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(T,S)-BASED INTERVAL-VALUED INTUITIONISTIC FUZZY

COMPOSITION MATRIX AND ITS APPLICATION FOR

CLUSTERING

H. L. HUANG

Abstract. In this paper, the notions of (T, S)-composition matrix and (T, S)-

interval-valued intuitionistic fuzzy equivalence matrix are introduced where

(T, S) is a dual pair of triangular module. They are the generalization of
composition matrix and interval-valued intuitionistic fuzzy equivalence matrix.

Furthermore, their properties and characterizations are presented. Then a new

method based on α̃−matrix for clustering is developed. Finally, an example is
given to demonstrate our method.

1. Introduction

Atanassov [1] introduced the intuitionistic fuzzy set (IFS) which is characterized
by a membership function and a non-membership function. Then in [4] , Atanassov
and Gargov extended the notion of the IFS to the interval-valued intuitionistic
fuzzy set (IVIFS) whose membership function and non-membership function are
intervals. The IFSs and IVIFSs are also called double fuzzy sets and interval-
valued double fuzzy sets respectively in [10]. In the past few years, the IFS and
IVIFS have received much attention from researchers and have been applied in logic
programming, medical diagnosis, pattern recognition, decision making, clustering,
and other disciplines. Atanassov [2] and Deschrijver [9] introduced some relations
and operations of IVIFS. Intuitionistic fuzzy bounded linear operators were taken
into account by Narayanan [18]. Some authors [7, 22, 23, 24, 25, 26, 29, 30, 31,
34, 35, 36] proposed different methods for decision making under intuitionistic or
interval-valued intuitionistic fuzzy environment. The correlation coefficients of IFS
and IVIFS were investigated in [6, 13, 19, 27, 37] from different points of view.
IFS theory and IVIFS theory were also considered in the rough set theory and
had been used for attribute reduction [14, 40, 41]. By using L-fuzzy set theory
[11, 12], Coker [8] proved that fuzzy rough sets are intuitionistic L-fuzzy sets. In
Algebra, Borzooei et al. [5, 15, 20] studied different kinds of intuitionistic fuzzy
ideals. Topology of interval-valued intuitionistic fuzzy sets was defined by Mondal
and some of its properties were presented in [17].
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Although there are many researchs on IFSs and IVIFSs, the clustering technique
of IFSs and IVIFSs still at an initial stage [24, 28, 32, 33, 39]. Xu [24, 32] gave the
notion of interval-valued intuitionistic fuzzy equivalence matrix (IVIFEM) and then
presented a method for clustering IVIFSs. The operators involved in the papers
above are mainly

∧
and

∨
. In a previous paper [16], under the intuitionistic fuzzy

environment, we have generalized the operators
∧

and
∨

to t−norm and t−conorm
respectively, and improved the method proposed in [39]. On the other hand, if we
finally have a matrix whose elements are interval-valued intuitionistic fuzzy numbers
(IVIFNs) for clustering, the method in [32] can not be used directly. Therefore, we
discuss more general operators: triangular dual module, and provide a new method
for clustering IVIFSs.

The paper is organized as follows: In section 2, some basic concepts, relations, op-
erations and operators are reviewed. In section 3, the notions of (T, S)−composition
matrix and (T, S)−interval-valued intuitionistic fuzzy equivalence matrix are intro-
duced where (T, S) is a dual pair of triangular module. Then their properties are
studied. In section 4, a new method for clustering with interval-valued intuition-
istic fuzzy information is proposed. In section 5, an illustrative example is given.
Finally a conclusion is provided in section 6.

2. Preliminaries

Definition 2.1. [4] Let a Set X = {x1, x2, . . . , xn} be fixed, then an IVIFS Ã

over X is an object having the form: Ã = {< xi, µ̃Ã(xi), ν̃Ã(xi) > |xi ∈ X}
where µ̃Ã(xi) ⊆ [0, 1] and ν̃Ã(xi) ⊆ [0, 1] are intervals, and for every xi ∈ X,
supµ̃Ã(xi) + supν̃Ã(xi) ≤ 1.

Especially if infµ̃Ã(xi) =supµ̃Ã(xi) = β and infν̃Ã(xi)=supν̃Ã(xi) = γ, then the

IVIFS Ã reduces to an intuitionistic fuzzy set (IFS) [1]. Furthermore, if β + γ = 1,

then the IFS Ã reduces to a fuzzy set (FS) [38].
For convenience we denote an interval-valued intuitionistic fuzzy number (IV-

IFN) by α̃ = ([a, b], [c, d]) where [a, b] ⊆ [0, 1], [c, d] ⊆ [0, 1] and b+ d ≤ 1 (for more
details see [24]). Then the relationship for any two IVIFNs is defined as follows:

Definition 2.2. [24] Given two IVIFNs α̃i = ([ai, bi], [ci, di]) (i = 1, 2), then

(1) α̃1 ⊆ α̃2 iff a1 ≤ a2 and b1 ≤ b2 and c1 ≥ c2 and d1 ≥ d2;

(2) α̃1 = α̃2 iff a1 = a2 and b1 = b2 and c1 = c2 and d1 = d2;

(3) α̃1 ∩ α̃2 = ([a1 ∧ a2, b1 ∧ b2], [c1 ∨ c2, d1 ∨ d2]);

(4) α̃1 ∪ α̃2 = ([a1 ∨ a2, b1 ∨ b2], [c1 ∧ c2, d1 ∧ d2]).

Definition 2.3. [24] Let P̃ = (p̃ij)n×n be an n × n matrix. If all p̃ij (i, j =

1, 2, . . . , n) are IVIFNs, then we call P̃ an interval-valued intuitionistic fuzzy matrix
(IVIFM).

Definition 2.4. [24] Let P̃ = (p̃ij)n×n be an IVIFM, where p̃ij = ([aij , bij ], [cij , dij ])

i, j = 1, 2, . . . , n. If P̃ satisfies the following conditions:

(1) Reflexivity: p̃ii = ([1, 1], [0, 0]), i = 1, 2, . . . , n;
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(2) Symmetry: p̃ij = p̃ji, i.e., ([aij , bij ], [cij , dij ]) = ([aji, bji], [cji, dji]), i, j =
1, 2, . . . , n;

(3) Transitivity: P̃ ◦ P̃ ⊆ P̃ , i.e.,
n⋃
k=1

(p̃ik
⋂
p̃kj) ⊆ p̃ij , i.e.,

∨
k

(aik ∧ akj) ≤ aij ,∨
k

(bik ∧ bkj) ≤ bij ,
∧
k

(cik ∨ ckj) ≥ cij ,
∧
k

(dik ∨ dkj) ≥ dij ;

then we call P̃ an interval-valued intuitionistic fuzzy equivalence matrix (IVIFEM).

If P̃ only satisfies the conditions (1) and (2), then we call P̃ an interval-valued
intuitionistic fuzzy similarity matrix (IVIFSM).

Definition 2.5. [21] Mapping T : [0, 1]2 → [0, 1] is called a triangular norm, if
∀a, b, c, d ∈ [0, 1], the following conditions are true:

(1) T (0, 0) = 0, T (1, 1) = 1;

(2) if a ≤ c and b ≤ d, then T (a, b) ≤ T (c, d);

(3) T (a, b) = T (b, a);

(4) T (T (a, b), c) = T (a, T (b, c)).

Furthermore, ∀a ∈ [0, 1], T is a t-norm if T (a, 1) = a, T is a t-conorm if T (0, a) = a.

In this paper, T always denotes the t-norm and S denotes the t-conorm, they
have those properties:

Lemma 2.6. [21] ∀a, b ∈ [0, 1], we have

(1) 0 ≤ T (a, b) ≤ a ∧ b ≤ 1, that is T ≤ ∧ and T (0, a) = 0;

(2) 0 ≤ a ∨ b ≤ S(a, b) ≤ 1, that is ∨ ≤ S and S(a, 1) = 1.

Definition 2.7. [21] Let a ∈ [0, 1], a′ = 1− a is the complement of a, then T and
S is called a dual pair of triangular module, if T and S satisfy T (a, b)′ = S(a′, b′),
∀a, b ∈ [0, 1].

Throughout this paper, (T, S) denotes a dual pair of triangular module.

3. Main Results

Definition 3.1. Let α̃1 = ([a1, b1], [c1, d1]) and α̃2 = ([a2, b2], [c2, d2]) be any two
IVIFNs, we define the (T, S)-union and (T, S)-intersection of IVIFNs as follows:

(1) α̃1∩̇α̃2 = ([T (a1, a2), T (b1, b2)], [S(c1, c2), S(d1, d2)]);
(2) α̃1∪̇α̃2 = ([S(a1, a2), S(b1, b2)], [T (c1, c2), T (d1, d2)]).

Remark 3.2. When we choose T (a, b) = a∧ b and S(a, b) = a∨ b, then the (T, S)-
union and (T, S)-intersection of IVIFNs reduces to the union and intersection of
IVIFNs in [24] (See Definition 2.2).

With Definition 2.5, Definition 2.7 and Definition 3.1, we can have:

Theorem 3.3. The (T, S)-union and (T, S)-intersection of any two IVIFNs are
still an IVIFN.
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Proof. Let α̃1 = ([a1, b1], [c1, d1]) and α̃2 = ([a2, b2], [c2, d2]) be any two IVIFNs, we
only give the proof of α̃1∩̇α̃2, and α̃1∪̇α̃2 is analogous.

By a1 ≤ b1 and a2 ≤ b2, we have 0 ≤ T (a1, a2) ≤ T (b1, b2) ≤ 1. Analogously we
can have 0 ≤ S(c1, c2) ≤ S(d1, d2) ≤ 1.

From b1 + d1 ≤ 1 and b2 + d2 ≤ 1, we have S(d1, d2) ≤ S(1 − b1, 1 − b2).
Furthermore, S(1− b1, 1− b2) = S(b′1, b

′
2) = T (b1, b2)′ = 1− T (b1, b2). These imply

that T (b1, b2) + S(d1, d2) ≤ 1.
So α̃1∩̇α̃2 is an IVIFN. �

Theorem 3.4. Let α̃i = ([ai, bi], [ci, di]) (i = 1, 2, 3) be any three IVIFNs, then

(1) α̃1∩̇α̃2 = α̃2∩̇α̃1;

(2) α̃1∪̇α̃2 = α̃2∪̇α̃1;

(3) (α̃1∩̇α̃2)∩̇α̃3 = α̃1∩̇(α̃2∩̇α̃3);

(4) (α̃1∪̇α̃2)∪̇α̃3 = α̃1∪̇(α̃2∪̇α̃3).

Proof. We only give the proof of (3), the others can be easily obtained.

(α̃1∩̇α̃2)∩̇α̃3 = ([T (a1, a2), T (b1, b2)], [S(c1, c2), S(d1, d2)])∩̇([a3, b3], [c3, d3])
= ([T (T (a1, a2), a3), T (T (b1, b2), b3)], [S(S(c1, c2), c3), S(S(d1, d2), d3)])
= ([T (a1, T (a2, a3)), T (b1, T (b2, b3))], [S(c1, S(c2, c3)), S(d1, S(d2, d3))])
= α̃1∩̇(α̃2∩̇α̃3)

Therefore, (3) is proved. �

Remark 3.5. In [3], it is shown that the De Morgan’s Laws are not valid for a
number of negations that can be defined over IFSs (and, respectively, on IVIFSs).
These laws are valid only for the classical negation.

Definition 3.6. Let P̃l = (p̃
(l)
ij )n×n (l = 1, 2) be two IVIFMs, where p̃

(l)
ij =

([a
(l)
ij , b

(l)
ij ], [c

(l)
ij , d

(l)
ij ]), i, j = 1, 2, . . . , n, l = 1, 2. We say P̃ = P̃1 × P̃2 = (p̃ij)n×n is

a (T, S)−composition matrix of P̃1 and P̃2 where

p̃ij =
n∨
k=1

(p̃
(1)
ik ∩̇p̃

(2)
kj )

= ([
n∨
k=1

T (a
(1)
ik , a

(2)
kj ),

n∨
k=1

T (b
(1)
ik , b

(2)
kj )], [

n∧
k=1

S(c
(1)
ik , c

(2)
kj ),

n∧
k=1

S(d
(1)
ik , d

(2)
kj )])

Remark 3.7. If T and S are replaced by
∧

and
∨

respectively, then P̃1 × P̃2

becomes a composition matrix P̃1 ◦ P̃2 in [24].

By Definition 3.6, we can obtain further results as follows:

Theorem 3.8. Let P̃l = (p̃
(l)
ij )n×n (l = 1, 2) be two IVIFMs, where p̃

(l)
ij = ([a

(l)
ij , b

(l)
ij ],

[c
(l)
ij , d

(l)
ij ]), i, j = 1, 2, . . . , n, l = 1, 2. Then the (T, S)−composition matrix of P̃1

and P̃2 is still an IVIFM.



(T,S)-based Interval-valued Intuitionistic Fuzzy Composition Matrix ... 11

Proof. By the proof of Theorem 3.3, for i, j = 1, 2, . . . , n, we can easily obtain

[

n∨
k=1

T (a
(1)
ik , a

(2)
kj ),

n∨
k=1

T (b
(1)
ik , b

(2)
kj )] ⊆ [0, 1]

and

[

n∧
k=1

S(c
(1)
ik , c

(2)
kj ),

n∧
k=1

S(d
(1)
ik , d

(2)
kj )] ⊆ [0, 1].

Further, there must exist l1 and l2 such that
n∨
k=1

T (b
(1)
ik , b

(2)
kj ) = T (b

(1)
il1
, b

(2)
l1j

),

n∧
k=1

S(d
(1)
ik , d

(2)
kj ) = S(d

(1)
il2
, d

(2)
l2j

).

Either l1 = l2 or l1 6= l2, the following inequation always holds:

T (b
(1)
il1
, b

(2)
l1j

) + S(d
(1)
il2
, d

(2)
l2j

) ≤ T (b
(1)
il1
, b

(2)
l1j

) + S(d
(1)
il1
, d

(2)
l1j

) ≤ 1,

that is
n∨
k=1

T (b
(1)
ik , b

(2)
kj ) +

n∧
k=1

S(d
(1)
ik , d

(2)
kj ) ≤ 1,

these complete the proof. �

By Theorem 3.8, Definition 2.2 and Lemma 2.6, we have the following corollaries.

Corollary 3.9. Let P̃1, P̃2 and P̃3 be any three IVIFMs, and P̃1 ⊆ P̃2, then
P̃1 × P̃3 ⊆ P̃2 × P̃3 ⊆ P̃2 ◦ P̃3.

Corollary 3.10. The (T, S)−composition matrix P̃ of IVIFSMs P̃1 and P̃2 is also
an IVIFM.

However, the (T, S)−composition matrix of two IVIFSMs may not be an IV-
IFSM. See the following example:

Example 3.11. Let

P̃1 =

 ([1, 1], [0, 0]) ([0.2, 0.3], [0.4, 0.6]) ([0.1, 0.5], [0.2, 0.4])
([0.2, 0.3], [0.4, 0.6]) ([1, 1], [0, 0]) ([0.4, 0.6], [0.3, 0.4])
([0.1, 0.5], [0.2, 0.4]) ([0.4, 0.6], [0.3, 0.4]) ([1, 1], [0, 0])

 ,

P̃2 =

 ([1, 1], [0, 0]) ([0.1, 0.2], [0.3, 0.5]) ([0.2, 0.6], [0.1, 0.4])
([0.1, 0.2], [0.3, 0.5]) ([1, 1], [0, 0]) ([0.5, 0.6], [0.2, 0.3])
([0.2, 0.6], [0.1, 0.4]) ([0.5, 0.6], [0.2, 0.3]) ([1, 1], [0, 0])

 .
Then both P̃1 and P̃2 are IVIFSMs, and their (T, S)−composition matrix is

P̃ = P̃1 × P̃2 =

 ([1, 1], [0, 0]) ([0.2, 0.3], [0.3, 0.5]) ([0.2, 0.6], [0.1, 0.4])
([0.2, 0.36], [0.3, 0.5]) ([1, 1], [0, 0]) ([0.5, 0.6], [0.2, 0.3])
([0.2, 0.6], [0.1, 0.4]) ([0.5, 0.6], [0.2, 0.3]) ([1, 1], [0, 0])


if we choose T (a, b) = ab and S(a, b) = a+b−ab. Since p̃12 6= p̃21, P̃ is asymmetrical.

Fortunately, the following theorem holds:
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Theorem 3.12. Let P̃ = (p̃ij)n×n be an IVIFSM, then the (T, S)−composition

matrix ˙̃P 2 , P̃ × P̃ is also an IVIFSM.

Proof. Let ˙̃P 2 = (q̃ij)n×n and p̃ij = ([aij , bij ], [cij , dij ]).

(1) By Corollary 3.10, we know that ˙̃P 2 is an IVIFM.

(2) By Definition 3.6, for i = 1, 2, . . . , n, we can have

q̃ii = ([

n∨
k=1

T (aik, aki),

n∨
k=1

T (bik, bki)], [

n∧
k=1

S(cik, cki),

n∧
k=1

S(dik, dki)]).

When k = i, we have p̃ii = ([aii, bii], [cii, dii]) = ([1, 1], [0, 0]). Since T (1, 1) = 1 and
S(0, 0) = 0, q̃ii = ([1, 1], [0, 0]) (i = 1, 2, . . . , n).

(3) Since P̃ is an IVIFSM, p̃ik = p̃ki. Thus we have

q̃ij = ([
n∨
k=1

T (aik, akj),
n∨
k=1

T (bik, bkj)], [
n∧
k=1

S(cik, ckj),
n∧
k=1

S(dik, dkj)])

= ([
n∨
k=1

T (akj , aik),
n∨
k=1

T (bkj , bik)], [
n∧
k=1

S(ckj , cik),
n∧
k=1

S(dkj , dik)])

= ([
n∨
k=1

T (ajk, aki),
n∨
k=1

T (bjk, bki)], [
n∧
k=1

S(cjk, cki),
n∧
k=1

S(djk, dki)])

= q̃ji.

Therefore, ˙̃P 2 is an IVIFSM. �

Definition 3.13. Let P̃ = (p̃ij)n×n be an IVIFM, where p̃ij = ([aij , bij ], [cij , dij ])

i, j = 1, 2, . . . , n. If P̃ satisfies the following conditions:

(1) Reflexivity: p̃ii = ([1, 1], [0, 0]), i = 1, 2, . . . , n;

(2) Symmetry: p̃ij = p̃ji, i.e., ([aij , bij ], [cij , dij)] = ([aji, bji], [cji, dji]), i, j =
1, 2, . . . , n;

(3) (T, S)−Transitivity: P̃ × P̃ ⊆ P̃ , i.e.,
n⋃

k=1

T (p̃ik
⋂̇
p̃kj) ⊆ p̃ij , i.e.,

∨
k

T (aik, akj) ≤

aij ,
∨
k

T (bik bkj) ≤ bij ,
∧
k

S(cik, ckj) ≥ cij ,
∧
k

S(dik, dkj) ≥ dij ;

then we call P̃ a (T, S)−interval-valued intuitionistic fuzzy equivalence matrix
((T, S)−IVIFEM).

Remark 3.14. If T and S are replaced by
∧

and
∨

respectively, then Definition
3.13 reduces to Definition 2.4. That is, an IVIFEM is a (T, S)−IVIFEM. However,
a (T, S)−IVIFEM may not be an IVIFEM, we can see an example as follows:

Example 3.15. Let

P̃ =

 ([1, 1], [0, 0]) ([0.2, 0.3], [0.4, 0.6]) ([0.1, 0.5], [0.2, 0.4])
([0.2, 0.3], [0.4, 0.6]) ([1, 1], [0, 0]) ([0.4, 0.6], [0.3, 0.4])
([0.1, 0.5], [0.2, 0.4]) ([0.4, 0.6], [0.3, 0.4]) ([1, 1], [0, 0])

 ,
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then P̃ satisfies conditions (1) and (2) in Definition 3.13, and

P̃ ◦ P̃ =

 ([1, 1], [0, 0]) ([0.2, 0.5], [0.3, 0.4]) ([0.2, 0.5], [0.2, 0.4])
([0.2, 0.5], [0.3, 0.4]) ([1, 1], [0, 0]) ([0.4, 0.6], [0.3, 0.4])
([0.2, 0.5], [0.2, 0.4]) ([0.4, 0.6], [0.3, 0.4]) ([1, 1], [0, 0])

 * P̃ ,

so P̃ is not an IVIFEM. On the other hand,

P̃ × P̃ =

 ([1, 1], [0, 0]) ([0.2, 0.3], [0.4, 0.6]) ([0.1, 0.5], [0.2, 0.4])
([0.2, 0.3], [0.4, 0.6]) ([1, 1], [0, 0]) ([0.4, 0.6], [0.3, 0.4])
([0.1, 0.5], [0.2, 0.4]) ([0.4, 0.6], [0.3, 0.4]) ([1, 1], [0, 0])

 = P̃

if we choose T (a, b) = ab and S(a, b) = a+b−ab, it implies that P̃ is a (T, S)−IVIFEM.

In order to clustering, we define the following new notion.

Definition 3.16. Let P̃ = (p̃ij)n×n = ([aij , bij ], [cij , dij ]) be an IVIFM (i, j =

1, 2, . . . , n), α̃ be an IVIFN. We call P̃α̃ = (p̃ij : α̃)n×n is an α̃−matrix of P̃ , where

p̃ij : α̃ = ([aij : α̃, bij : α̃], [cij : α̃, dij : α̃]) =

{
([1, 1], [0, 0]), if p̃ij ⊇ α̃,
([0, 0], [1, 1]), if p̃ij + α̃.

An IVIFM P̃ and its α̃−matrix P̃α̃ have the following relationships.

Theorem 3.17. Let P̃ = (p̃ij)n×n be an IVIFSM, then P̃α̃ is also an IVIFSM.

Proof. (1) Reflexivity: Since p̃ii = ([1, 1], [0, 0]), we have for all IVIFN α̃,that α̃ ⊆
p̃ii. By Definition 3.16, we know that p̃ii : α̃ = ([1, 1], [0, 0]) (i=1,2,. . . ,n).

(2) Symmetry: By p̃ij = p̃ji, we can easily obtain that p̃ij : α̃ = p̃ji : α̃ for all
IVIFN α̃ (i, j = 1, 2, . . . , n). �

Theorem 3.18. If P̃α̃ is a (T, S)−IVIFEM, then P̃ is a (T, S)−IVIFEM.

Proof. (1) Reflexivity: Since p̃ii : α̃ = ([1, 1], [0, 0]), we know that for all IVIFN
α̃ = ([a, b], [c, d]), α̃ ⊆ p̃ii = ([aii, bii], [cii, dii]), that is a ≤ aii, b ≤ bii, c ≥ cii and
d ≥ dii. Let α̃ = ([1, 1], [0, 0]), then p̃ii = ([1, 1], [0, 0]) (i = 1, 2, . . . , n).

(2) Symmetry: Since P̃α̃ is a (T, S)−IVIFEM, we have p̃ij : α̃ = p̃ji : α̃(i, j =
1, 2, . . . , n).

If p̃ij 6= p̃ji, then aij 6= aji or bij 6= bji or cij 6= cji or dij 6= dji. Suppose that
aij < aji, let α̃ = ([(aij + aji)/2, bji], [cji, dji]), then aij < (aij + aji)/2 < aji.
So p̃ij : α̃ = ([0, 0], [1, 1]), p̃ji : α̃ = ([1, 1], [0, 0]). p̃ij : α̃ 6= p̃ji : α̃ which is a
contradiction. Thus aij = aji (i, j = 1, 2, . . . , n).

Analogously we can prove that bij = bji, cij = cji and dij = dji should be
simultaneously by hold. It implies that p̃ij = p̃ji (i, j = 1, 2, . . . , n).

(3) (T, S)−Transitivity: Since P̃α̃ = (p̃ij : α̃) = ([aij : α̃, bij : α̃], [cij : α̃, dij : α̃])
satisfies (T, S)−Transitivity, that is, for i, j = 1, 2, . . . , n, we have

n∨
k=1

T (aik : α̃, akj : α̃) ≤ aij : α̃,

n∨
k=1

T (bik : α̃, bkj : α̃) ≤ bij : α̃,
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n∧
k=1

S(cik : α̃, ckj : α̃) ≥ cij : α̃,

n∧
k=1

S(dik : α̃, dkj : α̃) ≥ dij : α̃.

Now we will prove that for i, j = 1, 2, . . . , n,
n∨
k=1

T (aik, akj) ≤ aij ,
n∨
k=1

T (bik, bkj) ≤ bij ,

n∧
k=1

S(cik, ckj) ≥ cij ,
n∧
k=1

S(dik, dkj) ≥ dij .

Suppose that there exist i0 and j0 such that
n∨
k=1

(ai0k ∧akj0) > ai0j0 . Further we

know that there exists l such that ai0l∧alj0 > ai0j0 . Assume that ai0l ≥ alj0 > ai0j0
and let α̃ = ([alj0 , bi0l ∧ blj0 ], [ci0l ∨ clj0 , di0l ∨ dlj0 ]), then

p̃i0l : α̃ = p̃lj0 : α̃ = ([1, 1], [0, 0]) and p̃i0j0 : α̃ = ([0, 0], [1, 1])

hold. These imply that
n∨
k=1

T (ai0k : α̃, akj0 : α̃) = 1 > 0 = ai0j0 : α̃, which produces

the contradiction with
n∨
k=1

T (aik : α̃, akj : α̃) ≤ aij : α̃. So for i, j = 1, 2, . . . , n, we

have
n∨
k=1

T (aik, akj) ≤
n∨
k=1

(aik ∧ akj) ≤ aij .

Analogously we can prove that
n∨
k=1

T (bik, bkj) ≤ bij .

On the other hand, suppose that there exist i1 and j1 such that
n∧
k=1

(ci1k∨ckj1) <

ci1j1 . Further we know that there exists m such that ci1m ∨ cmj1 < ci1j1 . Assume
that ci1m ≤ cmj1 < ci1j1 and let α̃ = ([ai1m∧amj1 , bi1m∧ bmj1 ], [cmj1 , di1m∨dmj1 ]),
then

p̃i1m : α̃ = p̃mj1 : α̃ = ([1, 1], [0, 0]) and p̃i1j1 : α̃ = ([0, 0], [1, 1])

hold. These imply that
n∨
k=1

T (ai1k : α̃, akj1 : α̃) = 1 > 0 = ai1j1 : α̃, which produces

the contradiction with
n∨
k=1

T (aik : α̃, akj : α̃) ≤ aij : α̃. So for i, j = 1, 2, . . . , n, we

have
n∧
k=1

S(cik, ckj) ≥
n∧
k=1

(cik ∨ ckj) ≥ cij .

Analogously we can prove that
n∧
k=1

S(dik, dkj) ≥ dij .

Therefore, we can complete the proof. �

If we denote ˙̃P 2k = ˙̃P 2k−1 × ˙̃P 2,k−1

then by the idea of [21], we can easily prove
the following theorem.

Theorem 3.19. Let P̃ be an IVIFSM, then after a finite times of (T, S)−compositions:

P̃ → ˙̃P 2 → ˙̃P 4 → · · · → ˙̃P 2k → · · · , there must exist a positive integer k such that
˙̃P 2k = ˙̃P 2k+1

and ˙̃P 2k is a (T, S)−IVIFEM.
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Definition 3.20. For a given IVIFN α̃, line i and line k of P̃α̃ are called α−
congruence if p̃ij : α̃ = p̃kj : α̃ for j = 1, 2, . . . , n.

4. A Method for Clustering

In the process of clustering under an intuitionistic fuzzy environment, an expert
usually provides his/her preferences with IVIFNs. Then we can use the method
in [32] to classify the objects. However, sometimes, experts do not apply their
preferences. They just give their opinions denoted by IVIFNs p̃ij which show the
similarity level between the objects Ai and Aj (i, j = 1, 2, . . . , n). In this case, the
method in [32] can not be used directly. So we develop a new method for clustering
with interval-valued intuitionistic fuzzy information. The method is described as
follows:

Step 1: Experts give information about the similarity level between every
two objects Ai and Aj under each factor Gl, characterized by IVIFNs p̃lij
(i, j = 1, 2, . . . , n, l = 1, 2, . . . ,m). Choose an aggregation operator (see
[31]), for example, interval-valued intuitionistic fuzzy weighted averaging
(IIFWA) operator, interval-valued intuitionistic fuzzy weighted geometric
(IIFWG) operator, interval-valued intuitionistic fuzzy hybrid aggregation

(IIFHA) operator, and so on. Then we can have an IVIFSM P̃ = (p̃ij)n×n
by aggregation.

Step 2: Choose the triangular dual module T and S. Verify that whether P̃ is

a (T, S)−IVIFEM or not. If not, stop the (T, S)−compositions P̃ → ˙̃P 2 →
˙̃P 4 → · · · → ˙̃P 2k → · · · until ˙̃P 2k = ˙̃P 2k+1

. Then ˙̃P 2k is a (T, S)−IVIFEM.

Step 3: Take an appropriate IVIFN α̃, calculate ˙̃P 2k

α̃ by Definition 3.16.

Step 4: Classify {Ai} by Definition 3.20.

5. Illustrative Example

In Beijing, there are many hotels, and now some experts would like to inves-
tigate 5 hotels Ai (i = 1, 2, 3, 4, 5) under six factors Gl (l = 1, 2, . . . , 6), namely,
geographical position, price, security, sanitation, customer service, comfort level.
They only provide information about the similarity level between every two hotels
Ai and Aj , characterized by IVIFNs p̃lij = ([alij , b

l
ij ], [c

l
ij , d

l
ij ]) under each factor Gl.

If we choose the weight vector ω = ( 1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ), then by the interval-valued

intuitionistic fuzzy averaging (IIFA) operator which is defined in [31], we can have

an IVIFSM P̃ = (p̃ij)5×5 as follows (in order to make the matrix shorter, we use a
simple notation, for example: “.2” means “0.2”):

P̃ =


([1, 1], [0, 0]) ([.5, .6], [.2, .3]) ([.7, .8], [.1, .2]) ([.3, .6], [.1, .4]) ([.2, .5], [.3, .4])

([.5, .6], [.2, .3]) ([1, 1], [0, 0]) ([.3, .4], [.2, .5]) ([.6, .8], [0, .1]) ([.2, .4], [.2, .5])

([.7, .8], [.1, .2]) ([.3, .4], [.2, .5]) ([1, 1], [0, 0]) ([.4, .5], [.4, .5]) ([.3, .6], [.2, .3])
([.3, .6], [.1, .4]) ([.6, .8], [0, .1]) ([.4, .5], [.4, .5]) ([1, 1], [0, 0]) ([.5, .6], [.3, .4])

([.2, .5], [.3, .4]) ([.2, .4], [.2, .5]) ([.3, .6], [.2, .3]) ([.5, .6], [.3, .4]) ([1, 1], [0, 0])

,
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where

p̃ij = IIFA(p̃1ij , p̃
2
ij , . . . , p̃

6
ij) = ([1−

6∏
l=1

(1− alij)
1
6 , 1−

6∏
l=1

(1− blij)
1
6 ], [

6∏
l=1

(clij)
1
6 ,

6∏
l=1

(dlij)
1
6 ]).

Choose T (a, b) = ab and S(a, b) = a+ b− ab, then calculate ˙̃P 2 = P̃ × P̃ below:

˙̃P 2 =

 ([1, 1], [0, 0]) ([.5, .6], [.2, .3]) ([.7, .8], [.1, .2]) ([.3, .6], [.1, .37]) ([.21, .5], [.28, .4])
([.5, .6], [.2, .3]) ([1, 1], [0, 0]) ([.35, .48], [.2, .44]) ([.6, .8], [0, .1]) ([.3, .48], [.2, .46])
([.7, .8], [.1, .2]) ([.35, .48], [.2, .44]) ([1, 1], [0, 0]) ([.4, .5], [.2, .5]) ([.3, .6], [.2, .3])
([.3, .6], [.1, .37]) ([.6, .8], [0, .1]) ([.4, .5], [.2, .5]) ([1, 1], [0, 0]) ([.5, .6], [.2, .4])
([.21, .5], [.28, .4]) ([.3, .48], [.2, .46]) ([.3, .6], [.2, .3]) ([.5, .6], [.2, .4]) ([1, 1], [0, 0])

.
Obviously ˙̃P 2 * P̃ , continue calculating, then we can have

˙̃P 4 =

[
([1, 1], [0, 0]) ([.5, .6], [.1, .3]) ([.7, .8], [.1, .2]) ([.3, .6], [.1, .37]) ([.21, .5], [.28, .4])

([.5, .6], [.1, .3] ([1, 1], [0, 0]) ([.35, .48], [.19, .44]) ([.6, .8], [0, .1]) ([.3, .48], [.2, .46])
([.7, .8], [.1, .2]) ([.35, .48], [.19, .44]) ([1, 1], [0, 0]) ([.4, .5], [.19, .496]) ([.3, .6], [.2, .3])
([.3, .6], [.1, .37]) ([.6, .8], [0, .1]) ([.4, .5], [.19, .496]) ([1, 1], [0, 0]) ([.5, .6], [.2, .4])
([.21, .5], [.28, .4]) ([.3, .48], [.2, .46]) ([.3, .6], [.2, .3]) ([.5, .6], [.2, .4]) ([1, 1], [0, 0])

]
.

It is clear that ˙̃P 4 * ˙̃P 2. However, ˙̃P 8 = ˙̃P 4, that is, ˙̃P 4 is a (T, S)−IVIFEM.
Let α̃1 = ([0.2, 0.4], [0.3, 0.5]), by Definition 3.16, we have

˙̃P 4
α̃1

=


([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0])

([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0])
([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0])

([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0])

([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0])

 .
By Definition 3.20, {Ai} (i = 1, 2, 3, 4, 5) can be divided into one category {A1, A2,
A3, A4, A5}.

Let α̃2 = ([0.3, 0.4], [0.19, 0.5]), then

˙̃P 4
α̃2

=


([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([0, 0], [1, 1])

([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([0, 0], [1, 1])

([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([0, 0], [1, 1])
([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([0, 0], [1, 1])

([0, 0], [1, 1]) ([0, 0], [1, 1]) ([0, 0], [1, 1]) ([0, 0], [1, 1]) ([1, 1], [0, 0])

 .
So {Ai} can be divided into two categories {A1, A2, A3, A4}, {A5}.

Let α̃3 = ([0.35, 0.4], [0.1, 0.2]), then

˙̃P 4
α̃3

=


([1, 1], [0, 0]) ([0, 0], [1, 1]) ([1, 1], [0, 0]) ([0, 0], [1, 1]) ([0, 0], [1, 1])

([0, 0], [1, 1]) ([1, 1], [0, 0]) ([0, 0], [1, 1]) ([1, 1], [0, 0]) ([0, 0], [1, 1])

([1, 1], [0, 0]) ([0, 0], [1, 1]) ([1, 1], [0, 0]) ([0, 0], [1, 1]) ([0, 0], [1, 1])
([0, 0], [1, 1]) ([1, 1], [0, 0]) ([0, 0], [1, 1]) ([1, 1], [0, 0]) ([0, 0], [1, 1])

([0, 0], [1, 1]) ([0, 0], [1, 1]) ([0, 0], [1, 1]) ([0, 0], [1, 1]) ([1, 1], [0, 0])

 .
So {Ai} can be divided into three categories {A1, A3}, {A2, A4}, {A5}.

Let α̃4 = ([0.35, 0.48], [0.19, 0.44]), then

˙̃P 4
α̃4

=


([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([0, 0], [1, 1]) [0, 0], [1, 1])

([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([0, 0], [1, 1])

([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([0, 0], [1, 1]) ([0, 0], [1, 1])
([0, 0], [1, 1]) ([1, 1], [0, 0]) ([0, 0], [1, 1]) ([1, 1], [0, 0]) ([0, 0], [1, 1])

([0, 0], [1, 1]) ([0, 0], [1, 1]) ([0, 0], [1, 1]) ([0, 0], [1, 1]) ([1, 1], [0, 0])

 .
So {Ai} can be divided into four categories {A1, A3}, {A2}, {A4}, {A5}.
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Let α̃5 = ([0.5, 0.6], [0.1, 0.3]), then

˙̃P 4
α̃4

=


([1, 1], [0, 0]) ([1, 1], [0, 0]) ([1, 1], [0, 0]) ([0, 0], [1, 1]) [0, 0], [1, 1])

([1, 1], [0, 0]) ([1, 1], [0, 0]) ([0, 0], [1, 1]) ([1, 1], [0, 0]) ([0, 0], [1, 1])

([1, 1], [0, 0]) ([0, 0], [1, 1]) ([1, 1], [0, 0]) ([0, 0], [1, 1]) ([0, 0], [1, 1])
([0, 0], [1, 1]) ([1, 1], [0, 0]) ([0, 0], [1, 1]) ([1, 1], [0, 0]) ([0, 0], [1, 1])

([0, 0], [1, 1]) ([0, 0], [1, 1]) ([0, 0], [1, 1]) ([0, 0], [1, 1]) ([1, 1], [0, 0])

 .
So {Ai} can be divided into five categories {A1}, {A2}, {A3}, {A4}, {A5}.

Remark 5.1. In a previous paper [16], in order to compare with the algorithm in
reference [39], we used the same example given by Zhang. In [39], under the intu-
itionistic fuzzy environment, the object {Ai} (i = 1, 2, 3, 4, 5) only can be divided
into one, three, five categories with different IFN α. But when we choose appropri-
ate IFN α, the object {Ai} can be divided into one, three, four, five categories by
our method which was introduced in [16]. In this paper, we consider the clustering
for IVIFSs, and it can be seen that our method is more rational and thoughtful
when we use the more general operators: t−norm and t−conorm. Furthermore,
our method is also applicable to the papers mentioned above.

6. Conclusion

Today, the applications of interval-valued intuitionistic fuzzy sets are taken into
account with more and more experts and scholars. However, the integration of
interval-valued intuitionistic fuzzy sets has only just begun, there are many is-
sues worth discussing in depth. In this paper, the notions of composition ma-
trix and interval-valued intuitionistic fuzzy equivalence matrix are generalized to
(T, S)−composition matrix and (T, S)−interval-valued intuitionistic fuzzy equiva-
lence matrix when (T, S) is a dual pair of triangular module. As shown, (T, S)-
composition matrix and α̃−matrix could be used to categories some objects when
the similarity level (characterized by IVIFNs) between every two objects are only
available.
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