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Abstract
We present a probabilistic subspace clustering
approach that is capable of rapidly clustering
very large signal collections. The signals are
modeled as drawn from a union of subspaces
and each signal is represented by a sparse com-
bination of basis elements (atoms), which form
the columns of a learned dictionary. The set of
sparse representations is utilized to derive the co-
occurrence matrix of atoms and signals, which
is modelled as emerging from a mixture model.
The subspace of each signal is chosen as the one
that maximizes the conditional probability of the
signal given each subspace. This operation is ob-
tained via the non-negative matrix factorization
(NNMF) of the co-occurrence matrix, which ex-
poses the conditional probability distribution of
all signals. Performance evaluation demonstrate
comparable clustering accuracies to state-of-the-
art at a fraction of the computational load.

1. Introduction
Subspace clustering is the unsupervised learning problem
of clustering a collection of signals drawn from a union
of subspaces, according to their spanning subspaces.
Subspace clustering algorithms can be divided into four
approaches: statistical, algebraic, iterative and spectral
clustering-based; see (Vidal, 2011) for a review. State-
of-the-art approaches such as Sparse Subspace Clustering
(SSC) (Elhamifar & Vidal, 2009), Low-Rank Represen-
tation (LRR) (Liu et al., 2010) and closed form solutions
of LRR (LRR-CFS) (Favaro et al., 2011) are spectral-
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clustering based and provide excellent performance for
face clustering and video motion segmentation tasks.
However, their complexity limits the size of the data sets
to ≈ 104 signals.
In this paper we address the problem of applying subspace
clustering to data collections of up to millions of signals.
This problem is important due to the following reasons: 1)
Existing subspace clustering tasks are required to handle
the ever-increasing amounts of data such as image and
video streams. 2) New subspace clustering based solutions
could be applied to applications that traditionally could
not employ subspace clustering, and require the processing
of large data sets. In the following we formulate the
subspace clustering problem, explain state-of-the-art al-
gorithms and highlight the main properties of our approach.

Problem Formulation. Let Y ∈ RN×L be a collec-
tion of L signals {yi ∈ RN}Li=1, drawn from a union of
K > 1 linear subspaces. The bases of the subspaces are
{Bk ∈ RN×dk}Kk=1 and {dk}Kk=1 are their dimensions.
The task of subspace clustering is to cluster the signals ac-
cording to their subspaces. The number of subspaces K
is either assumed known or estimated during the cluster-
ing process. The difficulty of the problem depends on the
following parameters: 1) Subspaces separation: the sub-
spaces may be independent1, disjoint2 or some of them may
intersect, which is considered the most difficult case. 2)
Signal quality: the collection of signals Y may be cor-
rupted by noise, missing entries or outliers, thus, distorting
the true subspaces structure.

1subspaces are independent if the dimension of their union
equals the sum of their dimensions.

2subspaces are disjoint if their intersection contains only the
null vector. Note that independent subspaces are disjoint, how-
ever, disjoint subspaces are not necessarily independent. Disjoint
subspaces are considered more difficult to cluster than indepen-
dent subspaces.
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LRR and SSC are similar algorithms that reveal the re-
lations among signals by finding a self-expressive repre-
sentation matrix W ∈ RL×L, and obtain subspace clus-
tering by applying spectral clustering to the graph in-
duced by W . Both algorithms include two stages: 1)
Find W such that Y ≃ YW , where diag(W ) = 0
for the SSC algorithm. 2) Construct the affinity matrix
B = |W | + |WT | and apply spectral clustering to the
graph defined by B. SSC forces W to be sparse by min-
imizing its l1 norm whereas LRR forces W to have low-
rank by minimizing its nuclear norm. SSC outperforms
RANSAC (Fischler & Bolles, 1981) and Agglomerative
Lossy Compression (Rao et al., 2008) whereas LRR out-
perform SSC, Local Subspace Affinity (Yan & Pollefeys,
2006) and Generalized-PCA (Ma et al., 2008). LRR and
SSC are restricted to moderate-sized data sets due to the
polynomial complexities of their L × L affinity computa-
tion stage and spectral clustering stage (which is O(L3)).
LRR-CFS provides closed-form solutions for noisy data
and reduces significantly the computational load of LRR.
However, the complexity of the spectral clustering stage re-
mains O(L3). The performance of LRR-CFS was reported
as comparable to SSC and LRR.

In this paper we propose a new approach that is built on
sparsely representing the given signals using a compact
learned dictionary. This helps in exposing the relations
among signals in such a way that leads to a much more ef-
ficient subspace-clustering method. The advantages of the
proposed approach are as follows: 1) Linear complexity in
the collection size L: each signal is represented by a dictio-
nary with M atoms, where M ≪ L, and the representation
is computed by the OMP algorithm (Pati et al., 1993). The
complexity of solving the representation of all signals is
O(qNML), where q ≪ M is the average cardinality of
the sparse representations. Subspace clustering is obtained
by NNMF of the co-occurrence matrix of atoms and sig-
nals, a stage with complexity that depends linearly in L. 2)
Immunity to noise: we employ the K-SVD (Aharon et al.,
2006) dictionary learning algorithm, which denoises the
the learned atoms, thus, improving clustering accuracy for
noisy signals collections (note that LRR and SSC utilize in
such cases the noisy signals as the dictionary).

Paper organization: Section II overviews sparse representa-
tions modeling. Section III presents the proposed approach
and section IV evaluates its performance.

2. Sparse Representation Modeling of Signals
Sparse representations provide a natural model for signals
that live in a union of low dimensional subspaces. This
modeling assumes that a signal y ∈ RN can be described
as y ≃ Dc, where D ∈ RN×M is a dictionary matrix and
c ∈ RM is sparse. Therefore, y is represented by a linear

combination of few columns (atoms) of D. The recovery of
c can be cast as an optimization problem:

ĉ = argmin
c

∥c∥0 s.t. ∥y −Dc∥2 ≤ ϵ, (1)

for some approximation error threshold ϵ. The l0 norm
∥c∥0 counts the non-zeros components of c, leading to
a NP-hard problem. Therefore, a direct solution of (1)
is infeasible. An approximate solution is given by ap-
plying the OMP algorithm, which successively approxi-
mates the sparsest solution. The dictionary D can be ei-
ther predefined or learned from the given set of signals, see
(Rubinstein et al., 2010) for a review. For example, the K-
SVD algorithm learns a dictionary by solving the following
optimization problem:

{D,C} = argmin
D,C

∥Y −DC∥2F s.t. ∀i ∥ci∥0 ≤ T0, (2)

where Y ∈ RN×L is the signals matrix, containing yi in
it’s i-th column. C ∈ RM×L is the sparse representation
matrix, containing the sparse representation vector ci in it’s
i-th column, and T0 is a maximal sparsity threshold. Once
the dictionary is learned, each one of the signals {yi}Li=1

is represented by a linear combination of few atoms. Each
combination of atoms defines a low dimensional subspace,
thus, we will exploit the fact that signals spanned by the
same subspace are represented by similar groups of atoms.

3. The Proposed Approach
3.1. From Sparse Representations to Mixture Models

We propose to interpret the set of sparse representation
coefficients in C within a probabilistic framework: by
leveraging the aspect model (Hoffman & Puzicha, 1998)
to our problem, we associate with each occurrence of an
atom a ∈ {a1, ..., aM} in the representation of a signal
y ∈ {y1, ..., yL}, a latent variable s ∈ {s1, ..., sK} which
represents the subspace. We further explain an observed
pair (a, y) as follows: we first select a subspace with prob-
ability P (s). We further select an atom with probabil-
ity P (a|s) and finally we select a signal with probability
P (y|s). The joint probability P (ai, yj , sk) is given by3:

P (ai, yj , sk) = P (sk)P (yj |sk)P (ai|sk), (3)

from which we can obtain P (ai, yj) by marginalization:

P (ai, yj) =
K∑

k=1

P (sk)P (yj |sk)P (ai|sk). (4)

The mixture model (4) can be cast also in matrix form:

V
′
= W

′
H

′
, (5)

3We assume here that a and y are conditionally independent
given s, which is in accordance with the aspect model, leading to
p(y, a|s) = p(y|s)p(a|s).
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Algorithm 1 Probabilistic Sparse Subspace Clustering
Input: signals Y ∈ RN×L, # of clusters K, noise σ.

1. Dictionary Learning: Employ K-SVD to learn a
dictionary D ∈ RN×M from Y .

2. Sparse Coding: Find sparse C ∈ RM×L, such that
Y ≃ DC.

3. Co-occurrence Computation: V = |C|∑
ij |Cij | .

4. NNMF: {W,H} = argminW,H DKL(V ||WH) ⇒
P (yj |sk) = H̄kj , where H̄ equals to H after scaling
its rows to unit sum.

5. Clustering: k̂(yj) = argmaxk P (yj |sk), j = 1..L.

Output: cluster labels for all signals k̂(yj), j = 1..L.

where V
′ ∈ RM×L, W

′ ∈ RM×K and H
′ ∈ RK×L

are non-negative such that V
′

ij = P (ai, yj), W
′

ik =

P (sk)P (ai|sk) and H
′

kj = P (yj |sk). In the following we
discuss how to recover P (yj |sk) from the sparse represen-
tation coefficients and utilize it for subspace clustering.

3.2. Subspace Clustering via NNMF

NNMF decomposes a non-negative matrix V as the prod-
uct of two non-negative matrices such that V ≈ WH .
The work of (Gaussier & Goutte, 2005) proved that if V
is a joint probability matrix that arises from the model
(4) then a solution of NNMF that minimizes the KL-
divergence DKL(V ||WH) is equivalent to an Expectation-
Maximization solution for the mixture components of (4).
Therefore, we propose to treat the co-occurrence matrix of
atoms and signals V = |C|∑

ij |Cij | as emerging from the
model (4), apply to it NNMF and recover the conditional
probabilities from H . Subspace clustering is obtained by
maximizing the conditional probability per signal:

k̂(yj) = argmax
k

P (yj |sk) = argmax
k

H̄kj , (6)

where H̄ equals to H after scaling its rows to unit sum.
Algorithm 1 summarizes the proposed approach.

4. Performance Evaluation
Computation time and clustering accuracy of the proposed
approach were compared to LRR, SSC and LRR-CFS (us-
ing the algorithm of Lemma 1). The experiments were con-
ducted using a computer with Intel i7 Quad Core 2.2GHz
and 8GB RAM. Experiment 1: MATLAB computation
time comparison for clustering L signals in R128 is pro-
vided in Fig. 1, indicating linear complexity in L of the

proposed approach compared to polynomial complexity of
state-of-the-art. The reported durations include a dictio-
nary D128×128 learning stage from the L signals if L < 216

or 216 signals otherwise. Experiment 2: Clustering accu-
racy was evaluated for signals contaminated by zero mean
white Gaussian noise, in the Signal-to-Noise (SNR) range
of 5dB to 20dB. Per each experiment we generated a set
of L=1000 signals in R128 drawn from a union of 10 sub-
spaces, with equal number of signals per subspace. The
bases of all subspaces were chosen as random combina-
tions (non-overlapping for disjoint subspaces and over-
lapping for intersecting subspaces) of the columns of a
128 × 256 over-complete discrete cosine transform ma-
trix (Aharon et al., 2006). The coefficients of each signal
were randomly sampled from a Gaussian distribution of
zero mean and unit variance. Clustering accuracies, aver-
aged over 10 noise realizations, are presented in Fig. 2.
The results demonstrate comparable performance of the
proposed approach (M=128 learned atoms) to state-of-the-
art. Experiment 3: Fig. 3 demonstrates that by increas-
ing the data collection size (hence the dictionary training
set), clustering performance improves, with best results for
L/M > 100. Finally, Fig. 4 depicts an example of the con-
ditional probability matrix P (yj |sk) as obtained by NNMF,
demonstrating peak probabilities at the same subspace for
signals of the same cluster (the signals in the matrix Y were
ordered w.l.o.g. according to their subspace association).
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Figure 1. Computation time vs. the number of signals L, for
K=32 subspaces, signals’ dimension N=128 and M=128 atoms.

5. Conclusions
This paper presented a probabilistic subspace clustering ap-
proach that utilizes a mixture model in conjunction with
sparse representation. Performance evaluation demonstrate
comparable performance to state-of-the-art at a fraction of
the computational load. We further plan to explore the re-
lation between the number of atoms to clustering accuracy,
estimation methods for the number of clusters and appli-
cations to data corrupted by missing entries and outliers.
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Figure 2. Clustering accuracy for L=1000 signals in R128 drawn
from 10 subspaces with dimension 10: (a) disjoint subspaces. (b)
intersecting subspaces with 2 overlapping basis vectors.
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performance improves as L increases (M=128 atoms).
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