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ABSTRACT 
An alternative definition for the assessment point parameter 

 of the R6 defect assessment procedure is proposed, for 
combined primary and secondary loading. This alternative 
definition removes the requirement to calculate a plasticity 
correction factor for secondary stresses, ρ (or V), used in 
the conventional R6 definition of .  To compare these 
definitions, both the R6 procedure and the alternative 
method are presented as Crack Driving Force (CDF) 
estimation schemes. The required inputs to these estimation 
schemes have been determined from finite element 
analyses, for the particular case, of a thick-walled cylinder 
with a fully circumferential internal defect and subjected to 
internal pressure and a radial through-wall temperature 
gradient.  Comparisons of CDF estimates with those 
determined from full inelastic finite element analyses have 
shown, for the cases studied, that both the R6 and 
alternative approaches provide conservative estimates of 
CDF compared to those obtained from finite element 
analyses, with the degree of conservatism far greater for the 
conventional R6 approach.   Further finite element 
validation with different geometries, loadings and material 
properties is required before the alternative procedure could 
be considered for inclusion in the R6 defect assessment 
procedure as an alternative to the procedure of the main 
section of the document. 

rK

rK

 
INTRODUCTION 
The R6 defect assessment procedure [1] defines failure1, of 
a cracked component, by the co-incidence of the 
assessment point (Lr Kr) and the Failure Assessment 
Diagram (FAD), , where the assessment point 
parameters, L

( rr LfK = )

                                                

r and Kr, are measures of proximity to failure 
by plastic collapse and linear elastic fracture mechanics 
(LEFM), respectively.  The Kr parameter is simply the ratio 

 
1 Here the term failure is used to define a limiting or unsafe condition, 

which is a conservative estimate of the actual predicted component failure. 
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of the value of the LEFM stress intensity factor to material 
toughness, and in the case of loading by primary stresses 
acting alone, a plasticity correction is applied to stress 
intensity factor through the FAD.  For the treatment of 
combined primary and secondary loading, since secondary 
stresses are not included in the FAD function ( )rLf

rK

, a 
plasticity correction factor ρ (or V) is applied to the 
secondary stress component of the  parameter.  Two 
procedures for the evaluation ρ (or V) are presented in R6: 
a simplified conservative method for moderate levels of 
secondary stress; and a general more detailed method which 
requires the use of 'Look-up' tables. 
 
In this paper a single, simple to apply and less conservative 
alternative procedure is proposed, which removes the need 
to calculate ρ (or V) factors, and hence does not require the 
use of 'Look-up' tables.  Both the detailed R6 and the 
alternative procedures are compared with results from 
inelastic finite element analyses, in terms of crack driving 
forces (CDF). First, methods based on the R6 procedures, 
for the estimation of CDF for combined primary and 
secondary loading, are outlined.  The alternative simpler 
method for the estimation of CDF is then developed, based 
on the treatment of combined loading in the Time-
Dependent Failure Assessment Diagram (TDFAD) 
approach of the R5 [2] assessment procedure for the high 
temperature response of structures.  Finite element analyses 
are then described for the calculation of CDF for a fully 
circumferential internal defect in a thick-walled cylinder, 
subjected to internal pressure and a radial through-wall 
temperature gradient.   
 
In general, the required inputs to R6 estimates of CDF, 
elastic stress intensity factors and limit load solutions, are 
obtained from compendia contained within the R6 
document, and advice is also provided in R6 on methods 
for the calculation of the inelastic stress intensity solution 
for secondary stresses acting alone, , which is a key s

JK
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parameter in assessments involving primary and secondary 
stresses. In this study, inputs to the two CDF estimation 
schemes have been calculated by finite element analysis.  
Thus any differences between results for CDF from the two 
estimation schemes and those from full inelastic finite 
element analysis, for combined loading, arise from the 
procedures themselves and not from the inputs to the 
procedures. 
 
R6 PROCEDURE 
The R6 procedure defines failure, of a cracked component 
under primary loading, by the co-incidence of the 
assessment point (Lr, Kr) and the Failure Assessment 
Diagram (FAD), , which has a cut-off at ( )rr LfK =

y
max
r /L σσ= , where σ  is the material flow stress and  

is the yield stress. (see Fig. 1).  Three functions for FAD 
are provided [1], Options 1, 2 and 3 with increasing levels 
accuracy, but the same the cut-off is applied for all options.  

yσ

 
The coordinates of the assessment point (Lr, Kr) are given 
by 

                               
y

p
ref

rL
σ
σ

=                        (1) 

where the reference stress for primary loading, 

y
L

p
ref P

P
σ=σ , P is the applied load and PL is the limit load 

evaluated for a yield stress σy (taken as the 0.2% proof 
stress), 
 

and                       
mat

p
I

r K
K

K =                        (2) 

where  is the elastic stress intensity factor and Kp
IK mat is 

the material fracture toughness. i.e. Lr is a measure of 
proximity to plastic collapse and Kr is a measure of 
proximity to LEFM failure. 
 
At failure, the applied driving force, , is equal to KJK mat 
and the assessment point is coincident with the FAD, 

. ( )rr LfK =
 
Hence, from Equation (1) 
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Figure 1 - R6 Failure  Assessment Diagram with 
Assessment Point (Lr, Kr) 
2
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                             ( )r

p
I

J Lf
K

K =                      (3) 

 
which also has a cut-off at .  i.e. for primary loading 
only, the R6 procedure [1] effectively uses a FAD to apply 
a plasticity correction to the elastic value of crack driving 
force. 

max
rL

 
The treatment of secondary stress within R6 is based on the 
work of Ainsworth [3] as subsequently extended by Hooton 
and Budden [4].  Since the R6 procedures, as described 
above, are based on reference stress approaches for primary 
loading only, for combined primary and secondary loading 
it is necessary to define an equivalent primary reference 
stress which produces the same crack driving force, KJ, as 
that for combined loading.  The relationship between this 
equivalent reference stress, , and reference stresses 

 and , for primary and secondary loadings, 
respectively, is shown in Figure 2, taken from [3].  The 
curves in Figure 2 have been derived from a deformation 
bounding theorem to give an upper estimate of 

refσ
p
refσ s

refσ

refσ .  All 
curves have a maximum value of  corresponding to the 

 cut-off of the FAD. i.e. ( )
refσ

max
rL σ=σ maxref .   

 
The determination of the crack driving force, , for 
combined loading in terms of  then proceeds as 
follows. 

JK

refσ

 
The stress intensity factor for combined loading, 
corresponding to the reference stress, refσ , may be 
expressed as 
 
                             ( ) 2/1

refI aK πσ=                 (4) 
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Figure 2 - Definition of Reference Stress under 
Combined Loading 
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where a  is a geometrical parameter which, by assuming 

 and  stress distributions are similar, may be 
determined from the stress intensity factor for primary 
loading acting alone, .  i.e. 

refσ p
refσ

p
IK

 
                              ( ) 2/1p

ref
p
I aK πσ=              (5) 

 
 
Hence, using the R6 definition of failure, assessment points 
at failure, described in terms of , lie on the curve,  refσ
 

           
( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
σ

=
πσ

=
Y

ref

mat

2/1
ref

mat

I f
K

a
K
K

          (6) 

 
and from Equations (4), (5) and (6), with the condition at 
failure , Jmat KK =
 

                      ( )r

p
I

p
ref

ref
J Lf

K
K

σ

σ
=                      (7) 

 
where Lr is now defined as yrefr /L σσ= .   
 
In order to determine , from Figure 2, it is first 
necessary to determine values of the primary and secondary 
reference stresses,  and , respectively.  The first of 

these, , is obtained directly from Equation (1), with the 
limit load P

refσ

p
refσ s

refσ
p
refσ

L determined by finite element analysis or from 
standard limit load solutions.  
 
In order to evaluate  it may be noted that, for secondary 

loading acting alone,  is equal to  and at failure 

K

s
refσ

refσ s
refσ

mat is equal to , the crack driving force for secondary 

stresses acting alone.  (Note:  is a key parameter in the 
determination of K

s
JK

s
JK

J and various methods for its estimation, 
rather than calculation by finite elements are described in 
R6[1].) 
 
Substitution of these conditions into Equation (6) gives 
 

                     ( ) 2/1
y

s
J

y
s
ref

y
s
ref

)a(
K

/f
/

πσ
=

σσ

σσ
         (8) 

 
where it has been assumed [3] that the function  
is given by the R6 Option 1 FAD

( )Y
s
ref /f σσ

2, . ( )r1 Lf
                                                 
2 In [3] the Option 1 FAD was taken from R6 Revision 3 (1986).  
However, differences between the Revision 3 FAD and the present 
Revision 4 FAD are small, and any discrepancies in results from the 
present analyses arising from the use of the Revision 3 FAD for the 
derivation of σref  are insignificant. 
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i.e.  
( ) ( ) ( )[ ]

( )( )[ ]6
y

2/12
yr1y

/6.0exp7.03.0

/5.01Lf/f

σσ−+×

σσ+==σσ
−

     (9) 

 
Note also that the cut-off in  at  produces a 

cut-off in Equation (8) at 

( )r1 Lf max
rr LL =

σ=σs
ref . 

 
Hence, knowing values of  and , values of p

refσ s
refσ refσ  

may be determined from the relationships illustrated in 
Figure 2, and crack driving force may be evaluated from 
Equation (7). 
 
In R6[1], the treatment of plasticity arising from secondary 
stress has traditionally been in terms of an interaction 
parameter ρ, such that  
 

                       ρ+
+

=
mat

s
I

p
I

r K
KK

K             (10a) 

 
or more recently in terms of a V factor, such that 
 

                          
mat

s
I

p
I

r K
VKK

K
+

=             (10b) 

The definitions of ρ and V are based on the same 
underlying approach and produce identical results for Kr.  
Therefore, for brevity, only the calculation of the ρ factor is 
presented here.  
 
From the R6 FAD, , and Equation 
(10a) may be expressed as 

( ) ( y
p
refrr /fLfK σσ== )

 

            ( y
p
ref

mat

s
I

mat

p
I /f

K
K

K
K

σσ=ρ++ )       (11) 

 
and from Equations (5) and (6) 
 

             
( )

y
p
ref

yref

yref

mat

p
I /.

/
/f

K
K

σσ
σσ

σσ
=          (12) 

 
Also, noting that ( ) s

J
s
J

s
I

s
I KK/KK = , then from Equations 

(6) and (8) 
 

    
( )

( ) s
J

s
I

y
s
ref

y
s
ref

yref

yref

mat

s
I

K
K

.
/f

/
.

/
/f

K
K

σσ

σσ

σσ

σσ
=    (13) 

 
and substitution from Equations (12) and (13) into Equation 
(11) gives 
 

                 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−φ+ψ=ρ s

J

s
I

K
K

1                     (14) 
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where  
 

     

( )
( )

( )⎥⎥⎦
⎤

⎢
⎢
⎣

⎡

σσ

σσ
+

σ
σ

σσ

σσ

−σσ=ψ

y
s
ref

y
s
ref

y

p
ref

yref

yref

y
p
ref

/f

/
/
/f

/f

      (15) 

 

and         
( )

( )y
s
ref

y
s
ref

yref

yref

/f
/

/
/f

σσ

σσ

σσ

σσ
=φ          (16) 

 
where again the functions ( )y/f σσ ,   

(i.e. ( )yref /f σσ , and ), may be 
taken as the R6 Option 1 FAD, Equation (9). 

( )y
p
ref /f σσ ( y

s
ref /f σσ )

))

 
Functions ψ and φ are shown graphically in Figure 3, and 
are obtained in R6[1] from 'Look-up' tables, in terms of the 
parameters Lr and .  Although the functions 
have been derived using an Option 1 FAD, it is stated [1] 
that values are not particularly sensitive to the shape of the 
FAD.  It may also be noted, from Equations (1), (5) and (8) 
that 

(( r
p
I
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Figure 3a – Dependence of function ψ on the magnitude 
of primary and secondary stresses. 
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Figure 3b – Dependence of function φ on the magnitude 
of primary and secondary stresses. 
 
 
the parameter  is a function of secondary 
stress only, and is given by 

(( r
p
I

s
J L/K/K ))
4
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                     ( )y
s
ref

y
s
ref

r
p
I

s
J

/f

/

L/K
K

σσ

σσ
=           (17) 

 
To derive crack driving force, KJ in terms of the ρ factor, it 
is again noted that at failure, the assessment point is 
coincident with the FAD. i.e. Kmat = KJ.  
 
Hence, from Equation (10a), 
 

                    ( )r
J

s
I

p
I

r Lf
K

KK
K =ρ+

+
=      (18) 

 

to give         ( ) ρ−
+

=
r

s
I

p
I

J Lf
KK

K                        (19) 

 
where  has the standard R6[1] definition of Equation (1). rL
 
From Equations (14) and (19), crack driving force may then 
be described by the equation 
 

           
( ) ( )1K/KLf

KK
K s

J
s
Ir

s
I

P
I

J −φ+ψ−

+
=       (20) 

 
Thus the required inputs for the evaluation of KJ are , 

,  and 

p
IK

s
IK s

JK ( )Lr PL , with  derived from any of the 
three FAD options of R6[1]. 

( )rLf

 
ALTERNATIVE METHOD 
A simpler approach for the determination of , and 
hence K

refσ
J by Equation (7), may be derived from methods 

used for combined primary and secondary loading in the 
Time Dependent Failure Assessment Diagram (TDFAD) 
procedure of R5 Volume 4/5 Appendix A5 [2].  Details of 
the derivation and application of these methods are given in 
[5-6]. 
 
Adopting this approach allows KJ to be defined explicitly in 
terms of , and removes the need for the calculation of a 
ρ factor.  Hence, no 'Look-up' tables are required for the 
determination of the ψ and φ parameters. 

s
JK

 
In consideration of high temperature crack growth, Kr for 
combined primary and secondary loading is defined [2] by 
the equation 
 

( ) [ ] ( ){ }
[ ] c

mat
2/1c

2.0rref

2/1
s
I

p
I

2s
I

c
2.0rref

2p
I

r
KL/E

KK2KL/EK
K

σε

++σε
=     (21) 

 
where ,  is the 0.2% proof stress from 
the isochronous stress-strain curve,  is the total strain at 

the stress , and is a time dependent material 
toughness. 

c
2.0

p
refr /L σσ= c

2.0σ

refε
c

2.0rL σ c
matK
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In the absence of creep effects, , , 

and .  Also the R6 Option 2 FAD, (see 
Equation (31)), apart from the minor correction for small 
scale yielding, can be expressed as 

y
c

2.0 σ=σ mat
c
mat KK =

y
p
refr /L σσ=

 
                             (22) ( ) [ 2/1

refrefr /ELf
−

σε= ]
 
Hence, 
 

   
( )

( ) ( )
2/1

s
I

p
I

2s
I

2

r

p
I

mat

r
r KK2K

Lf
K

K
Lf

K
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

                                                                     (23) 
 
and at failure defined by points on the FAD, ( )rr LfK =  
and , to give Jmat KK =
 

     ( ) ( )
2/1

s
I

p
I

2s
I

2

r

p
I

J KK2K
Lf

K
K

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  (24) 

 
If  is defined in the manner of [3], i.e. replacing  by 

 in Equation (8), 

s
refσ s

JK
s
IK

 

                 
y

p
ref

y

s
ref

p
I

s
I

y

s
ref f

K
K

σ
σ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ
σ

=
σ
σ

           (25) 

 
then Equation (24) for KJ, assuming that the reference 
length for secondary and combined loading is that for 
primary loading ( a  of Equation (5)), may be expressed as 
[6]  
 

( ) ( )
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⎠
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⎝

⎛

σ
σ

=
σ
σ    (26) 

 
which is shown in Figure 4.  It is seen that Figure 4, 
although derived from consideration of elastic-creep 
behaviour, exhibits the same trends in relationships 
between ,  and  as shown in Figure 2, and both 

 and  again have cut-offs at the flow stress 
refσ p

refσ s
refσ

refσ s
refσ σ .  It 

may also be noted that Equation (26) can be solved for refσ  
by using the 'Goal Seek'  tool in an Excel spreadsheet or an 
equivalent solver. 
 
In the derivation of Figure 4, the functions  and ( )y

s
ref /f σσ

( )yref /f σσ in Equations (25) and (26) are again assumed to 
have the same form as the Option 1 FAD, Equation (9). 
5
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Figure 4 – Definition of reference stress under combined 
loading (TDFAD approach) 
 
 
For consistency with the present R6 procedures [1], it may 
be noted that, in view of Equation (26), ρ factors, based on 
the relationships of Figure 4, could be calculated directly, 
as functions of ( )r

p
I

s
J L/K/K  and Lr, from Equations (5), 

(8), (14), (15), (16) and (26), and 'Look-up' tables provided 
for the determination of ψ and φ factors as in R6[1].  
However, adopting the present approach there is no 
requirement to use ρ factors in the calculation of KJ. 
 
If  is defined in terms of  in the manner of [4] then 
Equation (25) becomes 

s
refσ s

JK

 

            
y

p
ref

y

s
ref

p
I

s
J

y

s
ref f

K
K

σ
σ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ
σ

=
σ
σ

                (27) 

 
and Equation (24) becomes 
 

  ( ) ( )
2/1

s
J

p
I

2s
J

2

r

p
I

J KK2K
Lf

K
K

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=   (28) 

 
Hence, KJ can be derived directly from Equation (28) 
without requiring 'Look-up' tables for ψ and φ factors, and 
it can be seen that KJ is independent of .  It is also seen 
from Equation (28) that in the absence of primary stress, 

, and in the absence of secondary stress 

s
IK

s
JJ KK =

( )r
p
IJ Lf/KK = , which is Equation (3).  As previously for 

Equation (20), the required inputs for the evaluation of KJ 
are , ,  and , with  any of the three FAD 
options of R6[1].  Also, compared to Equation (20), since ψ 
and φ factors are not required, the influence of the Option 1 
FAD on values of  is removed, when higher options are 
used.   

p
IK s

IK s
JK rL ( )rLf

JK
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Alternatively, for the calculation of values of ,  may 
be obtained from Equation (27) using the 'Goal Seek' tool 
in an Excel spreadsheet or an equivalent solver, and 

JK s
refσ

refσ  
similarly obtained from Equation (26).  may then be 
derived from the equation 

JK

 

               ( ) p
ref

p
I

yref

ref
J

K
/f

K
σσσ

σ
=                 (29) 

 
which is identical to Equation (7).  This equation gives the 
identical value of  as Equation (28).  JK
 
Equation (29) may also be used to determine  using the 
R6 approach with the equivalent reference stress 
determined from Figure 2.  Values of  obtained in this 
manner will be identical to those obtained using Equation 
(20). 
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A most important result which transpires from modifying 
Equation (23) in the manner of Equation (28) is that, 
following this alternative approach, the  coordinate of 
the R6 assessment point  becomes  
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                                                                  (30) 
 
It is seen from Equation (30), that in the absence of 
secondary stress, , which is Equation (2).  mat

p
Ir K/KK =

 
Adopting this alternative approach the  coordinate 

remains as defined by Equation (1).  i.e. . 
rL

y
p
refr /L σσ=

 
Hence, the assessment point  may be compared 
with the FAD in the same manner as the R6 approach but, 
most significantly, the determination of the  coordinate 
does not require the calculation of a ρ factor as used in 
Equation (10a) of the standard R6 approach.  This 
alternative approach, therefore, requires the same basic 
inputs as the standard R6 procedure, but is far simpler to 
apply as it does not require the use of 'Look-up' tables. 

( rr K,L )

rK

 
WORKED EXAMPLE 
Finite element analysis 
Finite element analyses have been performed using the 
ABAQUS general purpose finite element program.  One 
symmetric half of a cylinder was modelled using 900 
parabolic axisymmetric elements  with the smallest 
elements 100μm in size.  The cylinder was 1000 mm high 
cylinder, 100mm thick with 550mm outer radius, and 
contained a fully circumferential crack at the inner surface 
of depth 10mm.  Material properties were taken as those of 
SA508 ferritic steel. 
6
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The applied primary loading was internal pressure, and 
secondary loading, consisting of a linear temperature 
gradient across the wall of the cylinder, was applied with 
inner and outer surface temperatures of -140oC and 140oC, 
respectively.  This temperature range was selected to give 
plastic strains at the surfaces of the cylinder, in the absence 
of pressure, whilst keeping the bulk of the section elastic.  
 
The finite element value of the limit load, MPa9.94PL = , 
was determined as the value of pressure at which the CDF, 
J, for a perfectly plastic material of yield stress strength, 
tended to infinity. 
 
Elastic and inelastic values of CDF, Je and J respectively, 
were determined for pressure loadings only, with values of 
pressure up to 1.1×PL, to give the Option 3 FAD, 
 
           ( ) ( ) p

J
p
I

2/1
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In Figure 5, this curve is compared with the Option 1 FAD, 
Equation (9), and the Option 2 FAD given by  
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with Lr P/PL =  and refε  the strain at a stress yrL σ . 
 
Of the required inputs to Equations (20) and (28), to 
determine estimates of CDF, values of  were provided 
from the pressure loading cases through the relationship 
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Figure 5 – Comparison of R6 FADs 
 
 
where ( )21/EE ν−=′ .  Other inputs, elastic and inelastic 

values of CDF for secondary loading only,  and , 
respectively, were obtained from the single thermal loading 
case.  Values of the CDF for combined loading, , were 

s
IK s

JK

JK
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evaluated for the full range of pressure loadings combined 
with the single thermal loading case. 
 
Estimates of KJ
Estimates of KJ are derived from Equations (20) and (28) 
with inputs from finite element analysis and the FADs of 
Equations (9), (32) and (31).  
 
Comparison of results 
By determining all inputs to CDF estimation schemes from 
finite elements analyses, any difference between estimates 
of  and its finite element value arises from the 
estimation procedure rather than by inputs to the equations.  

JK

 
Comparisons of values of crack driving force with those 
obtained from estimation procedures are presented in 
Figure 6, where  estimates have been normalised by 
corresponding finite element values and plotted against the 
parameter .  Results based on the R6 and 
alternative procedures are shown in Figures 6a and 6b, 
respectively.  Clearly, at ,  and all curves 
start at a  ratio of unity.  At higher values of , all 
curves have  ratios greater than unity, indicating the 
conservatism of the methods in all cases. 
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DISCUSSION OF RESULTS 
Differences between the curves of Figures 6a and 6b may 
be explained in terms of equivalent reference stress and the 
different FAD options.  From Equations (7) and (29), , 
for both the standard R6 and the alternative method, is 
given by the equation 

JK
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where ( )yref /f σσ  is the curve of any of the options of 
FAD, shown in Figure 5.  
 
Hence, for a given value of reference stress, the higher the 
FAD option number the higher the value of the function 
( )yref /f σσ , from Figure 5, and the lower the value of  

from Equation (33).  A trend which is clearly exhibited in 
Figure 6, with increasing divergence of the curves with 
increasing values of , and hence also increasing values 
of reference stress.  It may also be noted from Figures 2 
and 4 that, for increasing values of primary and secondary 
reference stress, higher values of equivalent reference stress 
are predicted by the approach [3], adopted in R6, compared 
to present proposals.  Therefore, greater deviation from 
unity is exhibited in Figure 6a compared to Figure 6b, in 
which values of reference stress are lower for the same 
value of .  It is also clear from Equation (33) that modest 
increases in reference stress may produce significant 
increases in values of crack driving force.  e.g. it has been 

JK

rL

rL
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shown that for a value of , the difference in 
reference stress between R6 and the alternative method is 
7% which produces a 39% difference in the crack driving 
force value, when using the Option 1 FAD.  Therefore, 
present results indicate that the better estimates of reference 
stress and hence crack driving force are provided by the 
alternative method.  Although, clearly, much further finite 
element validation, with different geometries, loadings and 
material properties is required before the alternative 
procedure could be considered for inclusion in R6 [1]. 

68.0Lr =

 
 CONCLUDING REMARKS 
An alternative definition of the R6 assessment point 
parameter  has been proposed, for combined primary 
and secondary loading.  i.e.  

rK
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Figure 6a – Comparison of KJ estimates with FE values 
(R6 Method) 
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Figure 6b – Comparison of KJ estimates with FE values 
(Alternative Method) 
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where the stress intensity factors and material toughness 
symbols K have the same definitions as those of R6, and 
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Dow
the function  is any of the FAD options of R6.  The 
definition of the  parameter remains unchanged. i.e. 

, where again stresses σ  retain their R6 
definitions. 

( )rLf

rL

y
p
refr /L σσ=

 
This definition of , which is based on the approach for 
combined loading used in the R5 time-dependent FAD 
procedure, has the distinct advantage over the conventional 
R6 approach in that it does not require the determination of 
a ρ (or V) factor, and hence does not require the use of 
'Look-up' tables.  It also provides consistency between 
R6[1] and R5[2] in the definition of reference stress for 
combined primary and secondary loading. 

rK

 
In order to compare this alternative approach with the 
conventional R6 approach, finite element analyses have 
been performed to evaluate crack driving force for a fully 
circumferential internal defect in a thick-walled cylinder 
under internal pressure and a radial through-wall 
temperature gradient.  All inputs required for the estimation 
of crack driving force by both the conventional R6 and the 
alternative approach have also been determined by finite 
element analysis.  Hence, any differences between 
estimates of crack driving force and finite element values 
arise solely from the estimation procedures.   
 
Results for crack driving forces, for a range of applied 
pressures and a constant value of linear temperature 
gradient, have shown that both estimation procedures, the 
conventional R6 approach and the alternative approach, are 
conservative compared to finite element values, with 
conservatism increasing with increase in applied pressure 
and decreasing with the higher the R6 FAD option number 
used.  The degree of conservatism is far greater for the 
conventional R6 approach, especially at higher values of 

.  The results indicate that the alternative procedure has rL
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considerable potential advantage over the present R6 
procedures both in simplifying the application of the 
procedure and reducing levels of conservatism.  Although, 
clearly, much further finite element validation, with 
different geometries, loadings and material properties is 
required before the alternative procedure could be 
considered for inclusion in the R6 defect assessment 
procedure. 
 
ACKNOWLEDGEMENTS 
This paper is published by permission of Serco Assurance 
and Rolls Royce plc.  The authors would also like to thank 
Mr H Dodia of Serco Assurance for the provision of finite 
element calculations.  
 
REFERENCES 
[1]  R6: Assessment of the integrity of structures containing 
defects, British Energy Generation Limited, Revision 4 
(2001) 
[2]  R5: Assessment procedure for the high temperature 
response of structures, British Energy Generation Limited, 
Issue 3 (2003) 
[3]  R A Ainsworth, The treatment of thermal and residual 
stresses in fracture assessments. Eng. Fract. Mech., 24, 65-
76, (1986). 
[4]  D G Hooton and P J Budden, R6 developments in the 
treatment of residual stresses. ASME PVP, 304, 503-509, 
(1995). 
[5]  R A Ainsworth, The use of a failure assessment 
diagram for initiation and propagation of defects at high 
temperatures.  Fatigue Fract Engng Mater Struct 16:1091-
1108 (1993) 
[6]  D G Hooton and R A Ainsworth, Failure assessment 
diagrams for high temperature defect assessment under 
variable loading conditions. SMiRT 16, Washington, 
(2001). 
© 2006 by Rolls-Royce plc and Serco, Ltd.

Use: http://www.asme.org/about-asme/terms-of-use


