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Abstract. While cycle-accurate simulation tools have been widely used in mod-
eling high-performance processors, such an approach can be hindered by the in-
creasing complexity of the simulation, especially in modeling chip multi-processors
with multi-threading such as the network processors (NP). We have observed that
for NP cycle level simulation, several days of simulation time covers only about
one second of the real-world network traffic. Existing approaches to accelerating
simulation are through either code analysis or execution sampling. Unfortunately,
they are not applicable in speeding up NP simulations due to the small code size
and the iterative nature of NP applications. We propose to sample the traffic input
to the NP so that a long packet trace is represented by a much shorter one with
simulation error bounded within ±3% and 95% confidence. Our method resulted
one order of magnitude improvement in the NP simulation speed.

1 Introduction

Network processors have emerged as a solution to programmable routers with high
processing capability. To better understand the effectiveness of the NP architecture,
there have been a number of analytical models to quantify both the architecture and
the energy features of an NP [2, 3]. Compared with those analytical models, a cycle-
accurate NP simulator can faithfully emulate micro-architectural behaviors, which is
more appropriate for optimizing designs in order to achieve better processing capabil-
ity and energy efficiency. However, cycle-accurate simulation of NPs is extremely time
consuming. For example, one second of IXP 2400 hardware execution (600M cycles)
corresponds to 10 days of simulation time in the Intel SDK 4.0 environment [1] on
a Intel Xeon 3GHz PC with 512 MB memory in our experiment1. Similar results are
observed even in a much lightweight simulator that we developed previously [8]. Ap-
parently, the slow simulation speed limits its advantages for architectural optimizations
and design space exploration over a large time scale.

There have been a number of techniques proposed to accelerate architectural simu-
lation speed. The prevailing methodologies are: 1) truncated execution — terminating
execution at a specified point; 2) using reduced input sets — using a smaller input in-
stead of a large input for shorter execution; 3) SimPoint [4] — a tool that selects and

1 This is obtained from running the “OC12 pos gbeth 2401” included in Intel SDK 4.0 with one
Ethernet and one POS port under uniform arrival rate



simulates representative segments of a program (termed simulation points) via the anal-
ysis of the execution frequencies of basic blocks. The intuition behind it is that the
overall behavior of the entire execution can be characterized by certain segments of the
program executing an input. Machine learning techniques are used to divide execution
intervals into clusters, and one or more points from each cluster for simulation. The
final results are weighted summarized from each cluster result. One challenging issue
how to choose the number of clusters K. In [16], Perelman et al. proposed a Variance
SimPoint algorithm which used statistical analysis to guide the selection of K such that a
K-clustering will meet a given level of confidence and probabilistic error bound. 4) sam-
pling — the simulation intervals are sampled for execution from the entire simulation
duration. Conte et al. [15] first applied statistical sampling in processor simulations in
which the confidence and the probabilistic error bounds are used to control the accuracy.
Another more rigorous statistical sampling method, SMARTS [5], assembles many de-
tailed small simulation points with fast-forwarding (i.e. functional simulations) between
them. This approach achieved low error bounds of ±3% on average with a high confi-
dence of 99.7%. A recent study [7] showed that SMARTS and SimPoint are both very
accurate, while truncated execution and using reduced input sets have poor accuracy.

However, methodologies in SimPoint and SMARTS cannot be directly applied in
NP simulations. The major reasons are: 1) different benchmark characteristics. Un-
like SPEC2K benchmarks that have large and complex execution paths, the NP bench-
marks periodically execute the same programs for processing multiple packets. Also, a
single run of the NP program (processing a single packet) is very short, varying from
hundreds to tens of thousands cycles only. With such short code paths, there is no need
for applying SimPoint to find representative execution points, because most of the in-
structions are representative. 2) different architectures and programming models.
For SPEC2K, both SimPoint and SMARTS are applicable for single threaded simula-
tion. However, the NP architecture is typically multi-cored with multi-threading. Each
core may be parallel or pipelined with its neighboring cores. Thus, the overall NP per-
formance not only depends on the individual execution path in each core, but also the
interactions among the cores and threads. 3) different simulation focuses. The stan-
dard input sets for SPEC2K are typically used without adaption. Thus results depend
more on the program itself. In NP simulation, the metrics depend on not only the ap-
plication code, but also the incoming traffic workload, e.g. low vs. high traffic volume,
Ethernet vs. WWW traffic. Different traffic inputs will cause varying execution paths,
and consequently tremendously different architecture states. Therefore, the input traffic
analysis is more important for NP performance estimation than the code analysis.

We propose to conduct the input data analysis for accelerating NP simulations, com-
plementary to the existing simulation techniques. We evaluate the effects of different in-
put parameters to the NP architecture states, and observe that redundant simulation do
exist. We show theoretically as well as confirm experimentally that sampling network
inputs can significantly reduce the input sizes, while still bounding the error. In order
to estimate the variation of the collected results, we used a similar approach as in the
Variance SimPoint [16] algorithm with the difference in that we perform clustering on
the input. Also, there is no need to consider warmups or fast-forwarding issues during
the sample simulation due to the specialty of NP applications. This is because skipping



packets in the input traces has nearly no affect to the future packet processing due to the
low locality in the packet payloads. With our methodology, we can achieve one order
of magnitude speed up for the NP micro-architecture simulation.

In the next section, we discuss the characteristics of NP simulation inputs and the
correlation between them and performance metrics. In section 3, we study the variations
of NP simulation properties. In section 4, the stratified input sampling approach, as well
as simple random sampling and systematic sampling are presented. Section 5 presents
the results of proposed sampling methods. Section 6 concludes the paper.

2 Correlation between input and NP performance metrics

2.1 NP Programming model and Benchmark Applications

The programming model for a typical NP follows the receive-process-transmit paradigm
[1]. The receive task collects the incoming packets from the network interfaces and re-
assembles sub-packets when necessary. The process task executes certain application
functions to the packets such as packet filtering and address translation. The transmit
task segments the packets and instructs the hardware to send them to the correct net-
work port. The three tasks are mapped to different PEs with queues latching packet
handles between them. There are four benchmarks ported to the original NePSim [8].
We compiled and ported three more cryptographic applications [9] for our experiments,
and the descriptions are listed in table 1. More details about the benchmarks can be
found in [8, 9].

Table 1. Description of the NP benchmarks

Benchmarks Description

Ipfwdr IPv4 Ethernet and IP header validation and trie-based routing-table lookup.
Nat Network address translation, retrieve a replacement address and port for packets.
Url Route packets on the bases of their contained URL request.

Md4 Cryptographic algorithm that produce a 128-bit fingerprint, or digital signature.
AES Cryptographic algorithm incorporated into 802.11i

Blowfish Cryptographic algorithm incorporated into Norton Utilities
RC4 Cryptographic algorithm incorporated into SSL/TSL, 802.1x

2.2 Characterization of Simulation Inputs

The major traffic parameters that affect the execution paths of packet processing
are packet size, arrival rate, packet source/destination addresses, protocol types. In the
following, we will discuss how much these parameters affect the simulation results.

– Packet size. Larger packet sizes usually cause longer packet processing time. For
header processing applications, only headers will be decapsulated and processed,
so larger packet size does not add much work to the processing stage. However,
the receive and transmit stages are lengthened since longer time is spent moving
packets between the bus interface and the packet buffer. For payload processing
applications, larger packet sizes translate to more work in payload processing, and
thus they cause longer processing time.



To show the relationship between the packet size and packet processing time, we
run the seven benchmarks in NePSim with increasing packet sizes from 64 to 1088
bytes (i.e. 1 to 17 mpackets, and mpacket is the unit packet processing size in IXP
family NPs), as shown in Figure 1 and 2. All other parameters are fixed. The arrival
rate is 1000 packets/second/port with 16 device ports in total. We observe that av-
erage packet latencies increase with the packet sizes in all the seven benchmarks,
and the cryptographic benchmarks aes, blowfish, rc4 show linear increasing trend.
This is because they spend most of the time in processing the packet payload stored
in SDRAM. Thus the number of SDRAM accesses increases linearly with packet
sizes for cryptographic benchmarks.
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Fig. 1. Average packet latency of different packet
sizes.
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Fig. 2. Average number of SDRAM accesses per
packet.

– Packet arrival rate. This parameter affects the NP architecture states in several
ways. First, the threads execute different parts of the code under different arrival
rates. At low traffic workload, the threads might be busy polling the packet de-
scriptor queues to see if a new packet is ready. This is the case with functional
pipelining[1] where the PEs are interleaved with packet descriptor queues. Un-
der high traffic volumes, the threads work mostly on packet processing. Since the
code segments for packet polling and processing show different computation re-
quirements, the simulation results for low/high traffic arrival rates are different.
Second, under high traffic volumes, the average memory access latency can also
be increased because of higher demands on the memory and the longer queuing
time when the memory is saturated. As a result, the total packet processing time
becomes longer.

Figure 3 shows the relationship between the packet arrival rate and packet la-
tency. Similarly, we only vary the arrival rate from 0.1Mbps, 1Mbps, 10Mbps to
100Mbps per port with 16 ports in total. The packet size is set fixed as 128 bytes,
and the remaining parameters are unchanged. As we can see, the packet latencies
do not change much until the benchmarks approach their maximum throughput.
For ipfwdr and nat, their maximum throughput are approximately 1.3Gbps. There-
fore, we observe longer packet latency when the input traffic is 1.6Gbps. For the
payload applications, we observe longer packet latency at 160Mbps arrival rate,
because their maximum throughput are around 150Mbps. Figure 4 and 5 report
the SDRAM and SRAM average access latencies at different packet arrival rates.
The memory latency here includes the memory queuing time, and it increases sig-



nificantly when the inputs approach the applications’ maximum throughput. The
memory here more or less becomes the performance bottleneck.
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Fig. 3. Average packet latencies (128B/pkt).
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Fig. 4. Average SDRAM access latencies
(128B/pkt).
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Fig. 5. Average SRAM access latencies (128B/pkt).

– Packet source/destination addresses and protocol types. Different values in packet
headers trigger different execution paths. Packet source/destination addresses are
important information for applications that need to perform routing table lookups
such as the IP forwarding benchmark. However, through experiments, we found
the variation in destination addresses only cause at most 2% variation in packet
latencies for ipfwdr. This is because the percentage of the code for address look
up is relatively small. Therefore, the variance in the destination addresses does not
affect the NP performance significantly.
The NP can be programmed to process packets of different protocol types. How-
ever, this does not necessarily cause significant differences in NP architecture states
when packets of one protocol type dominates. Take the ipfwdr as an example, the
code length and complexity for different protocols are usually similar. The execu-
tion paths of processing different IP packets only differ by a small amount in the
packet header decapsulation part, while the IP address lookup and exception check-
ing/handling parts are the same. Therefore, in our input sampling technique, we do
not consider the IP packet distribution from different network protocols.

2.3 Correlation Between Inputs and NP Performance Metrics

In this section, we demonstrate that the NP architecture states are correlated with the
network traffic inputs. Only if they are correlated, can we say a particular traffic pattern
corresponds to a certain architecture state (e.g. throughput, packet latency). Thus by



identifying representative subsets of traffic, we can skip the simulation of those packets
that produce similar architecture states.

To quantitatively measure the correlation, we divide the simulation time to n win-
dows with window size as 0.01 second (will be explained in section 4). We then calcu-
late the correlation coefficient r [13], for data pairs: (arrival rate, packet loss), (arrival
rate, packet latency), (arrival rate, PE idle time) and (arrival rate, IPC).

r =
∑n

i=1(xi − x̄)(yi − ȳ)
√

∑n
i=1(xi − x̄)2 ∑n

i=1(yi − ȳ)2
, i = 1, ...,n (1)

r > 0 means the data pairs are positively correlated, and r < 0 means that data pairs
are negatively correlated. A value of |r| > 0.8 means that the data pairs have strong
linear relation. A value of |r|< 0.3 means that the linear relation is relatively weak. We
plot the values of r for nat given a set of arrival rates (from 0 to 1800Mbps with 128
bytes per packet and Poisson distribution for the packet arrival rate in Figure 6. Other
benchmarks show similar trend as Figure 6.
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Fig. 6. Correlation of arrival rate and NP metrics (Poisson arrival pattern, 128B/pkt).

We can see from Figure 6 that there are three sections where different metrics show
different degrees of correlation with the packet arrival rate. Under low traffic volumes
(<300Mbps), there is no packet loss and thus this metric has no correlation with the
packet arrival rate. The packet latency has weak correlation with the arrival rate, which
means a little variation of arrival rate at light traffic volume does not cause much differ-
ence in the average packet latency. The other two metrics, IPC and the PE idle time are
both strongly correlated with the packet arrival rate. IPC increases and the PE idle time
decreases almost linearly with the increasing packet arrival rates.

With medium traffic volume (300Mbps<packet arrival rate<1300Mbps), the corre-
lation stays about the same for all the metrics except for the packet latency. The r value
for data pairs (arrival rate, packet latency) approaches to or exceeds 0.8. This means the
packet latency has relatively strong correlation with the packet arrival rate at medium
traffic volume which is the typical case for an NP.

With high traffic volume (packet arrival rate>1300Mbps), all the metrics we mea-
sure exhibit different correlations with the packet arrival rate. First of all, the benchmark



nat reaches its maximum throughput at 1300Mbps so some of the incoming packets will
be dropped. At this time, the input traffic already saturates the NP processing capabil-
ity, so all metrics (IPC, packet latency, PE idle time) no longer fluctuate with the input
except for the packet loss. This metric starts to become positively linear to the packet
arrival rate.

From this study, we know that the performance results (IPC, packet latency and PE
idle time) under medium to high traffic volume are linearly correlated to the inputs.
Thus sampling inputs at medium to high traffic volume can effectively help calculate
the corresponding architecture states.

3 Variation of NP Simulation Properties

In this section, we will examine the variation of architecture states, and its relation-
ship with the variation of traffic input. The study of the architecture states is important
because their variation is used to estimate the required sample sizes to achieve a certain
confidence level. A large variation corresponds to a large sample size.

According to the sampling theory [13], the estimate of a property x such as the IPC,
average packet latency etc. can be represented as:

X̄ ± z× σX√
n

(2)

where X̄ is the mean value of property x in simulation, z is percentile of the standard
normal distribution (z=2.0 for 95% and z=3.0 for 99.7% confidence), n is the sample
size, and σX is the standard deviation of property x which depends on both simulation
configurations and the input workload. To measure the sampling variation of the esti-
mate relative to the mean of the property x being estimated, it is a standard practice to
use the coefficient of variation Vx (Vx = σX

X̄ ). Large Vx means the sampled values vary
significantly around the mean value X̄ , thus a large sample size is needed. Small Vx

means the sampled values are quite homogeneous, thus a small size is enough. Formula
2 can also be written as:

X̄ ± z · Vx√
n
· X̄ = X̄ · (1± z · Vx√

n
) (3)

To bound the error rate z · Vx√
n at confidence interval [−ε · X̄ , +ε · X̄] and ε is a

confidence percentile chosen by users, e.g. 3%, 5%, the sample size n should be changed
proportionally to V 2

x , n ≥ ( z·Vx
ε )2. A large Vx requires a large sample size n to meet a

certain confidence. The coefficient of variation Vx (x is a performance metric) is rarely
available unless we run the full simulation. Often, an estimation of Vx, V̂x is used. For
example, in SMARTS, V̂x is estimated from a large initial sample set, as long as the IPC
in later periods do not vary significantly. In NP simulation, a large initial sample set
cannot estimate the true Vx accurately because the traffic volume after the initial period
may change significantly. Correspondingly, the value of Vx will be different. Next, we
analyze the possibilities and the challenges of estimating the Vx.

We define Vper f ormance as MAX((Vx1 ,Vx2 , · · · ,Vxm), where x1, x2 ... xm represent
our target simulation metrics (e.g. packet loss ratio, packet latency etc.). Hence, the
Vxs are subsumed in the Vper f ormance. Recall from what was discussed in section 2, the



variation of an architecture metric is correlated with the variation of the input traffic, or
the workload of the NP. Let Vworkload be MAX(Varrival rate , Vpacket size...), which can be
easily obtained by parsing the input traffic. Vworkload is correlated with Vper f ormance and
serve as an estimate to Vx.

If Vworkload ≥Vper f ormance, we can conservatively use Vworkload to replace Vper f ormance.

Hence, the calculated sample size n̂ = ( z·Vworkload
ε )2 ≥ (

z·Vper f ormance
ε )2 = n. In other words,

taking n̂ elements can bound the error rate at a certain confidence level.
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To see if Vworkload ≥ Vper f ormance is generally true, we run simulations in NePSim
with different input traces. All the input traces are extracted from real world traces
from NLANR[12]. Each trace contains 50 second network packets (roughly 500K to
2500K packets). For all our targeting NP metrics, The relationship between Vworkload

and Vper f ormance can be categorized into three groups:

– Group 1: Vworkload > Vper f ormance. Some performance metrics such as IPC and PE
activities (execution, stall, idle, abort) vary less significantly than the traffic volume.
This phenomenon happens because of the special NP architecture and programming
model. When there is a traffic spike, the IPC and PE activities do not change dra-
matically because the internal buffering scheme in NP’s receive-process-transmit
model smooths out them effectively when the traffic volume is not overly high.
The packet latency in relatively low traffic volume shows less variation than the
traffic input also. Figure 7 plots such an example. In this figure, the traffic volume
varies between 0 to 6x of the mean value. However, the corresponding average
packet latency only varies within a small window: [0.5x, 1.5x].

– Group 2: Vworkload ≈ Vper f ormance. For cryptographic benchmarks, the variation of
the packet latency is very close to Vworkload . Figure 8 shows the normalized variation
of packet latency with respect to the packet arrival rate for rc4. We can see that the
packet latency changes proportionally to its arrival rate.

– Group 3: Vworkload < Vper f ormance. At a high traffic volume, we observe that the
Vper f ormance might be larger than Vworkload , especially for packet loss and packet
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latency. Figure 9 shows that the packet loss metric has higher variation than input
arrival rate, when the arrival rate approaches 1000Mbps for ipfwdr. This is because
if the NP is close to saturation, the queuing systems in NP lengthen the service
latency significantly (as shown in Figure 3 to 5), which magnifying the variations
of internal performance metrics.

If all the simulations belong to group 1 and 2, we can safely use Vworkload to calcu-
late a sample size. However, we did find that some simulation periods belong to group 3.
In Figure 10, we plot the Vworkload and Vx of different metrics for nat with packet arrival
rate varying from 0 to 1800Mbps. We observe that under low and extremely high traffic
volumes, the coefficient of variance of our targeting metrics tend to be small. These
periods belong to group 1, and a small sample size is enough for a good simulation.
However, with medium to high traffic volume, the variation of the NP performance can
be larger than the variation of the input. Using Vworkload to replace Vper f ormance might un-
derestimate the sample size and introduce inaccuracy. Therefore, we cannot completely
replace Vper f ormance with Vworkload , and we still need to estimate the Vper f ormance from
an initial simulation. The difference between ours and SMARTS is that we extract the
initial simulation points according to the distribution of the workload. We will illustrate
our method in the next section.

4 Statistical Input Sampling Technique

Developing an input sampling mechanism for NP simulation requires the evaluation
of the trade-off between the sample size and the simulation accuracy. Our goal is to
find a sample size that accurately describes the entire population of the packets. As we
discussed earlier, Vper f ormance cannot be known unless a full simulation is conducted.
Here we propose a two-phase sampling process to solve this problem. The idea of this
process is to get an estimation of Vper f ormance, V̂per f ormance through an initial simulation.
The input for the initial simulation is sampled from original input trace, according to
Vworkload . Recall that Vworkload is easily estimated by parsing the input trace. If the initial
sample size is large enough, V̂per f ormance will be quite close to Vper f ormance.Thus we can



use V̂per f ormance to estimate a more accurate sample size. The process of two-phase
sampling mechanism is illustrated in Figure 11.

In the first phase we conduct a pre-survey through an initial simulation. We use
Vworkload to estimate the initial sample size n1. We then feed the initially sampled
packets to the simulator and calculate V̂per f ormance as an estimation of Vper f ormance. If
V̂per f ormance > Vworkload , we use V̂per f ormance to estimate the accurate sample size n2.
We sample the additional n2 − n1 elements from the input trace and simulate them. If
V̂per f ormance ≤Vworkload , we know enough elements have been simulated, and the addi-
tional sampling is not necessary. The post processing stage will multiplex the sampled
simulation results to get the final results. In the following, we will describe the input
sampling using three methods: simple random, systematic random and stratified ran-
dom samplings, and discuss their trade-off.
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Fig. 11. The two-phase input sampling methodology for NP simulation.

4.1 Simple Random and Systematic Random Samplings

Suppose the full input trace has N-second of packets. Each sample contains U-
second of traffic packets. If there are n samples, we get the total sample size as n ·U .

The simple random sampling uniformly selects n periods of traffic packets from the
full input trace at random. The systematic random sampling selects the sample periods
at a fixed sampling interval k such that n = N/k. As explained in section 3, to bound
confidence interval ±ε ·X̄, the sample size should satisfy:

n ≥ (
z ·Vx

ε
)2 (4)

4.2 Stratified Random Sampling

Simple random sampling and systematic sampling, each involves taking a sampling
from a population as a whole, neither requires identification of subdomains or sub-
groups before the sample is taken [10]. In other words, they do not differentiate between
the high traffic volume and low traffic volume. Additionally, they do not exploit the
frequent similar behaviors in network traffic traces, resulting many redundant sample
collecting. This observation motivates us to first partition the traffic inputs into groups



or strata (low, medium, high traffic etc.), and sample separately within each stratum.
The resulting sampling design is the stratified random sampling. The purpose of strat-
ification is to minimize the intra-stratum variance while maximizing the inter-stratum
variance. Thus a small sample size within each stratum can meet the desired confidence.
In addition, the sample sizes taken from strata can be non-uniform, depending on the
variations in the strata.

The process of stratified trace sampling is illustrated in Figure 12. We first cluster
the traffic trace into K strata based on the packet arrival rate and the packet size using
the K-means algorithm [11]. The K-means algorithm is one of the fastest clustering
algorithms. It clusters the elements according to their distances to the cluster centroid,
and iteratively change the cluster centroid until element membership cease to change.
The ratio between the intra-cluster and inter-cluster coefficient of variations, denoted
by βCV [14], is a useful guide to determining the quality of the clustering process.
The smaller the value of βCV , the better the clustering. From statistical experience, we
choose the stratum size K from 3 to 15 so that the sample sizes in different strata are
not too small. Within a particular stratum h, we select a sample of nh elements from the

Stratified Trace Sampling

1. Divide the traffic trace to N periods, measure the throughput and average
packet size of each period.
2. Cluster the N periods using K-means algorithm according to the throughput
and average packet size.

a. Select the number of strata K(3 ≤ K ≤ 15) that produces strata with less
than 90% of minimum βCV and sample size.
b. Calculate required sample size in each stratum, based on the strata sizes
strata variations and desired confidence interval.

3. Sample the traffic trace in each stratum and calculate weight of each sampled
period, which is proportional to the total number of elements in the stratum.

Fig. 12. Process of stratified trace sampling

Nh elements in the stratum, and each element is measured with respect to some variable
x (i.e. throughput, packet size).

To calculate nh, we apply the optimal sample allocation method[6] [10]. The intu-
ition behind this method is that the optimal number of sample elements to be taken from
a given stratum is proportional to Nh, the total number of elements in the stratum, and
to σhx, the standard deviation of x among all elements in the stratum. To ensure that the
central limit theorem [10] holds, nh should not be too small. In our implementation, we
constrain the minimum sample size for each stratum to be 30.

The stratified trace sampling should generate weights for each sampled element,
because sampled elements selected from larger stratum should be of greater importance.
The weights will be provided to NP simulator, which will scale the simulation result
in the post processing stage. We define weight of a sampled element as Nh

nh
, and the

estimated performance metric x can be represented as

N

∑
i=1

Xi ≈
K

∑
h=1

nh

∑
i=1

Xi

nh
·Nh =

K

∑
h=1

nh

∑
i=1

Xi ·weighti (5)



4.3 The Sample Unit Size Selection

The choice of sample unit size U will affect the variation among the periods, and
consequently the total sample size. Therefore, we should use U that produces smaller
sample sizes. In addition, the U value should be larger than per packet processing time.
Next, we show an example of how to determine the value of U .

Figure 13 shows the traffic volume of a 12-hour traffic trace. We divide it into 24
half-hour traces and use different sample unit size U = 0.001sec, 0.01sec, 0.1sec, 1sec,
10sec to sample each trace. As we can see from Figure 15, the coefficients of variation
approximately reduce from 1.8 to 0.25 as U increases. This phenomenon is intuitive
because the network spikes or dips are smoothed out over longer periods. When U ≥
0.1sec, we observe the required sample sizes increase significantly. This is because
U scales much faster than the reduction of n ( in proportion to Vx

2). In this example,
U = 0.1sec is suitable for sampling because it achieves small sample size and it is
significantly longer than per packet processing time. For comparison purpose, we plot
the required sample size for the 24 traces in Figure 14. We can see that the required
sample size is correlated with the traffic shape in Figure 13. The network spikes appear
in trace 16 and 6 on the x-axis, so do the sample sizes.
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Fig. 13. Traffic volume of Leipzig trace 2002-
11-12 from NLANR, the packets arrived in every
30 seconds.
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Fig. 15. The coefficients of variation of the traces
with various sample unit sizes.
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4.4 Comparison of The Three Sampling Methods

Simple random and systematic random sampling are comparatively easy to imple-
ment, and they are useful to sample traces that have low simulation variations. Inputs
with low or extremely high traffic volumes belong to this category. Stratified sampling
is effective to reduce the sample size for traces with medium to high traffic volume. In
simple random sampling case, usually we need a larger sample size to achieve a spec-
ified confidence level because we know little information about the whole population.
When the population is highly non-homogeneous, the stratified sampling usually per-
forms better than the systematic random sampling and simple random sampling [10].

5 Experiment

In this section, we present the experiment results of input sampling. Since the three
sampling methods can all produce accurate results with large sample sizes, we will com-
pare in two ways: 1) sample sizes for achieving same accuracy 2) for the same sample
size, how much accuracy attainable for the three sampling methods. We run the full
simulation for the original traces, and compare the results with simulations of sampled
traces to get the error rates. We used six inputs extracted from three real world NLANR
[12] traces Leipzig-I, Abilene-I and Tera-I. Leipzig-I is an OC-3 trace collected from an
edge access link. Abilene-I is an OC48 trace collected at an Indianapolis core router.
Tera-I is an OC192 10GigE ethernet trace. Each of the six inputs is 50-second long, and
costs 2 days for full simulation in NePSim. Two of the input traces are low or medium
traffic volume (less than 300Mbps), the other four are high traffic load where packet
loss occurs (higher than 300Mbps). They have different Vworkload , varying from 0.1 to
0.8. For sample size estimation, we bound the error rate at 3% within 95% confidence.
We use 0.01 second as sample unit size, because the tested trace is only 50 second long
and U = 0.01 can effectively reduce sample size.

We expect the simulation time in terms of core cycles will be proportional to input
trace length. The speedup attainable is dependent on the sample size, and thus is affected
by the architectural variation and total trace length. An extreme case is that the incoming
packets are uniformly distributed. In that case, one element is enough to estimate the
overall performance, so the speedup would be very large. However, real world traces
are rarely uniform, so the speedup attainable is lower.

Figure 17 plots the speedups achieved for simulating the six traces over the three
sampling techniques for a common error bound and confidence interval. The system-
atic or simple random samplings can only achieve 1.8x speedup. While using stratified
sampling, the input traces can averagely be reduced by 11 times. We do not observe
higher speedups, because the original traces are short and we constrain the sample size
in each stratum to be at least 30 (due to central limit theory).

Next, we show the results when the same sample size is used across different sam-
pling techniques. Since stratified sampling requires the smallest sample size among
the three sampling methods, we use this smallest sample size for the other sampling
methods and compare the accuracy. Figure 18 shows the error rate of traffic throughput
processed by an NP. Both systematic and stratified sampling can achieve less than 3%
error. The simple random sampling produces higher error rate, e.g. 7% on average for
url. This shows the given sample size is not enough for simple random sampling. Figure



19 shows the error rate of average packet latency. We can see that the three sampling
methods are bounded within 3% error for most benchmarks. This is because packet la-
tency has comparatively smaller variance than throughput, thus the given sample size is
enough. For md4, we observe 4% error rate for simulating one trace. We find the pop-
ulation of this trace is rather homogeneous according to its variance. In this case, the
three sampling methods do not differ greatly. In addition, the error rate of md4 is not
bounded by 3%. It is due to the bias of the estimation of Vper f ormance in the pre-survey
process for this particular trace.

Figure 20 shows the error rate of simulated packet loss ratio. The simple random
sampling has error rates larger than 5%. In worst case, the error rate even achieves 80%
for a highly non-homogeneous input. For the systematic sampling the average error
rates for nat, url, blowfish, rc4 are larger than 3%. It shows that systematic sampling
requires larger sample size to achieve 3% error rate than stratified sampling. Regarding
the remaining performance metrics, such as PE idle percentage and IPC, all three sam-
pling methods can achieve less than 3% error rate, because these metrics have smaller
variation than packet loss and throughput. In this set of experiments, we observe that
stratified sampling performs better than the other two sampling methods for traces that
have large variations.
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Fig. 19. Error rate of simulated average packet
latency using a same sample size
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6 Conclusion

We developed a statistical input sampling methodology for accelerating the NP sim-
ulations.We experimented several sampling techniques and conclude that the stratified
sampling results in the smallest sample size and best accuracy. The speedups we ob-
tained is dependent on the length of the input trace. The longer the trace, the higher
the speedup. The outcome of this study can be used for fast estimating NP activities
and network performance metrics for non-saturated and non-uniform network traffic.
It can also be applied for measurements exploiting dynamic optimizations for better
performance and energy efficiency.
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