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ABSTRACT
In the static bin packing problem, items of different sizes
must be packed into bins or servers with unit capacity in
a way that minimizes the number of bins used, and it is
well-known to be a hard combinatorial problem. Best-Fit is
among the simplest online heuristics for this problem. Moti-
vated by the problem of packing virtual machines in servers
in the cloud, we consider the dynamic version of this prob-
lem, when jobs arrive randomly over time and leave the sys-
tem after completion of their service. We analyze the fluid
limits of the system under an asymptotic Best-Fit algorithm
and show that it asymptotically minimizes the number of
servers used in steady state (on the fluid scale). The signifi-
cance of the result is due to the fact that Best-Fit seems to
achieve the best performance in practice.

1. INTRODUCTION
Cloud computing has gained enormous momentum re-

cently. Cloud customers outsource their storage and com-
putation needs to a cloud data center consisting of a large
number of servers. The computation/storage requirement of
a customer usually comprises a handful of virtual machines
(VMs), with certain amounts of resource requirement for
CPU, physical memory, etc, placed at different servers. The
VMs can share the same server if they do not violate the
capacity constraints of the server. For the purpose of scal-
ability and cost efficiency of the data center, it is necessary
to design optimal algorithms for placement of VMs in the
servers to minimize consumption of network resources.

In this paper, we consider a data center consisting of an
infinite number of servers. VM’s arrive randomly over time,
they are placed in the servers subject to capacity constraints,
and leave the system after some random service time. The
goal is to minimize the average number of used servers. The
VM placement algorithm has to be online, i.e., each VM
upon its arrival has to be placed in some server that can
accommodate it. The static one-dimensional version of this
problem is closely related to the classical bin packing prob-
lem: given a sequence of r objects Lr = a1, · · · , ar ∈ (0, 1],
pack them into bins of unit capacity so as to minimize the
number of used bins. The bin packing problem is known to
be NP-hard and many approximation algorithms have been
developed that can provide the optimal number of bins up
to an approximation factor. One of the simplest algorithms
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among these is the Best-Fit algorithm, in which objects are
packed in an online manner, with each object being placed
in the “tightest” bin (i.e., with the minimum residual ca-
pacity that can still accommodate the object), and, if no
such bin is found, the object is placed in a new bin. Despite
its simplicity, Best-Fit is known to perform well in practice.
It was first proved in [1] that under Best-Fit, in the worst
case, the number of bins used is asymptotically within a
factor 1.7 of the optimal number, as the list size r → ∞.
In the case that the objects are drawn from some general
distribution, the expected asymptotic performance ratio of
Best-Fit is strictly greater than one [2]. In this paper, we
consider the stochastic version of this problem when objects
arrive randomly over time and leave the system after com-
pletion of their service, as considered previously by Stolyar
and Zhong [3], [4], [5], which in turn is an infinite-server ver-
sion of a model originally proposed by Maguluri et al. [6].

2. SYSTEM MODEL
We assume that there are n different types of jobs. Jobs

of type i arrive according to a Poisson process with rate λir,
and remain in the system for an exponentially distributed
amount of time with mean 1/µi, with r > 0 being some scal-
ing parameter. First, consider the one-dimensional problem
where each job is represented by its size (scalar). There is
an infinite number of servers, each with (normalized) unit
capacity. Jobs of type i require a fraction si of the capac-
ity. Given the job profiles, there is a finite set of possible
server configurations, where each configuration is a vector
k = (k1, · · · , kn) with ki representing the number of type
i jobs in the server. The packing constraint imposes that∑n
i=1 siki ≤ 1. We use K to denote the set of all possible

configurations. Note that the number of jobs of type i in the
system in steady state is simply a Poisson random variable
with mean ρir, where ρi = λi/µi, regardless of placement
algorithm. Without loss of generality, we can normalize such
that

∑
i ρi = 1. For each k ∈ K, let Xk(t) be the number of

servers in configuration k at time t. Thus, the total number
of servers in use at time t is

∑
k∈K,k 6=0Xk(t). Note that r

controls the population size in the system and the asymp-
totic (expected) performance ratio is defined as r →∞.

3. ASYMPTOTIC BEST-FIT ALGORITHM
We define the level of configuration k as

uk =
∑
i

kisi. (1)

Thus 1−uk is the residual capacity of configuration k. Upon



a job arrival of type i at time t, it is placed in a server with
configuration k, k + ei ∈ K, with probability

P
(a)
k,i =

Xk(t) exp( 2si√
a
uk)∑

k̃ 6=0:k̃+ei∈KXk̃(t) exp( 2si√
a
uk̃) +X0(t)

(2)

where X0(t) = dexp(−1 − 1
a

)Y (t)e is a designated set of
empty servers (zero-servers), Y (t) is the total number of
jobs in the system, and a > 0 is some number specified by
the algorithm.

Let Pk,i(t) = lima→0 P
(a)
k,i (t). Also Define

K?i (t) = arg max
k:k+ei∈K,Xk(t)>0

uk, (3)

to be the set of available configurations with the maximum
level that can accommodate job i. Then, if K?i (t) 6= ∅,

Pk,i(t) =
Xk(t)∑
k̃∈K∗i (t)Xk̃

; if k ∈ K?i (t) (4)

Pk,i(t) = 0; otherwise. (5)

In other words, as a → 0, with high probability the algo-
rithm chooses one of the servers whose configuration is in
K?i uniformly at random, i.e., it places the job in one of
the “tightest” servers uniformly at random. If there is no
partially filled server that can accommodate the job, i.e.,
K?i (t) = ∅, the job is placed in a new server. Hence the
algorithm approaches the true Best-Fit as a→ 0.

Theorem 1. Let BF (a)(r) and OPT (r) be respectively
the number of servers used by the asymptotic Best-Fit al-
gorithm (with parameter a) and the optimal algorithm in
steady state. Then

lim
r→∞

E
[
BF (a)(r)

]
E
[
OPT (r)

] ≤ 1 +
(1 + e−1)∑

i ρisi

(√
a+ a log |K|

)
+a log

(
d 1

smin
e!
)
,

where smin = mini si and |K| is the size of the configuration
space. Note that the right-hand-side goes to 1 as a→ 0.

Theorem 1 suggests that Best-Fit is asymptotically optimal,
although a rigorous argument for the exchange of limits in a
and r is not trivial. This contrasts with the lack of through-
put optimality of Best-Fit in [6].

3.1 Extension to multidimensional packing
So far, we assumed that the job sizes are scalars. In gen-

eral, each job si could be a d-dimensional vector of resource
requirements, i.e., si = (si1, · · · , sid), where si` is the re-
quired fraction of resources of type `, 1 ≤ ` ≤ d from a
server. Although there is no standard definition of Best-Fit
in this case, it is possible to define a Generalized Best-Fit
where the level of each configuration k is defined as the
weighted sum of the levels of dimensions, i.e.,

uk =

d∑
`=1

w`
∑
i

kisi`. (6)

Here w`’s are some nonnegative fixed weights. For example,
memory is usually the main constraint in cloud servers [7],
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Figure 1: The number of servers used at each time:
Best-Fit vs. Random-Greedy

thus the cloud operator can put a larger weight for the mem-
ory. The job placement probabilities for the corresponding
asymptotic Generalized-Best-Fit is defined as

P
(a)
k,i (t) =

Xk(t) exp(
2

∑
` w`si`√
a

uk)∑
k̃ 6=0:k̃+ei∈KXk̃(t) exp(

2
∑

` w`si`√
a

uk̃) +X0(t)
(7)

Then our analysis and result for the scalar case is carried
over to the multi-dimensional case. At present, it is not
clear what the effect of weights w` is on the performance of
the algorithm.

4. SIMULATIONS
The goal of the simulations is to compare the perfor-

mances of Best-Fit and the Random-Greedy algorithm [5].
In the Random-Greedy algorithm, job is placed uniformly
at random in one of the feasible servers, independently of
their levels. The asymptotic version of Random-Greedy
is also optimal as r → ∞ as shown in [5]. However, we
expect that Best-Fit performs better for finite values of
r as it yields less capacity waste compared to Random-
Greedy. For simulations here, we considered the following
scalar job sizes: s1 = 0.8, s2 = 0.5, s3 = 0.3, s4 = 0.1, with
λ1 = 1, λ2 = 4, λ3 = 7, λ4 = 31, and r = 10. Mean ser-
vice times are all one. Figure 1 demonstrates the number
of servers used at each time. We have also plotted the per-
formance of the optimal algorithm which is allowed to do
repacking and solves an associated LP to find the right pack-
ing at each time a job arrives/departs. In this simulation,
Best-Fit gave a saving of more than 12% in terms of the av-
erage number of servers used, compared to Random-Greedy.

5. PROOF SKETCH OF THEOREM 1
Fluid Limits: Proceeding along the lines of Stolyar-

Zhong [5], we consider a sequence of systems indexed by

r. For each k ∈ K, let X
(r)
k (t) be the number of servers

in configuration k, starting from some initial state X(r)(0)
in the r-th system. The goal is to minimize the number of

used servers, scaled down by r. Let A
(r)
k,i(t) be the number

of arrivals that are placed in bins of configuration k, up to

time t. Similarly, let D
(r)
k,i (t) be the number of departures

from such bins up to time t. Let ḟ(t) = d
dt
f(t) denote the

time derivative of function f .

Proposition 1. Suppose 1
r
X(r)(0) → x(0), then every



sequence of r, has a subsequence such that

1

r
(X(r), A(r), D(r))→ (x, a, d), u.o.c,

along the subsequence. Further, at any regular point, (x, a, d)
satisfy the following fluid limit equations:

ẋk(t) = [
∑

i:k−ei∈K

ȧk−ei,i(t) +
∑

i:k+ei∈K

ḋk+ei,i(t)]

−[
∑

i:k+ei∈K

ȧk,i +
∑

i:k−ei∈K

ḋk,i] (8)

ȧk,i(t) = λip
(a)
k,i (t); ḋk,i(t) = xk(t)kiµi (9)

p
(a)
k,i (t) =

xk(t) exp( 2si√
a
uk)∑

k̃ 6=0:k̃+ei∈K xk̃(t) exp( 2si√
a
uk̃) + x0(t)

(10)

x0(t) = exp(−1− 1/a)y(t) (11)

y(t) = 1 +
∑
i

(yi(0)− ρi)e−µit (12)

In words, ȧk,i(t) and ḋk,i(t) in (9) are the rates of type i fluid
arrival and departure into/from configuration k. Equation
(8) is just an accounting identity for configuration k, where
the first bracket is the total arrival rate into servers of con-
figuration k and the second bracket is the total departure

rate out of configuration k. p
(a)
k,i (t) in (10) is the fraction of

fluid arrivals of type i that are placed in a server of config-
uration k. y(t) in (12) is the total number of jobs in the
system at the fluid limit. The details are omitted due to
space constraint.

Algorithm Analysis: Consider the strictly convex func-
tion

F (a)(x) =
∑
k

xk(1− abk −
√
au2

k) + a
∑
k

xk log xk, (13)

where bk = −
∑
i log(ki!) and uk is the level of configuration

k. Note that lima→0 F
(a)(x) =

∑
k xk = F (x). We show

that the fluid limit of the system under the asymptotic Best-
Fit converges to the optimal solution of the following static
optimization

min F (a)(x) (14)

s.t.
∑
k xkki ≥ ρi; ∀i (15)

xk ≥ 0; ∀k. (16)

The Lagrangian is given by

L(x, η) = F (a)(x) +
∑
i

ηi(ρi −
∑
k

xkki)

subject to xk ≥ 0, for all k ∈ K, and ηi ≥ 0 for all 1 ≤ i ≤
n. Solving for ∂L/∂xk = 0 yields xk = ck exp( 1

a

∑
i kiηi),

where

ck = exp(−1− 1

a
+ bk +

u2
k√
a

),

and x0 := exp(−1 − 1/a). By KKT, a pair (x, η) is the
optimal primal-dual solution if

ηi ≥ 0, xk ≥ 0, (17)

xk = ck exp(
1

a

∑
i

kiηi), (18)∑
k

xkki = ρi. (19)

It follows from the KKT conditions that the optimal x must
satisfy

xk+ei(ki + 1)µi = λip
(a)
k,i , (20)

where

p
(a)
k,i =

xk(ki + 1)
ck+ei
ck∑

k̃ 6=0:k̃+ei∈K
c

k̃+ei
c

k̃
xk̃(k̃i + 1) +

cei
c0
x0

. (21)

Notice that λip
(a)
k,i is the rate at which jobs of type i are

placed in servers of configuration k (on the fluid scale). Not-
ing that uk+ei − uk = si, and bk = −

∑
i log(ki!), it follows

that

ck+ei

ck
(ki + 1) = exp(

s2i√
a

) exp(
2si√
a
uk). (22)

Using (22) in (21), the term exp(
s2i√
a

) is independent of con-

figuration and canceled out from numerator and denomi-
nator. This is exactly the probability assignment used in
the asymptotic Best-Fit algorithm at equilibrium (t→∞).
Notice that the optimal x satisfies (20) and thus is the equi-
librium point of the fluid limit equations (8)-(12). This
proves that, starting from equilibrium, the asymptotic Best-
Fit algorithm minimizes the objective function F (a)(x(t)).
It remains to show that the fluid limits indeed converge
to the equilibrium (20). This follows from the arguments

of Stolyar-Zhong [5]. Essentially, F (a)(t) (for small values
of a) acts as a Lyapunov function for the system, i.e., if

x(t) 6= x, then d
dt
F (a)(x(t)) < 0. This shows that x(t) → x

(the optimal solution of the static optimization) as t→∞.
The statement of Theorem 1 then follows from standard ar-
guments for the weak limit of the associated sequence of
steady-state random variables and their uniform integrabil-
ity.
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