
IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, TBD 2014 1

Selective Segment Initialization: Exploiting
NVRAM to Reduce Device Startup Latency

Myungsik Kim, Jinchul Shin, and Youjip Won

Abstract—We propose Selective Segment Initialization (SSI)
to exploit NVRAM to reduce the device startup latency. SSI
locates a kernel binary image in byte-addressable NVRAM and
boots the system using this image, eliminating the need to load
it from storage. SSI also eliminates the process of decompressing
and relocating the OS kernel image in embedded linux system.
The key technical ingredients of SSI are precisely identifying
the kernel segments where contents are updated in the course of
booting and selectively reloading only these sections each time the
system reboots. The fresh copy of the sections can be maintained
in NVRAM, NAND flash, NOR flash, etc. SSI reduced the size
of the kernel binary image loaded from storage into memory by
90% and reduced the overall device startup time by 54%. This
approach can be used not only for cold boot (with NVRAM)
but also for warm boot, in which the contents of DRAM persist
across the system restart.

Index Terms—Selective Segment Initialization, Nonvolatile
Random Access Memory (NVRAM), Fast boot, Embedded Linux.

I. INTRODUCTION

REDUCING boot-up time is of critical concern for modern
embedded devices. This work exploits byte-addressable

NVRAM to reduce the startup latency of modern embed-
ded devices, e.g., smartphones and smart TVs. The recent
advancement of NVRAM opens up new avenues for im-
proving the performance [1] and reliability [2] of computing
devices. Adopting byte-addressable NVRAM, e.g., FRAM,
STT-MRAM, and Phase-Change RAM, makes it possible to
provide finer access granularity in existing block devices [3]
and to provide persistence in existing memory subsystems
[4]. This study focuses on reducing the startup latency using
NVRAM, a newly emerging memory device. The key technical
ingredient in this approach is the handling of the kernel’s
writable sections. In legacy computing paradigm, some sec-
tions are implicitly initialized by the loader, e.g., the data
section (.data), and some sections are explicitly initialized
by the program itself, e.g., global variables with initial values
(.bss). Since most sections of a kernel image are read-only,
locating the kernel image in the byte-addressable NVRAM
would eliminate the process of loading and relocating the
kernel binary image.

This work is sponsored by IT R&D program MKE/KEIT (No.10041608,
Embedded system Software for New-memory based Smart Device).

Myungsik Kim is with the Divison of Computer Sciences & Engineering,
Hanyang University, Seoul, Korea(e-mail: mskim77@hanyang.ac.kr).

Jinchul Shin is with SK planet, Seoul, Korea (e-mail: dawnsea@sk.com).
Youjip Won (corresponding author) is with the Divison of Computer

Sciences & Engineering, Hanyang University, 17 Haengdang-dong Sungdong-
gu, Seoul, Korea (e-mail: yjwon@hanyang.ac.kr).

Manuscript received October 11, 2013.

When the kernel image resides in NVRAM, the state
of each segment will persist and when segments maintain
their data in a persistent manner. the kernel reboots with its
variables retaining their previous values, the system can enter
an undefined state, eventually causing deadlock or some other
malfunction. This study identifies the segments that have been
“implicitly” initialized in the legacy startup phase and develops
a technique called “Selective Segment Initialization (SSI)” to
explicitly initialize only those segments. In SSI method, a
clean copy of the morphable sections is maintained separately.
When booting, the SSI overwrites the morphable segments
with their clean copies, bypassing the OS kernel loading
process. This approach eliminates the process of loading
and decompressing the kernel image while maintaining the
contents of the NVRAM during startup.

II. RELATED WORK

There are a number of approaches for reducing the startup
latency of computing devices [5]. Snapshot retains a dump
image of memory in the device’s storage and loads this image
during startup to initialize the device [6]. The problem comes
from snapshotting size that the more large size of memory
dumps to storage, the more time is needed for snapshot.

Execute-In-Place (XIP) is a technique that eliminates the
time required to load a binary image from storage by locating
it in byte-readable non-volatile memory (e.g., NOR flash) and
executing it directly from that location. XIP boot executes the
program directly from where it is stored, reducing boot-up
latency. However, while this approach reduces startup time,
the overall performance of the OS decreases due to the lower
speed of NOR compared to DRAM. In addition, NOR flash
cannot supply sufficient size compared to NAND in same cost.
Kexec is a rebooting technique whereby the operating system
directly reloads the kernel image, bypassing the hardware
initialization process [7]. It is widely used in kernel upgrade.

Recently, a number of techniques have been proposed for re-
ducing the startup time of embedded devices. Jo et al. applied
snapshot booting to Smart TVs [8]. They proposed to execute
two sets of tasks in booting concurrently so that tasks with
different resource consumption characteristics are executed in
parallel [9]. Baik et al. categorized snapshot images for Smart
TVs into two groups: the essential-snapshot-image, which is
required to initialize the device, and the add-on-image, which
can be loaded on demand [10]. SSI complements the existing
efforts. None of the existing works distinguishes the read/write
characteristics of individual kernel segments nor treats them
differently for NVRAM.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357347526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, TBD 2014 2

III. BACKGROUND
A. Starting Up a Device : Hardware Initialization

The system boot-up process in embedded systems consists
of switching the power on, loading the boot loader, loading
the OS kernel from storage, and transferring control to the
kernel. Fig. 1 illustrates booting process of mobile SoC, where
boot loader and kernel are stored in NAND flash. First, the
micro boot loader (U-Boot BL1) at NAND flash is loaded
into ms (Fig. 1(a)). The built-in 32 KB internal ROM code
(BL0), downloads the code from the initial 16 KB of NAND
into the internal RAM when selected NAND boot mode. The
micro boot loader is required because the internal RAM is too
small (96 KB) to accommodate the entire boot loader. The
micro boot loader then fetches the main body of the U-Boot
code into DRAM (Fig. 1(b)). Afterwards, the main boot loader
initializes the hardware to loads the kernel into DRAM (Fig.
1(c)).

Fig. 1. Image Copying Phase of Boot-up Process in Mobile SoC

B. Loading the Kernel Image
When the boot loader finishes initializing the hardware, it

loads the OS kernel image into memory. For an embedded
system, a binary image of the Linux kernel is normally stored
in compressed form, named zImage. Fig. 2 shows the struc-
ture of a compressed kernel which is consists of three com-
ponents: piggy.gz, misc.o and head.o. piggy.gz is
the compressed binary image of the OS kernel, misc.o is the
decompression module that is used to decompress piggy.gz,
and head.o contains initilization instructions at boot-up time.
To boot the kernel, the compressed image is first loaded into
main memory by the boot loader. Control is then passed to
head.o, which initializes the CPU. misc.o decompresses
the kernel binary image, piggy.gz. The decompressed ker-
nel image is then relocated to the appropriate memory address.
At this point, control passes to the relocated kernel, which
then initializes kernel objects, loads device drivers for various
devices, initializes peripherals, and starts the user service.

head.o(head.S) 
(arch/arm/boot/compressed)

(piggy.gz)

misc.o(misc.c)

head.o(head.S)
(arch/arm/kernel)

(piggy.o)

zImageImage 

.debug_*(

.text

.init

.data

.bss

vmlinux

…

Fig. 2. Making Compressed Kerenl Binary from Excutable Kernel Image

IV. SELECTIVE SEGMENT INITIALIZATION

A. Motivation
Over time, It is generally accepted that NOR flash is used

for code fetching memory in lightweight embedded system.
NOR-XIP is suitable solution for microcontroller because it
requires small amount of RAM with simple memory model
[11]. But NOR flash has a performance drawback, which is
slow access time compared to DRAM. Therefore, a modern
embedded linux system exploits Store and Download (SnD)
method with NAND (or eMMC) and DRAM instead of NOR-
XIP. SnD model use a compressed image to minimize a foot-
print of program in a storage system, so it needs steps for im-
age loading and decompression when booting. SnD is able to
provide faster instruction fetching speeds because the program
codes reside in DRAM called “shadowing”. Byte-addressable
NVRAM that can harbor data in a persistent manner with
access latency comparable to that of DRAM, but NVRAM
is also emerging technology that may difficult to be replaced
DRAM to NVRAM in short periods of time. Therefore, this
study explores a compromise on booting scheme even change
DRAM to NVRAM still having the benefit of SnD model.
A new scheme follows suit with conventional SnD method
without significantly changing the memory organization to
maximize usability. In this case, we can use the benefits of
SnD methods such as memory space saving using compressed
image and data integrity checking by decompression also. The
objective of this work is to relocate kernel image to byte-
addressable NVRAM and to reuse the relocated kernel image.
Thus, we eliminate the overhead of loading, decompressing,
and relocating the OS kernel.

B. Problem Assessment
While maintaining the kernel binary image in NVRAM and

eliminates a significant fraction of the entire booting procedure
such as loading, it raises new issues that require elaborate
treatment. In legacy booting procedure, some kernel sections
are implicitly initialized when the OS is loaded from storage.
If the kernel is maintained persistently in NVRAM and remove
loading steps at warm-boot procedure, these sections are
initialized only when the OS is loaded from the storage to
NVRAM. In subsequent warm-booting, The OS kernel starts
to execute from the previously stored state of these sections.
This may lead the system to enter an undefined state.

Fig. 3 illustrates this situation, in which lock is a global
variable used to protect the critical section. It resides in .data



IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, TBD 2014 3

and is initialized to 0 at compile time. When the kernel is
loaded into memory for the first time and lock equals 0, the
program exits a while loop controlled by this logical value. As
the kernel executes, it eventually sets the value of lock to 1.
If the kernel is restarted when the lock variable in NVRAM
retains the value of 1, the boot process will not be able to exit
the while loop.

lock = 0 lock = 1

…

While(lock);

lock = 1;

…

lock = 0;

…

While(lock);

lock = 1;

…

lock = 0;

.data

.text

Fig. 3. An Example of Boot Failure in NVRAM

C. Indentifying Reusable Kernel Segments

One of the key ingredients of SSI is to determine the re-
usability of individual sections. We analyzes the ELF image
of a Linux kernel. Based on the analysis, we determine
which portion of memory address in NVRAM needs to be
reset and which portion of memory addressed in NVRAM
can be re-used. objdump was used to analyze the section
organization of the kernel image. Table I shows the result that
all sections are read-only except .init, .data, and .bss.
.init.rodata contains the constant variables used for the
OS kernel initialization. A separate section (.bss) contains
global and static variables and a code segment that explicitly
initializes these variables. SSI uses the section map to partition
the kernel image and to determine the location (DRAM vs.
NVRAM) of the individual sections.

TABLE I
SECTION ANALYSIS OF THE KERNEL IMAGE

Section Attributes Address Size
(Hex) (KB)

.text.head CONTENTS, ALLOC, LOAD, READONLY, CODE c0008000 1.0

.init CONTENTS, ALLOC, LOAD, CODE c00083e0 167.0

.text CONTENTS, ALLOC, LOAD, READONLY, CODE c0032000 5008.2

.text.init CONTENTS, ALLOC, LOAD, READONLY, CODE c05160e4 0.2
__ksymtab CONTENTS, ALLOC, LOAD, READONLY, DATA c0517000 19.8
__ksymtab_gpl CONTENTS, ALLOC, LOAD, READONLY, DATA c051bf40 7.9
_ksymtab_strings CONTENTS, ALLOC, LOAD, READONLY, DATA c051dea8 60.0
__param CONTENTS, ALLOC, LOAD, READONLY, DATA c052ce80 4.4
.data CONTENTS, ALLOC, LOAD, DATA c052e000 164.1
.init.rodata CONTENTS, ALLOC, LOAD, READONLY, CODE c0557040 0.3
.bss ALLOC c0557140 248.2

D. Selective Segment Initialization

The legacy computing paradigm seprates the notion of
“memory” and “storage” and explicitly defines the tasks to
be done in the “loading” phase, e.g. intiailization of a certain
section. Compiler generates the binary so that a certain section
of the image is initialized each time it is loaded from storage
to memory. However, when “load” phase does not exist,

modification is needed in all or some of compiler, linker,
loader and operating system for ELF based binary file to be
still legitimate. Important constraint is to minimize the chances
in the existing software development tools, e.g. compiler,
loader, linker and OS to use NVRAM to harbor OS kernel.
In this work, we identify the sections in ELF which cannot
be re-used and to explicitly initialize these sections each time
the OS kernel starts. We call this technique Selective Segment
Initialization (SSI). A clean copy of each morphable section
can be stored in byte addressable NVRAM, or in block device,
e.g. NAND based storage. In booting with SSI, we identify
the sections with read/write (RW) permission; maintain the
clean copy of RW sections in separate location, and load
(or initialize) only the RW sections. When the clean copy of
RO sections remain in NVRAM, boot loader loads only RW
sections and therefore significantly reduces the time to load,
decompress and relocate the whole kernel segments. This work
can be used not only in NVRAM enabled systems but also in
legacy DRAM systems where DRAM contents remain at warm
boot session.

zImage)

.text

.init .data

Image)

.text

.init .data

.init .data

zImage)

Fig. 4. The Difference of Startup Procedure between Legacy and SSI Boot

Fig. 4 shows the difference of startup procedure between
legacy and SSI approach. In SSI restart, a fresh version of
.data and .init sections are explicitly initialized each time
when the OS kernel restarts. According to our experiment, the
compressed image of the OS kernel is 3,420 KB, whereas the
combined size of the .init and .data sections corresponds
to only 357 KB. Thus, SSI can reduce the amount of data to
be loaded from NAND storage to 1/10.

V. IMPLEMENTATION & EXPERIMENT

A. Implementation of Dual Mode Booting

At startup, the boot loader decides whether to “Cold Boot”
or “SSI Boot”. Cold boot occurs if it is explicitly chosen or if a
kernel image does not exist in NVRAM. The start address and
the size information are verified by examining the location of
the symbols in each section. SSI boot uses the uncompressed
.data and .init sections and links them with the existing
kernel sections in memory. SSI can also be used in soft-reset of
commodity smartphones. For this approach, a hot-key for soft-
reset and dedicated device driver for SSI Boot were developed
in an existing smartphone platform. Pseudocode 1 shows the
implementation of SSI boot function. For cold boot, the entire
kernel image is loaded from storage into memory and is



IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, TBD 2014 4

initialized. When SSI boot, the copying and decompressing
of kernel image phases can be eliminated by maintaining a
kernel image in NVRAM. When a reboot is triggered during
the booting process or when the kernel reboots due to a system
crash, the boot loader is set to perform a cold boot.

Pseudocode 1 Dual Mode Booting for SSI Boot
1: Start U-Boot
2: if Reset Status == Power Reset then . Cold Boot mode
3: Copy compressed kernel image (zImage)
4: Decompress kernel image
5: else . SSI Boot mode, Reset Status == Soft Reset
6: Copy uncompressed RW section (.init,.data)
7: end if
8: Start kernel_start()

Evaluation was conducted in a smartphone development
board with mobile SoC. S5PC100 mobile SoC which has
ARM Cortex-A8 core at 667MHz, 128 MB of NAND flash,
and 512 MB of DDR2-SDRAM are included. We imple-
mented SSI Boot scheme into the U-Boot firmware at early
boot stage on Linux kernel 2.6.29. For SSI enabled booting,
the modified U-Boot loads the clean copies of .init and
.data sections from NAND flash memory and overwrites
the respective sections with the clean version to NVRAM.
The read-only sections and the .bss section, which have
explicit initialization mechanisms, are reused. We use software
reset and SDRAM to emulate NVRAM. When the software
reset is pressed, the SSI enabled boot loader executes the
kernel image in NVRAM(emulated with SDRAM) after it
initializes the .data and .init sections. The software reset
was implemented by the GPIO device driver. If the reset button
is pressed, the button driver will generate the software reset
by writing 0xc100 at SWRESET register. When the software
reset is triggered, the Program Counter jumps to the system
reset vector and U-Boot firmware starts. U-Boot was modified
to identify the type of booting. If the reset is a power-on-reset,
U-Boot will load the full kernel image. Otherwise, U-Boot will
load only the .data and .init sections. The time spent at
each boot stage was measured by the internal PWM timer no.
3 in mobile SoC. The PWM timer was initialized with 1 ms
resolution at the beginning of the U-Boot. It measured the time
without running U-Boot or kernel debug service.

B. Results

The size of the compressed kernel image (zImage) was
3164 KB. The total size of morphable segments (.data and
.init) corresponded to 339 KB. With SSI, the amount of
data loaded from storage decreases by 89% from 3164 KB
to 339 KB. Table II and Fig. 5 shows the system boot times
for cold boot and SSI boot. The time was measured from
power-on to the end of the boot script. As a result, boot time
decreased by 54%. The time for U-Boot was the same for cold
boot and SSI boot. The time for loading the kernel image was
1,459 ms and 175 ms for cold boot and SSI boot, respectively.
SSI reduced the kernel copying time to by reusing read-only
sections that previously resided in NVRAM. In addition, SSI
boot does not needed the kernel decompression time.

TABLE II
TIME MEASUREMENT OF KERNEL BOOT

Step Cold Boot SSI Boot

Boot loader (U-boot) 402 ms 402 ms
Kernel Copy 1459 ms 175 ms

Kernel Decompression 491 ms 0 ms
Kernel Init 1540 ms 1540 ms

Total Time 3892 ms 2117 ms
Time Reduction in % N/A 54%

1

2

3

4

ColdBoot SSIBoot

T
im

e
 (

S
e

c)

Boot loader
Kernel Copy

Kernel Decompression
Kernel Init

Fig. 5. Comparison of Startup Time in Cold Boot and SSI Boot

VI. CONCLUSION

A new startup mechanism, called Selective Segment Ini-
tialization (SSI), was proposed to exploit byte-addressable
NVRAM to improve the device start-up latency. In SSI, re-
usable kernel sections are maintained in NVRAM and mor-
phable kernel sections are selectively initialized in an explicit
manner. This approach enables the legacy system to exploit
the non-volatility of byte-addressable NVRAM without signif-
icantly modifying the existing software stack. We implemented
SSI in an existing smartphone platform and achieved 54%
reduction in overall startup latency of linux kernel.

REFERENCES

[1] Y. Xie, “Modeling, architecture, and applications for emerging memory
technologies,” Design Test of Computers, IEEE, vol. 28, no. 1, pp. 44
–51, Jan.-Feb. 2011.

[2] A. Makarov, V. Sverdlov, and S. Selberherr, “Emerging memory tech-
nologies: Trends, challenges, and modeling methods,” Microelectronics
Reliability, vol. 52, no. 4, pp. 628 – 634, 2012.

[3] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better i/o through byte-addressable, persistent memory,” in
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, ser. SOSP ’09. New York, USA: ACM, 2009, pp. 133–146.

[4] A. Badam, “How persistent memory will change software systems,”
Computer, vol. 46, no. 8, pp. 45–51, 2013.

[5] C. Hallinan, “Reducing boot time in embedded linux systems,” Linux
Journal, vol. 2009, no. 188, p. 4, 2009.

[6] H. Kaminaga, “Improving linux startup time using software resume (and
other techniques),” in Linux Symposium, 2006, p. 17.

[7] A. Pfiffer, “Whitepaper: Reducing system reboot time with kexec,”
devresources. linuxfoundation., 4 2003.

[8] H. Jo, H. Kim, H.-G. Roh, and J. Lee, “Improving the startup time of
digital tv,” Consumer Electronics, IEEE Transactions on, vol. 55, no. 2,
pp. 721–727, 2009.

[9] H. Jo, H. Kim, J. Jeong, J. Lee, and S. Maeng, “Optimizing the startup
time of embedded systems: a case study of digital tv,” IEEE Transactions
on Consumer Electronics, vol. vol.55, no. no.4, pp. 2242–2247, 2009.

[10] K. Baik, S. Kim, S. Woo, and J. Choi, “Boosting up embedded linux
device: experience on linux-based smartphone,” in Proceedings of the
Linux Symposium, 2010, Conference Proceedings, pp. 10–18.

[11] T. Benavides, J. Treon, J. Hulbert, and W. Chang, “The enabling of an
execute-in-place architecture to reduce the embedded system memory
footprint and boot time,” Journal of computers, vol. 3, no. 1, pp. 79–89,
2008.


