
importantly, the approach to types in functional programming is that of type assign-
ment: programmers have the freedom to not specify types for any part of their code. A
type inference algorithm embedded in the compiler guarantees a partial correctness re-
sult: the type found for a program is also the type for the result of running the program,
a property most commonly known as subject reduction or type soundness, although that
latter term has different meaning as well.

In the context of imperative programming, which contains the Object-Oriented ap-
proach (OO) as well, the reality is very different. There it is more common to demand
that all types are written within the code; then type checking is almost trivial, and
mainly concerns checking if special features like inheritance are well typed. The dif-
ference between the functional approach and the imperative one then boils down to the

1 Almost, yes, not completely; we can but dream of static error checking systems that only
approve of error free code, and catch all errors.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357347567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

difference between untyped and typed calculi. Often, in the untyped approach, if a term
has a type, it has infinitely many, a feature that is exploited when introducing polymor-
phism into a programming language’s type system. In the typed approach, each term has
(normally) only one type. This implies that it is difficult, if not impossible, to express
polymorphism in imperative languages.

With that in mind, we set out to investigate if the functional approach is feasible for
imperative languages as well. The results presented in this paper are part of the results
of that investigation, but in the more concrete setting of functional type assignment for
object orientation. In order to be able to concentrate on the essential difficulties, we
focus on Featherweight Java [15], a restriction of Java which can be regarded as the
minimal core fragment of Java, defined by removing all but the most essential features
of the full language; Featherweight Java bears a similar relation to Java as the λ-calculus
(LC) [12, 9] does to languages such as ML and and Haskell.

But rather than defining a notion of type assignment that is implementable, we
thought it necessary to first verify that the kernel of our approach made sense, i.e. ac-
cords to some particular kind of abstract semantics.2 Normally, just operational seman-
tics is used: then the only check is that subject reduction is satisfied. This is certainly
the minimal requirement for type assignment systems (although variants are proposed
that do not even satisfy this), but normally much more can be achieved.

Rather, in [19] we proposed an approach that has strong links with denotational se-
mantics, in that it gives a full equational semantics for FJ-programs. The best-known
way to achieve that is through setting up a notion of types inspired by Coppo and
Dezani’s intersection type discipline (ITD) [13, 10, 2] and this was the path we followed
in [19]. ITD, first defined for LC, is a system that is closed under β-equality and gives
rise to a filter model and semantics; it is defined as an extension of Curry’s basic type
system for LC by allowing term-variables to have many, potentially non-unifiable, types.
This generalisation leads to a very expressive system: for example, strong normalisation
of terms can be characterised by assignable types.

Inspired by this expressive power, investigations have taken place of the suitabil-
ity of intersection type assignment for other computational models: for example, van
Bakel and Fernández have studied intersection types in the context of Term Rewriting
Systems (TRS) [7, 8] and van Bakel studied them in the context of sequent calculi [3, 5].
In an attempt to bring intersection types to the context of OO, van Bakel and de’Liguoro
presented a system for the ς-calculus [6]; the main characteristic of that system is that
it sees assignable types as an execution or applicability predicate, rather than as a func-
tional characterisation as is the view in the context of LC and, as a result, recursive calls
are typed individually, with different types. This is also the case in our system.

The system we presented there is essentially based on the strict system of [1]; the
decidable system we present here, a system with simple record types, is likewise essen-
tially based on Curry types. Our system with intersection types has been shown to give
a semantics in [19] of which we will state the main results here; that paper also defined

2 Too often ad-hoc changes to type systems are proposed that only solve a specific problem; the
proposer typically gives an example of an untypeable term that in all reasonability should be
typeable, and gives a change to the type system in order to make that example typeable.

2

a notion of approximation, inspired by a similar notion defined for the λ-calculus [20],
and showed an approximation result.3

Our types are functional, contain field and method information, and characterise
how a typeable object can interact with a context in which it is placed. The notion
of type assignment we developed can be seen as a notion of ‘flow analysis’ in that
assignable types express how expressions can be approached; as such, the types ex-
press run-time behaviour of expressions. Our type system was shown to be closed for
conversion, i.e. closed for both subject reduction and subject expansion, which implies
that types give a complete characterisation of the execution behaviour of programs; as
a consequence, type assignment in the full system is undecidable.

That FJ is Turing complete seems to be a well accepted fact; we illustrate the expres-
sive power of our calculus by embedding Combinatory Logic (CL) [14] – and thereby
also LC – into it, thus establishing that our calculus is Turing complete as well. To show
that our type system provides more than a semantical tool and can be used in practice
as well, in this paper we will define a variant of our system by restricting to a notion
of Curry type assignment; the variant consists of dealing with recursion differently. We
show a principal type property and a type preservation result for this system.

The Curry system we propose here is a first, and certainly not the most expressive,
illustrative, or desirable system imaginable. We allow intersection types only in the
form of records; for FJ this is natural, since a class should be seen as a combination
of all its capabilities. As a special property, our principal typeing algorithm calculates
(normally) records as types for classes, and the return type of a method can be a record
as well. And thirdly, the way the system types recursive classes could be improved by
using recursive types.

1 Featherweight Java without casts

In this section, we will define the variant of Featherweight Java we consider in this
paper. As in other class-based object-oriented languages, it defines classes, which rep-
resent abstractions that encapsulate both data (stored in fields) and the operations to be
performed on that data (encoded as methods). Sharing of behaviour is accomplished
through the inheritance of fields and methods from parent classes. Computation is me-
diated by instances of these classes (called objects), which interact with one another by
calling (also called invoking) methods on each other and accessing each other’s (or their
own) fields. We have removed cast expressions since, as the authors of [15] themselves
point out, the presence of downcasts is unsound4, so cannot be modelled semantically;
for this reason we call our calculus FJ � C. We also leave constructors as implicit.

Notation We use n (where n is a natural number) to represent the set {1, . . . , n}. A
sequence s of n elements a1, . . . , an is denoted by an; the subscript can be omitted

3 Although the latter firmly rooted our system semantically, it plays no role when implementing,
so we will skip its details here. Suffice that say that, because the language of FJ is first order,
we had to define derivation reduction and show it strongly normalisable in order to prove the
approximation result and the normalisation results that follow as a consequence.

4 In the sense that typeable expressions can get stuck at runtime by reducing to an expression
containing stupid casts.

3

when the exact number of elements in the sequence is not relevant. We write a ∈ an
whenever there exists some i ∈ n such that a = ai. The empty sequence is denoted by
ε, and concatenation on sequences by s1 · s2.

We use familiar meta-variables in our formulation to range over class names (C and
D), field names (f), method names (m) and variables (x).5 We distinguish the class name
Object (which denotes the root of the class inheritance hierarchy in all programs) and
the self variable this, used to refer to the receiver object in method bodies.

Definition 1 (FJ �C Syntax). An FJ � C program P consist of a class table CT , comprising
the class declarations, and an expression e to be run (corresponding to the body of the
main method in a real Java program). Programs are defined by the grammar:

e ::= x | this | new C(e) | e.f | e.m(e)
fd ::= C f;
md ::= D m(C1 x1, . . . , Cn xn) {return e;}
cd ::= class C extends C’ { fd md} (C �= Object)
CT ::= cd

P ::= (CT ;e)

The remaining concepts that we will define below are dependent (or, more precisely,
parametric) on a given class table. For example, the reduction relation we will define
uses the class table to look up fields and method bodies in order to direct reduction
and our type assignment system will do likewise. Thus, there is a reduction relation
and type assignment system for each program. However, since the class table is a fixed
entity (i.e. it is not changed during reduction, or during type assignment), as usual it
will be left as an implicit parameter in the definitions that follow.

As we have just mentioned, the sequence of (class) declarations that comprises the
class table induces a family of lookup functions. In order to ensure that these functions
are well defined, we only consider programs which conform to some sensible well-
formedness criteria: that there are no cycles in the inheritance hierarchy, that each class
is declared only once, that fields and methods in any given branch of the inheritance
hierarchy are uniquely named, and that method definitions correspond to closed func-
tions. An exception is made to allow method override, i.e. the redeclaration of methods,
providing that only the body of the method differs from the previous declaration.

We define the following functions to look up elements of class definitions.

Definition 2 (Lookup Functions). The following lookup functions are defined to ex-
tract the names of fields and bodies of methods belonging to (and inherited by) a class.

1. The following retrieve the name of a class, method, or field from its definition:

CN (class C extends D{fd md}) = C

MN (C m(x).e;) = m

FN (C f;) = f

2. By abuse of notation, we will treat the class table, CT , as a partial map from class
names to class definitions:

5 We use roman teletype font for concrete FJ �C-code, and italicised teletype font for meta-code.

4

CT (C) = cd (CN (cd) = C, cd ∈ CT)

3. The list of fields belonging to a class C (including those it inherits) is given by:

F (Object) = ε
F(C) = F (C’) ·fn (CT (C) = class C extends C’ {fdn md},

FN (fdi) = fi (i ∈ n))

4. The list of methods belonging to a class C is given by:

M(Object) = ε
M(C) = M(C’) ·mn (CT (C) = class C extends C’ {fdn md},

MN (mdi) = mi (i ∈ n))

(notice that method names can appear more than once in M(C)).
5. The function Mb, given a class name C and method name m, returns a tuple (x,e),

consisting of a sequence of the method’s formal parameters and its body:

Mb(C,m) = (xn,e) (CT (C) = class C extends C’ {fd md}
& C0 m(C1 x1, . . . ,Cn xn) {return e;} ∈ md)

Mb(C,m) = Mb(C’,m) (CT (C) = class C extends C’ {fd md}
& m not in md)

6. The function fv (e) returns the set of variables used in e.

Substitution of expressions for variables is the basic mechanism for reduction in
our calculus: when a method is invoked on an object (the receiver) the invocation is
replaced by the body of the method that is called, and each of the variables is replaced
by a corresponding argument, and this is replaced by the receiver.

Definition 3 (Reduction). 1. A term substitution

S = 〈this �→e’,x1 �→e1, . . . ,xn �→en 〉

is defined in the standard way as a total function on expressions that systemati-
cally replaces all occurrences of the variables xi and this by their corresponding
expression. We write eS for S(e).

2. The single-step reduction → is defined by:

new C(en).fi → ei (F(C) = fn, i ∈ n)
new C(e).m(e’n) → eS (Mb(C,m) = (xn,e), where S =

〈this �→ new C(e), x1 �→e’1, . . . , xn �→e’n 〉)

We call the left-hand term the redex (reducible expression) and the right hand the
contractum. As usual, we define →∗ as the pre-congruence generated by →.

The nominal system as presented in [15], adapted to our version of Featherweight
Java, is defined as follows.

5

(NEW) :
Γ � e i : C i (∀i ∈ n)

(F (C) = f & FT (C,f i) = D i & C i <: D i (∀i ∈ n))
Γ � new C(e) : C

(INVK) :
Γ � e : E Γ � e i : C i (∀i ∈ n)

(MT (E,m) = D→C & C i <: D i (∀i ∈ n))
Γ � e.m(e) : C

(VAR) : Γ,x:C � x : C (FLD) :
Γ � e : D

(FT (D,f) = C)
Γ � e.f : C

(U-CAST) :
Γ � e : D

(D <: C)
Γ � (C)e : C

(D-CAST) :
Γ � e : D

(C <: D, C �= D)
Γ � (C)e : C

(S-CAST) :
Γ � e : D

(C �<: D, D �<: C)
Γ � (C)e : C

Fig. 1. Type assignment rules for the nominal system for FJ �C

Definition 4 (Member type lookup). The field table FT and method table MT are
functions which return type information about the elements of a given class in an exe-
cution. These functions allow us to retrieve the types of any given field f or method m
declared in a particular class C: FT (C,f) ={

D (CT (C) = class C extends C’ {fd md }, D f ∈ fd)
FT (C’,f) (CT (C) = class C extends C’ {fd md }, f not in fd)

MT is defined similarly: MT (C,m) =

Cn→D (CT (C) = class C extends C’ {fd md },
D m(C x) {e } ∈ md)

MT (C’,m) (CT (C) = class C extends C’ {fd md }, m not in md)
Notice both are not defined on Object.

Nominal type assignment in FJ � C is a relatively easy affair, and more or less guided
by the class hierarchy.

Definition 5 (Nominal type assignment for FJ �C [15]). 1. The sub-typing relation on
class types is generated by the extends construct, and is defined as the smallest
pre-order satisfying: if class C extends D {fd md} ∈ CT , then C <: D.6

2. Statements are pairs of expression and type, written as e : C; contexts Γ are defined
as sets of statements of the shape x:C, where all variables are distinct, and possibly
containing a statement for this.

3. Expression type assignment for the nominal system for FJ is defined through the
rules given in Figure 1, where (VAR) is applicable to this as well.

4. A declaration of method m is well typed in C when the type returned by MT (m,C)
determines a type assignment for the method body.7

(METH) :
x:C,this:C � eb : D

E m(C x) { return eb; } OK IN C

(MT (m,D) = C→E, D <: E, class C extends D {· · ·})

5. Classes are well typed when all their methods are and a program is well typed when
all the classes are and the expression is typeable.

6 Notice that this relation depends on the class-table, so the symbol <: should be indexed by
CT ; as mentioned above, we leave this implicit.

7 Notice that, by the well-formedness criterion,eb has no other variables thanx, so all variables
are bound in a method declaration, thus avoiding dynamic linking issues.

6

(CLASS) :
md i OK IN C (∀i ∈ n)

class C extends D{fd; mdn} OK
(PROG) :

cd OK Γ � e : C

(cd;e) OK

Notice that in the nominal system, classes are typed (or rather type-checked) once, and
the types declared for their fields and methods are static, unique, and used at invocation.

As mentioned above, we have decided to not consider casts in our work; using a
cast is comparable to a promise by the programmer that the casted expression will at
run time evaluate to an object having the specified class (or a subclass thereof), and so
(for soundness) requires doing a run-time check of the shape

(C) new D(...) → new D(...) (D <: C)

Once this check has been carried out the cast disappears. Of course, for full program-
ming convenience, and to be able to obtain the correct behaviour in overloaded methods,
casts are essential.

2 Semantic Type Assignment

In [19], we defined a type system for FJ � C that is loosely based on the strict intersection
type assignment system for the λ-calculus [1, 2] (see [4] for a survey) and is influenced
by the predicate system for the ς-calculus [6]; we showed that it satisfies both subject
reduction and subject expansion. Our types can be seen as describing the capabilities
of an expression (or rather, the object to which that expression evaluates) in terms of
(1) the operations that may be performed on it (i.e. accessing a field or invoking a
method), and (2) the outcome of performing those operations, where dependencies
between the inputs and outputs of methods are tracked using (type) variables. In this
way, our types express detailed properties about the contexts in which expressions can
safely be used. More intuitively, they capture a certain notion of observational equiv-
alence: two expressions with the same set of assignable types will be observationally
indistinguishable. Our types thus constitute semantic predicates.

Definition 6 (Semantic Types [19]). The set of intersection types (or types for short),
ranged over by φ, ψ, and its subset of strict types, ranged over by σ, τ are defined by
the following grammar (where ϕ ranges over a denumerable set of type variables, C
ranges over the set of class names, and ω is a type constant, the universal type and the
top element of the type hierarchy):

φ, ψ ::= ω | σ | φ ∩ ψ

σ ::= ϕ | C | 〈f :σ〉 | 〈m :(φ1, . . . , φn)→σ〉 (n ≥ 0)

Notice that our types do not depend on the types that would be assigned in the
nominal system; in fact, we could have presented our results for an untyped variant of
FJ, where all class annotations on parameters and return types are omitted. We have
decided not to do so for reasons of compatibility with other work, and to avoid leaving
the (incorrect) impression that our results would somehow then depend on the fact that
expressions carry no type information.

The key feature of types is that they may group information about many operations
together into intersections from which any specific one can be selected for an expression

7

(NEWM) :
this:ψ,x1:φ1, . . . ,xn:φn � eb : σ Π � new C(e) : ψ

Π � new C(e) : 〈m :(φn)→σ〉
(Mb(C,m) = (xn,eb), n ≥ 0)

(NEWF) :
Π � e1 : φ1 . . . Π � en : φn

(F(C) = f n, i ∈ n, σ = φi, n ≥ 1)
Π � new C(e n) : 〈f i :σ〉

(OBJ) :
Π � e1 : φ1 . . . Π � en : φn

(F(C) = f n, n ≥ 0)
Π � new C(e n) : C

(ω) : Π � e : ω

(INVK) :
Π � e : 〈m :(φn)→σ〉 Π � e1 : φ1 . . . Π � en : φn

Π � e.m(e n) : σ
(FLD) :

Π � e : 〈f :σ〉
Π � e.f : σ

(JOIN) :
Π � e : σ1 . . . Π � e : σn

(n ≥ 2)
Π � e : σ1 ∩ . . . ∩ σn

(VAR) : (φ � σ)
Π,x :φ � x : σ

Fig. 2. Type assignment rules for the semantical system for FJ �C

as demanded by the context in which it appears. In particular, an intersection may com-
bine two or more different (even non-unifiable) analyses of the same field or method.
Types are therefore not records: records can be characterised as intersection types of the
shape 〈�1:σ1, · · ·, �n:σn〉where all σi are intersection-free, and all labels �i are distinct;
in other words, records are intersection types, but not vice-versa (see Definition 12).

We include a type constant for each class, which we can use to type objects which
therefore always have a type, like for the case when an object does not contain any
fields or methods (as is the case for Object) or, more generally, because no fields or
methods can be safely invoked. The type constant ω is a top (maximal) type, assignable
to all expressions and serves typically to type subterms that do not contribute to the
normal form of an expression. The following subtype relation facilitates the selection
of individual behaviours from an intersection.

Definition 7 (Subtype Relation). The subtype relation � is induced by the fact that
an intersection type is smaller than each of its components, and is defined is the smallest
preorder satisfying:

φ � ω φ ∩ ψ � φ φ ∩ ψ � ψ φ � ψ & φ � ψ′ ⇒ φ � ψ ∩ ψ′

We write ∼ for the equivalence relation generated by �, extended by

σ ∼ σ′ ⇒ 〈f :σ〉 ∼ 〈f :σ′〉
∀i ∈ n [φ′

i ∼ φ′
i] & σ ∼ σ′ ⇒ 〈m :(φ1, . . . , φn)→σ〉 ∼ 〈m :(φ′

1, . . . , φ′
n)→σ′〉

We consider types modulo ∼; in particular, all types in an intersection are different
and ω does not appear in an intersection. It is easy to show that ∩ is associative and com-
mutative with respect to ∼, so we will abuse notation slightly and write σ1 ∩ . . . ∩ σn
(where n ≥ 2) to denote a general intersection, where all σi are distinct and the order is
unimportant. In a further abuse of notation, φ1 ∩ . . . ∩ φn will denote the type φ1 when
n = 1, and ω when n = 0.

Definition 8 (Type Contexts [19]). 1. A type statement is of the form e : φ, with e
as subject.

2. A context Π is a set of type statements with (distinct) variables as subjects; Π,x:φ
stands for the context Π ∪ {x:φ} (so then either x does not appear in Π or x:φ ∈
Π) and x:φ for ∅,x:φ.

8

3. We extend � to contexts: Π′ � Π ⇔ ∀x:φ ∈ Π ∃ φ′ � φx:φ′ ∈ Π′.
4. If Πn is a sequence of contexts, then

⋂
Πn is the context defined as follows:

x:φ1 ∩ . . . ∩ φm ∈
⋂

Πn, if and only if {x:φ1, . . . ,x:φm } is the non-empty set
of all statements in the union of the contexts that have x as subject.

We will now define our notion of type assignment.

Definition 9 (Semantic Type Assignment [19]). Semantical type assignment for FJ � C

is defined by the natural deduction system of Figure 2.

Notice that new objects like new C(· · ·) can be dealt with by both the rules (OBJ)
and (NEWM); then the context Π can be any. Moreover, we do not need any of the
information of the nominal type system here, other than that provided by the rule (OBJ).

We should perhaps emphasise that, as remarked above, we explicitly do not type
classes; instead, the rules (NEWF) and (NEWM) create a field or method type for an
object, essentially stating that this field or method is available, and what its current
type is. So method bodies are checked every time we need that an object has a specific
method type, and the various types for a particular method used throughout a program
need not be the same, as is the case for the nominal system (see Definition 5). So, in our
system, we would have, in principle, an infinite type for each class, which we cannot
establish when typing the class separately; rather, we let the context of each new D()

decide which type is needed, so the type for an occurrence of new D() is ‘constructed’
by need, and not from an analysis of the class.

The rules of our type assignment system are fairly straightforward generalisations of
the rules of the strict intersection type assignment system for LC to OO, whilst making
the step from a higher order to a first order language: for example, (FLD) and (INVK) are
analogous to (→E); (NEWF) and (NEWM) are a form of (→I); and (OBJ) can be seen as
a universal (ω)-like rule for objects only.

The only non-standard rule from the point of view of similar work for TRS and
traditional nominal OO-type systems is (NEWM), which derives a type for an object that
presents an analysis of a method that is available in that object. Note that the analysis
involves typing the method body and the assumptions (i.e. requirements) on the formal
parameters are encoded in the derived type (to be checked on invocation). However,
a method body may also make requirements on the receiver, through the use of the
variable this. In our system we check that these hold at the same time as typing the
method body (so-called early self typing; with late self typing, as used in [6], we would
check the type of the receiver at the point of method invocation). This checking of
requirements on the object itself is where the expressive power of our system resides.
If a method calls itself recursively, this recursive call must be checked, but – crucially
– carries a different type if a valid derivation is to be found. Thus only recursive calls
which terminate at a certain point (i.e. which can then be assigned ω or C, and thus
ignored) will be typeable in the system.

As is standard for intersection type assignment systems, our system is set up to
satisfy both subject reduction and subject expansion.

Theorem 10 (Subject reduction and expansion [19]). Let e → e’; then Π � e : φ
if and only if Π � e’ : φ.

9

Notice that, as usual, computational equality between expressions in FJ � C is unde-
cidable; as a consequence, through Theorem 10 we obtain that type assignment in our
system is undecidable as well.

We have also shown (variants of) the characterisation of normalisation properties:

Theorem 11 ([19]). 1. Ife is a head-normal form then there exists a strict type σ and
type context Π such that Π � e : σ; moreover, if e is not of the form new C(en)

then for any arbitrary strict type σ there is a context such that Π � e : σ.
2. Π � e : σ if and only if e has a head-normal form.
3. If D :: Π � e : σ with D and Π ω-free then e has a normal form.

3 Curry type assignment

The nominal type system for Java is so far the accepted standard, but many researchers
are looking for more expressive type systems that deal with intricate details of object
oriented programming and in particular with side effects. It will be clear that through the
system we presented above, we propose a different path, an alternative to the nominal
approach. We illustrate the strength of our approach in this section by presenting a
basic (decidable) functional system, that allows for us to show a preservation result with
respect to a notion of Curry type assignment for CL. This basic system is based on a true
restriction of our semantical type system; the restriction consists of removing the type
constant ω as well as intersection types from the type language, but not completely: we
will still allow for types to be combined as by rule (JOIN) above, but only if the labels
involved are different: the intersection types we allow, thereby, correspond to records.
The additional change we made was to type classes (and the class table and programs)
explicitly, and in that use a different approach when dealing with recursive classes.

It is worthwhile to point out that, above, the fact that we allow more than just record
types is crucial for the results: without allowing arbitrary intersections (and ω) we could
not show that type assignment is closed under conversion. The undecidability of type
inference in our type assignment system follows as a consequence of the conversion
result shown in the previous section. Thus, to be of practical use for program analysis
we must restrict the type assignment system in a decidable fashion.

The notion of the type assignment system we present here is based on Curry’s type
system for CL (or simply-typed LC), and is inspired by Milner’s system for ML [16]. As
such, it is not a true restriction of the system we defined above, and therefore different
from the Curry system we presented in [19]. However, we can show that our encoding
of CL into FJ � C (Section 3) preserves typeability; this is mainly because CL is a notion of
computation defined without recursion. The basic approach of our restriction is to only
assume a single behaviour for each element of a program - that is, we remove inter-
sections. So, for example, when deriving a type for a method each argument and each
field of the receiver may only have one type. While this may seem overly restrictive,
we show that our system is expressive enough to type those programs that correspond
to computable functions, λ-terms typeable in Curry’s system of simple types.

We demonstrate the decidability of this restricted form of type assignment by first
showing that the system has a principal typings property, and then arguing that there is

10

a terminating algorithm which computes these typings. A principal typings property for
a type system states that for each typeable term there is a typing (an context-type pair)
which is most general, in the sense that all other typings assignable to that term can be
generated from it. Typeability is decidable, then, if there is a (terminating) algorithm
which computes whether a principal typing exists for any given term. In the latter half
of this section, we discuss the implementation of such an algorithm for our restricted
type assignment system, which we will now define.

Definition 12 (Curry types for FJ �C). 1. Curry (object) types for FJ are defined by:

σ, τ ::= φ | 〈f1:σ, . . . , fn:τ, m1:(α)→β, . . . , mk:(γ)→δ〉 (n + k ≥ 1)

2. We will call a type of the shape 〈f:σ〉 a field type, one of the shape 〈m:(α)→β〉 a
method type, and 〈· · ·〉 with 2 or more components a record type and let ρ range
over those. We write � for arbitrary labels and, by abuse of notation, will also use
〈�:σ〉 to represent 〈m:σ〉, even though in 〈m:(α)→β〉, the structure (α)→β is not a
type. We write 〈�:σ〉 ∈ ρ (or � ∈ ρ) when �:σ occurs in ρ, and assume that all labels
are unique in records.

3. We call two types ρ and ρ′ compatible when: if 〈�:σ〉 ∈ ρ and 〈�:σ′〉 ∈ ρ′, then
either: σ and σ′ are compatible types, or σ = σ′.

4. We define the operator � (join) on types by: ρ1�ρ2 is the type composed out of the
union of two compatible types, defined as: 〈�:σ〉 ∈ ρ1�ρ2 if and only if either:

– 〈�:σ〉 ∈ ρ1 and � �∈ ρ2; or
– 〈�:σ〉 ∈ ρ2 and � �∈ ρ1; or
– σ = σ1�σ2, with 〈�:σ1〉 ∈ ρ1, 〈�:σ2〉 ∈ ρ2 and σ1 and σ2 are compatible; or
– σ = σ1, with 〈�:σ1〉 ∈ ρ1 and 〈�:σ2〉 ∈ ρ2 and σ1 = σ2.

5. When we write a record type as 〈�:σ〉�ρ, then � �∈ ρ.

Notice that compatible records can have different labels, even distinct. Moreover, even
when we allow for the notation 〈m:σ〉 for a method type, then σ is never a record type:
we can only derive those for variables, fields, and objects; see Definition 18. As an
example of compatible types, consider 〈f1:〈f2:σ,f3:τ〉〉 and 〈f1:〈f3:τ,f4:ρ〉〉; on the
other hand, 〈f1:〈f2:σ,f3:τ〉〉 and 〈f1:〈f3:µ,f4:ρ〉〉with τ �= µ are not compatible.

Definition 13 (Curry contexts and environments). 1. A Curry context is a map-
ping from term variables (including this) to Curry types.

2. We call two contexts Γ1 and Γ2 compatible whenever: if x:σ ∈ Γ1 and x:τ ∈ Γ2,
then σ and τ are compatible record types.

3. The operation of � can be extended to compatible contexts as follows:

Join Γ,x:σ Γ′,x:τ = (Join Γ Γ′),x:σ�τ

Join Γ,x:σ Γ′ = (Join Γ Γ′),x:σ (x �∈ Γ′)
Join ∅ Γ′ = Γ′

4. An environment E is a mapping from class names to types (normally records).

Notice that compatible contexts can have different variables, even distinct; but even if a
variable appears in both, the labels in its types can be different as well.

The operation of substitution, which replaces type variables with types (and type
variables with simple types), allows one type (or record) to be generated from another.

11

(NEWr) :
∅; E ,C :ρ � e i : σi (i ∈ n)

(〈f:σi〉 ∈ ρ)
Γ; E ,C :ρ � new C(e) : ρ

(VAR) : Γ,x:σ; E � x : σ

(NEWc) :
∅; E ,C :ρ � e i : σi (i ∈ n)

(〈f:σi〉 ∈ S ρ)
Γ; E ,C :ρ � new C(e) : S ρ

(PROJ) :
Γ; E � e : ρ

(〈�:σ〉∈ ρ)
Γ; E � e : 〈�:σ〉

(INVK) :
Γ; E � e : 〈m:(σn)→σ〉 Γ; E � e i : σi (i ∈ n)

Γ; E � e.m(e i) : σ
(FLD) :

Γ; E � e : 〈f:σ〉
Γ; E � e.f : σ

(CT) :

this:ρ,x :σn1 ; E ,C :ρ � e1 : τ1 (Mb(C,m1) = (xn1 ,e1)) · · ·
this:ρ,x:σnm ; E ,C :ρ � em : τm (Mb(C,mm) = (xnm ,em)) E ,C:ρ � CT : �

E ,C:ρ � class C extends C’ {fd md } ; CT : �
(ρ = 〈f:φn,m1:(σn1)→τ1, . . . , mm :(σnm)→τm〉, F (C) = f n, M(C) = mm)

(ε) : Π � ε : � (PROG) :
E � CT : � Γ; E � e : σ

Γ; E � (CT ,e) : σ

Fig. 3. Type assignment rules for the Curry type system for FJ �C

Definition 14 (Substitution). 1. The type substitution 〈ϕ �→ σ〉, which is a function
from types to types, is defined as follows:

(ϕ �→σ) ϕ = σ
(ϕ �→σ) ϕ′ = ϕ′ ϕ �= ϕ′

(ϕ �→σ) 〈f :σ′〉 = 〈f :(ϕ �→σ) σ′〉
(ϕ �→σ) 〈m :σn→σ′〉 = 〈m :((ϕ �→σ) σ1, . . . , (ϕ �→σ) σn)→(ϕ �→σ) σ′〉

The extension to records (ϕ �→σ) ρ is defined as can be expected.
2. If S1 and S2 are substitutions, then so is S2◦S1 where (S2◦S1) σ = S2 (S1 σ)); we

write Sn for Sn◦· · ·◦S1.
3. S Γ = {x:S σ | x:σ ∈ Γ}.
4. Id denotes the identity substitution.
5. For two types σ1 and σ2, if there exists a substitution S such that S σ1 = σ2 then we

say that σ2 is an instance of σ1.
6. We say that a type variable is fresh if it does not occur in any type we are consider-

ing at that moment; we also say that a fresh instance of σ is the type created out of
σ by substitution each type variable in σ by a fresh one.

Simple type assignment is defined through:

Definition 15 (Curry type assignment for FJ �C). Curry type assignment for FJ � C-ex-
pressions is defined through the rules in Figure 3.

Notice that judgements depend not only on contexts, but also on environments; the first
six rules type expressions, whereas the others deal with the class table and the program.

Rule (CT) comes in place of the rules deriving OK for the nominal system. It checks
the occurrence of C:ρ in the environment for class C. By using this:ρ when typeing
the methods, it insists that the types derived for the methods and fields in a class are the
same as used for the receivers; also rule (NEWr) is used for occurrences of new C(e) in-
side the definition ofC which insists that the same record type is used for the ‘recursive’
instances of C as well. This corresponds to the usual way of dealing with recursion as in

12

ML’s rule (fix) (note that OO languages have two types of recursion) and corresponds
to the nominal rule (CLASS) above.

Notice that ρ is not unique; the rule accepts any type that fits. Below, in the algorithm
PT , we will calculate the smallest; then when we use a type for C, as in rule (NEWc)
which is used for occurrences of new C(e) outside the definition of C, this type will
be a substitution instance of the one calculated. Thereby, this introduces a notion of
polymorphism into our system; each instance of class C will be typed differently, but
any of its types can be generated from E (C) by (projection and) substitution.

Also, (NEWr) and (NEWc), in combination with rule (PROJ), come in place of the rules
(NEWF) and (NEWM) of the semantical system. We could have removed the separation
of the two NEW rules and only used rule (NEWc); this would give a ‘Mycroft’-like way
of dealing with recursion, which is only semi-decidable, rather than a ‘Milner’-like way
as we do now; it could be used for a type-check system, however.

Note also that rules (ε) and (CT) checks the typeability of a class table, and rule
(PROG) specifies how to type a FJ � C program.

We can show that type substitution is sound for expressions.

Theorem 16. For all substitutions S, if Γ; E � e : σ then S (Γ; E) � e : S σ.

We will now show that simple type assignment has a principal typings property. At
the heart of type inference lies the problem of unification - finding a common instance
of two types; since we deal with records, we will also need to join those, after we have
made them compatible through unification.

Definition 17 (Type Unification). The operation of unification is defined on types,
and extended to contexts as follows:

1. The function Unify, which takes two simple types and returns a substitution, is
defined by cases through:

Unify ϕ ϕ′ = (ϕ �→ϕ′)
Unify ϕ σ = (ϕ �→σ) (ϕ not in σ)

Unify σ ϕ = (ϕ �→σ) (ϕ not in σ)

Unify 〈f :σ〉 〈f :α〉 = Unify σ α

Unify 〈m :(σn)→τ〉 〈m :(αn)→β〉 = Sn
where S1 = Unify τ β

Si+1 = Unify (Si σi) (Si αi) (i ∈ n−1)

These are the cases where unification is defined, i,e, where either a substitution is
created, or unification fails (when ϕ occurs in σ in the second and third case). This
implies that no action is taken when unifying two method types that have different
method names; rather, those are joined in a record.

2. On records, unification is defined through:

Unify 〈�:σ〉�ρ 〈�:τ〉�ρ′ = S2◦S1
where S1 = Unify σ τ

S2 = Unify (S1 ρ) (S1 ρ′)
Unify 〈�:σ〉�ρ ρ′ = Unify ρ ρ′ (� �∈ ρ′)

13

3. Unification can be extended to contexts as follows:

Unify Γ,x:σ Γ′,x:τ = S′ ◦S
where S = Unify σ τ

S′ = Unify (S Γ) (S Γ′)
Unify Γ,x:σ Γ′ = Unify Γ Γ′ (x �∈ Γ′)
Unify ∅ Γ′ = Id

4. By abuse of notation, we will allow also the unification of any number of types or
contexts ‘at one fell swoop’, by defining

Unify σ1 σ2 . . . σn = Unify (S σ2) (S σ3) . . . (S σn) ◦ S
where S = Unify σ1 σ2

Notice that unification on records (as specified in the last two cases of the first part)
recurses on the number of types in the record, ending up with the unification of simple
types, which is dealt with in the first five cases.

It is easy to show that unification creates compatible contexts, which it is designed
to do; it is, however, not fully satisfactory for use in our principal typing algorithm,
since it does not always adequately checks that the ‘offered type’ of the argument is not
less specific that the ‘demanded type’ of the parameter of a method invocation in terms
of labels that occur. For example, as can be seen in the algorithm, for the expression
e.m(e’), it can be that we infer that the principal type of e is 〈m:〈f:σ,f′:σ′〉→ρ〉, and
the principal type of e’ is 〈f:τ〉. Assuming σ and τ are unifiable,

Unify 〈m:〈f:σ,f′:σ′〉→ρ〉〈m:(〈f:τ〉)→ϕ〉

would succeed; however, there is no guarantee that e’ has type 〈f′:τ′〉 as well.
We could have amended the unification algorithm, but that would have made it a

great deal more intricate. Rather, in the principal typing algorithm, we add an additional
test that checks if the offered type matches the demanded type, by checking that the
labels in the demanded type all occur in the offered type. This implies, of course, that
type assignment can fail not just because unification fails.

Using the concepts of substitution and unification, we can now define what principal
typings are for our system. Since our types express information about fields and meth-
ods, and since objects may have many different fields and methods (each with their own
unique behaviours), our principal types must actually be records. This makes defining
the principal typings somewhat complicated, as can be seen below.

Also, we in fact calculate the principal typing for a program, by traversing the class
table, building up the environment that contains the types for the classes, and type the
final expression in that environment.

Definition 18 (Principal Typing). 1. A typing is a pair 〈Γ ; σ〉 of a context (includ-
ing this) and a type.

2. The function PT (principal typing), from expressions and environments to typings
and environments, is defined inductively as follows:

14

PT (x; E) = 〈x:ϕ ; ϕ〉 ; E (ϕ fresh)

PT (this; E) = 〈this:ϕ ; ϕ〉 ; E (ϕ fresh)

PT (e.f; E) = S 〈Γ ; ϕ〉 ; S E ′

where PT (e; E) = 〈Γ ; ρ〉 ; E ′

S = Unify 〈f:ϕ〉 ρ (ϕ fresh)
PT (e.m(en); E0) = S2 〈Γ�Γ1�· · ·�Γn ; ϕ〉 ; S2 En+1

where PT (e; E0) = 〈Γ ; ρ〉 ; E1
PT (ei; Ei) = 〈Γi ; γi〉 ; Ei+1 (i ∈ n)
S1 = Unify 〈m:(γn)→ϕ〉 ρ (ϕ fresh,

all labels in σi in 〈m:(σn)→τ〉 ∈ ρ appear in γi)

S2 = Unify (S1Γ) (S1Γ1) · · · (S1Γn)

PT (new C(en); E1) = S′ ◦Sn〈Γ1�· · ·�Γn ; ρ〉 ; S′ ◦SnEn+1

where ρ =

{
E1 C (definition of C depends on this)
fresh instance of E1 C (otherwise)

PT (ei; Ei) = 〈Γi ; σi〉 ; Ei+1 (i ∈ n)
Si = Unify (Si−1 〈fi:σi〉) (Si−1 ρ) (i ∈ n, S0 = Id,

all labels fn appear in ρ)

S′ = Unify (SnΓ) (SnΓ1) · · · (SnΓn)

3. We use PT also for the function that calculates the principal type for a each class
definition in the class table, and builds the environment:

PT (ε : e; E) = PT (e; E)
PT (class C extends C’ {fdn mdm }, CT : e; E) = PT (CT : e; E ,C:ρ)

where PT (ebj
; Ej) = 〈xi:σi, this:αj ; τj〉 ; Ej+1

(∗)

Mb(C,m j) = (xi,ebj) ∈ md

E1 = E ,C:ϕ (ϕ fresh)
S = Unify αj (Em+1C) 〈f:ϕ,m:(σ)→τ〉
ρ = S αj � S (Em+1C)� S〈f:ϕ,m:(σ)→τ〉

(F(C) = f, ϕn fresh)

(∗) σi or αj are fresh variables whenever xi �∈ fv (ebj) or this does not occur in
ebj ; of course the assumption is here that all free variables in a method body are
mentioned in the parameters list: methods have no free variables. Notice that if
new C(en) occurs in ebj , then the type stored in the environment is taken itself,
rather than instantiated, so might be affected by the unifications that are calculated.

Notice that, in the case for PT (new C(en); E), we have to take a fresh instance of
the type calculated for C. We have stored the principal type for C into the environment
in PT (CT ; E) and need to access it when creating a new object; however, we have
to work from a copy: otherwise, we would change EC during the unification process,
making it change before a new access. Thereby, this operation introduces a notion of
polymorphism into our system; each instance of class C will be typed differently, but any

15

of its types can be generated from E C by (projection and) substitution; the substitutions
will be calculated by PT , as demanded by the context in which the object appears, and
depending on exactly what expressions it gets initialised with.

We can show the expected properties for PT :

Theorem 19 (Soundness of PT). If PT (e; E) = 〈Γ ; σ〉 ; E ′, then Γ; E ′ �C e : σ.

Theorem 20 (Completeness of PT). If Γ; E �C e : σ (where e is not part of a class
definition), then there exists a typing 〈Γ′ ; σ′〉 ; E such that PT (e; E) = 〈Γ′ ; σ′〉 ; E
and a substitution S such that S Γ′ ⊆ Γ, and σ = S σ′.

As an example of a program we can type, consider the following which constitutes
perhaps the simplest example of a term without head-normal form in OO:

class C extends Object {
C m() { return this.m(); }

}

This program has a method m which simply calls itself recursively, and new C().m()

loops:

new C().m() → this.m()[new C()/this] = new C().m()

so, in particular, new C().m() has no normal form, not even a head-normal form;
this correspond to the ML-program (fix x.x). Running PT returns C:〈m:()→ϕ〉 and
therefore running PT (new C().m(); E) gives (∅; ϕ) which is also the typing for
(fix x.x). Notice that, since new C().m() has no head-normal form, it is not ty-
peable in our intersection system, so we cannot show ‘Γ �C e : σ ⇒ Γ � e : σ’; the
same observation can be made with respect to type assignment for the λ-calculus and
ML.

4 OOCL

We will now relate this notion of type assignment to one from the world of functional
programming, by defining an encoding of Combinatory Logic [14] (CL) into FJ � C, and
showing that assignable types are preserved by this encoding.

Definition 21. Combinatory Logic consists of the function symbols S, K where terms
are defined over the grammar

t ::= x | S | K | t1 t2

and the reduction is defined via the rewrite rules:

K x y → x
S x y z → x z (y z)

16

class Combinator extends Object {
Combinator app(Combinator x) { return this; }

}
class K extends Combinator {

Combinator app(Combinator x) { return new K_1(x); }

}
class K_1 extends K {

Combinator x;

Combinator app(Combinator y) { return this.x; }
}
class S extends Combinator {

Combinator app(Combinator x) { return new S_1(x); }
}
class S_1 extends S {

Combinator x;
Combinator app(Combinator y) { return new S_2(this.x, y); }

}

class S_2 extends S_1 {
Combinator y;
Combinator app(Combinator z) { return this.x.app(z).app(this.y.app(z)); }

}

Fig. 4. The class table for Object-Oriented Combinatory Logic (OOCL) programs

CL can be seen as a higher-order TRS.
Our encoding of CL in FJ � C is based on a Curryfied first-order version of the system

above (see [7] for details), where the rules for S and K are expanded so that each
new rewrite rule has a single operand, allowing for the partial application of function
symbols. We model application, the basic engine of reduction in TRS, via the invocation
of a method named app. The reduction rules of Curryfied CL each apply to (or are
‘triggered’ by) different ‘versions’ of the S and K combinators; in our encoding these
rules are implemented by the bodies of five different versions of the app method which
are each attached to different classes representing the different versions of the S and K
combinators. In order to make our encoding a valid (typeable) program in full Java, we
have defined a Combinator class containing an app method from which all the others
inherit, essentially acting as an interface to which all encoded versions of S and K must
adhere.

Definition 22 ([19]). The encoding of Combinatory Logic (CL) into the FJ � C program
OOCL (Object-Oriented Combinatory Logic) is defined using the execution context
given in Figure 4 and the function ��·�� which translates terms of CL into FJ � C expres-
sions, and is defined as follows:

��x �� = x
��t1 t2 �� = ��t1 ��.app(��t2 ��)
��K�� = new K()
��S�� = new S()

We can show that the reduction behaviour of OOCL mirrors that of CL.

Theorem 23 ([19]). If t1, t2 are terms of CL and t1 →∗ t2, then ��t1 �� →∗ ��t2 �� in
OOCL.

17

Through this encoding - and the results we have shown above - we can achieve a
type-based characterisation of all (terminating) computable functions in OO. Since CL
is a Turing-complete model of computation, as a side effect we show that FJ � C is Turing-
complete. Although we are sure this does not come as a surprise, it is a nice formal
property for our calculus to have, and comes easily as a consequence of our encoding.

In addition, our type system can perform the same ‘functional’ analysis as ITD does
for LC and CL. This is illustrated by a type preservation result. We present Curry’s type
system for CL and then show we can give equivalent types to OOCL programs.

Definition 24 (Curry Type Assignment for CL [19]). 1. The set of simple types (also
known as Curry types) is defined by the grammar: A, B ::= ϕ | A→B .

2. A basis Γ is a mapping from variables to Curry types, written as a set of statements
of the form x:A in which each of the variables x is distinct.

3. Simple type assignment to CL-terms is defined by the following system:

(Ax) : (x:A ∈ Γ)
Γ �CL x : A (→E) :

Γ �CL t 1 : A→B Γ �CL t 2 : A

Γ �CL t 1t 2 : B

(K) : Γ �CL K : A→B→A (S) : Γ �CL S : (A→B→C)→(A→B)→A→C

The elegance of our approach is that we can now link types assigned to combinators
to types assignable to object-oriented programs. To show this type preservation result,
we need to define what the equivalent of Curry’s types are in terms of our FJ � C types. To
this end, we define the following translation of Curry types.

Definition 25 (Type Translation [19]). The function ��·��, which transforms Curry
types8, is defined as follows:

��φ�� = φ
��A→B�� = 〈app:(��A��)→��B��〉

It is extended to contexts as follows: ��Γ�� = {x:��A�� | x:A ∈ Γ}.

We can now show the type preservation results.

Theorem 26 (Preservation of Types (cf. [19])). 1. If Γ �CL t : A then ��Γ�� � ��t �� :
��A��

2. Let ECL be defined as: ECL S = ��(ϕ1→ϕ2→ϕ3)→(ϕ1→ϕ2)→ϕ1→ϕ3��
ECL K = ��ϕ1→ϕ2→ϕ1��

If Γ �CL t : A then ��Γ��; ECL �C ��t �� : ��A��.

Furthermore, since Curry’s well-known translation of the simply typed LC into CL
preserves typeability (see [8]), we can also construct a type-preserving encoding of LC
into FJ � C; it is straightforward to extend this preservation result to full-blown strict inter-
section types. We stress that this result really demonstrates the validity of our approach.

To conclude this section, we give some example derivations of OOCL programs in
our semantic system that illustrate our results; we could, of course, type these expres-
sion in our Curry system as well.

8 Note we have overloaded the notation ��·��, which we also use for the translation of CL terms
to FJ �C expressions.

18

..

..

(VAR)
this:〈x : ϕ1〉,y:ϕ2 � this : 〈x : ϕ1〉

(FLD)
this:〈x : ϕ1〉,y:ϕ2 � this.x : ϕ1

(VAR)
this:K,x:ϕ1 � x : ϕ1

(NEWF)
this:K,x:ϕ1 � new K1(x) : 〈x : ϕ1〉

(NEWM)
this:K,x:ϕ1 � new K1(x) : 〈app :(ϕ2) → ϕ1〉

(VAR)
x:ϕ1,y:ϕ2 � new K() : K

(NEWM)
x:ϕ1,y:ϕ2 � new K() : 〈app :(ϕ1) → 〈app :(ϕ2) → ϕ1〉〉

(VAR)
x:ϕ1,y:ϕ2 � x : ϕ1

..

..

.

(INVK)
x:ϕ1,y:ϕ2 � new K().app(x) : 〈app :(ϕ2) → ϕ1〉

(VAR)
x:ϕ1,y:ϕ2 � y : ϕ2

..

..

(INVK)
x:ϕ1,y:ϕ2 � new K().app(x).app(y) : ϕ1

..

..

(VAR)
this:〈x : ϕ〉,y:ω � this : 〈x : ϕ〉

(FLD)
this:〈x : ϕ〉,y:ω � this.x : ϕ

(VAR)
this:K,x:ϕ � x : ϕ

(NEWF)
this:K,x:ϕ � new K1(x) : 〈x : ϕ〉

(NEWM)
this:K,x:ϕ � new K1(x) : 〈app :(ω) → ϕ〉

(OBJ)
x:ϕ � new K() : K

(NEWM)
x:ϕ � new K() : 〈app :(ϕ) → 〈app :(ω) → ϕ〉〉

(VAR)
x:ϕ � x : ϕ

(INVK)
x:ϕ � new K().app(x) : 〈app :(ω) → ϕ〉

(ω)
x:ϕ � ��δδ�� : ω

..

..

..

..

(INVK)
x:ϕ � new K().app(x).app(��δδ��) : ϕ

(ω)
this:K1,x:ω � x : ω

(OBJ)
this:K,x:ω � new K1(x) : K1

(OBJ)
∅ � new K() : K

(NEWM)
∅ � new K() : 〈app :(ω) → K1〉

(ω)
∅ � ��δδ�� : ω

(INVK)
∅ � new K().app(��δδ��) : K1

where δ is the CL-term S (S K K) (S K K) – i.e. δδ has no head-normal form.
Fig. 5. Derivations for Example 27

Example 27. Figure 5 shows, respectively, (1) a derivation typing a strongly normal-
ising expression of OOCL; (2) an ω-safe derivation of a normalising (but not strongly
normalising) expression of OOCL; and (3) a non-ω-safe derivation deriving a non-
trivial type for a head-normalising (but not normalising) OOCL expression,

Conclusions & Future Work

We have considered a type-based semantics defined using an intersection type approach
for FJ. Our approach constitutes a subtle shift in the philosophy of static analysis for
class-based OO: in the traditional (nominal) approach, the programmer specifies the
class types that each input to the program (field values and method arguments) should
have, on the understanding that the type checking system will guarantee that the inputs
do indeed have these types.

In the approach suggested by our type system, the programmer is afforded expres-
sive freedom. Thanks the polymorphic character of our types and to type inference,
which presents the programmer with an ‘if-then’ input-output analysis of class con-
structors and method calls, if a programmer wishes to create instances of some par-
ticular class (perhaps from a third party) and call its methods in order to utilise some
given functionality, then it is then up to them to ensure that they pass appropriate inputs
(either field values or method arguments) that guarantee the behaviour they require.

19

We will reintroduce more features of full Java back into our calculus, to see if our
system can accommodate them whilst maintaining the strong theoretical properties that
we have shown for the core calculus. For example, similar to λµ [18], it seems natural
to extend our simply typed system to analyse the exception handling features of Java.

References

1. S. van Bakel. Complete restrictions of the Intersection Type Discipline. Theoretical Com-
puter Science, 102(1):135–163, 1992.

2. S. van Bakel. Intersection Type Assignment Systems. Theoretical Computer Science,
151(2):385–435, 1995.

3. S. van Bakel. Completeness and Partial Soundness Results for Intersection & Union Typing
for λµµ̃. Annals of Pure and Applied Logic, 161:1400–1430, 2010.

4. S. van Bakel. Strict intersection types for the Lambda Calculus. ACM Computing Surveys,
43:20:1–20:49, April 2011.

5. S. van Bakel. Completeness and Soundness results for X with Intersection and Union Types.
Fundamenta Informaticae, 121:1–41, 2012.

6. S. van Bakel and U. de’Liguoro. Logical equivalence for subtyping object and recursive
types. Theory of Computing Systems, 42(3):306–348, 2008.

7. S. van Bakel and M. Fernández. Normalisation Results for Typeable Rewrite Systems. In-
formation and Computation, 2(133):73–116, 1997.

8. S. van Bakel and M. Fernández. Normalisation, Approximation, and Semantics for Combi-
nator Systems. Theoretical Computer Science, 290:975–1019, 2003.

9. H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amster-
dam, revised edition, 1984.

10. H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the com-
pleteness of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.

11. T. Brus, M.C.J.D. van Eekelen, M.O. van Leer, and M.J. Plasmeijer. Clean - A Language for
Functional Graph Rewriting. In ICFP’86, LNCS 274, pp 364–368, 1987.

12. A. Church. A Note on the Entscheidungsproblem. Journal of Symbolic Logic, 1(1):40–41,
1936.

13. M. Coppo and M. Dezani-Ciancaglini. An Extension of the Basic Functionality Theory for
the λ-Calculus. Notre Dame journal of Formal Logic, 21(4):685–693, 1980.

14. H.B. Curry. Grundlagen der Kombinatorischen Logik. American Journal of Mathematics,
52:509–536, 789–834, 1930.

15. A. Igarashi, B.C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus for Java
and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.

16. R. Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and
System Sciences, 17:348–375, 1978.

17. E.G.J.M.H. Nöcker, J.E.W. Smetsers, M.C.J.D. van Eekelen, and M.J. Plasmeijer. Concur-
rent Clean. In PARLE’91, LNCS 506-II, pp 202–219, 1991.

18. M. Parigot. An algorithmic interpretation of classical natural deduction. LPAR’92, LNCS
624, pp. 190-201, 1992.

19. R.N.S. Rowe and S.J. van Bakel. Approximation Semantics and Expressive Predicate As-
signment for Object-Oriented Programming. In TLCA’11, LNCS 6690, pp 229–244, 2011.

20. C.P. Wadsworth. The relation between computational and denotational properties for Scott’s
D∞-models of the lambda-calculus. SIAM Journal on Computing, 5:488–521, 1976.

20

