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ABSTRACT 

This paper addresses the gate-level design of Carry Select 

Adders aiming at minimizing its delay through a proper selection 

of the Full Adder groups sizes. It starts from a rigorous timing 

analysis of the Carry Select Adder, from which a preliminary 

procedure is formulated to build an incomplete nearly-optimum 

adder. Then, the required number of bits is reached by adding 

remaining bits into proper blocks minimizing the delay increase. 

The design strategy proposed also accounts for the dependence 

of multiplexer (MUX) delay on its fan-out, in contrast to the 

usual and unrealistic assumption of a constant MUX delay. The 

strategy proposed is applied in several design cases, whose 

results shows that the delay achieved is usually minimum, and 

only in a few cases delay it is lower than 2% of the optimum. 

1. INTRODUCTION 

Addition is the most frequently operation performed in both 

general-purpose or application-specific digital systems [1], and 

generally, it greatly affect the overall speed of these systems. For 

this reason, many adder architectures have been proposed until 

now, each of which offering specific tradeoffs in terms of area-

delay-power consumption. When a compromise between speed 

and area is required, Carry Select Adders (CSAs) are a good 

design choice [2], since they can be very fast [3]-[4] with a 

reasonable area, especially when reduced-area schemes are used 

[5].

The architecture of an N-bit CSA, reported in Fig. 1, is based 

on the consideration that carry propagation in a carry chain of N

Full Adders can be speeded up by evaluating the carry output of 

successive digits without waiting for the carry input arrival of the 

previous ones. This is achieved by dividing the carry chain into 

Q different blocks consisting of two Mi Full Adder chains (with 

i=1…Q), one assuming that the block carry input is 1 and the 

other assuming the carry input to be 0. In each block, the correct 

carry (and sum) output is selected through multiplexers 

according to the value of the carry input, i.e. the carry output of 

the previous block. Obviously, the first block does not require 

such a multiplexer, since its carry input coincides with that of the 

adder, which is immediately available at the beginning of the 

computation [6]. 

The speed performance of a CSA strongly depends on the 

block sizing [7] (i.e. on the number of bits Mi computed by 

each block), provided that the bit length N of operands is 

achieved 
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     (1) 

In this paper, a design strategy to minimize the delay of a Carry 

Select Adder is proposed. It allows for sizing the number of bits 

computed by each block, according to criteria derived from a 

preliminary timing analysis of the CSA. The strategy accounts 

for the dependence of the MUX delay on its fan-out, which 

greatly varies depending on the block considered. Optimization 

of group sizes consists of two design steps, the first of which 

leading to a nearly-optimum adder with a number of bits lower 

than the required value N. In the second step, the nearly-

optimum adder is completed by keeping the delay increase 

minimum. 

2. TIMING ANALYSIS OF THE CSA 

Let us consider the N-bit CSA in Fig. 1 with Full Adders 

partitioned into Q groups with sizes (i.e., number of computed 

bits) M1…MQ. The generic i-th block with i>1 consists of two 

chains of Mi Full Adders whose carry input is equal to 0 and 1, 

respectively. Its carry output (as well as sum outputs) is obtained 

by selecting the correct result through the multiplexer MUXi,

whose selection signal is generated by the carry output of the 

previous block, and input signals are the carry outputs of the two 

Full Adders’ chains. Therefore, once all adder input signals are 

available at time t=0, the worst-case time tin,i  (reported in Fig. 1 

in gray line) required to generate the two MUX input signals is 

that needed by the carry propagation through all the Mi Full 

Adders 

CARRYiiin
Mt τ=,     (2) 

where τCARRY is the carry delay of each Full Adder (equal for all 

Full Adders, since they have the same fan-out). Regarding the 

selection signal of the MUXi, it is generated by the MUXi-1 of 

the preceding block, having a delay τMUX,i-1. Therefore, such 

signal is generated at time tsel,i  equal to the sum of τMUX,i-1 and 

the arrival time of the latest between the input and selection 

signal of MUXi-1

1,1,1,,
),max( −−− +=

iMUXiseliinisel
ttt τ

  (3) 

where the MUX delay is assumed to be equal to the sum of its 

intrinsic delay τint (associated with its transistors’ parasitic 

capacitances) and a term proportional to its fan-out FOi-1 (due to 

the input capacitance of the driven gates) 

1int1, −− +=
iFOiMUX

FOτττ
   (4) 
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Figure 1. Carry Select Adder architecture. 

where τFO is the MUX delay increase per unity fan-out increase. 

It is worth noting that the generic MUXi-1 has a fan-out of 

(Mi+1), since it drives the selection input of the Mi multiplexers 

generating the sum bits of the successive block and its carry 

output multiplexer. Therefore, by using eq. (4), relationship (3) 

becomes 

( )1),max( int1,1,, +++= −− iFOiseliinisel
Mttt ττ  (5) 

for i=2…Q. In the following, these relationships are used to 

derive fundamental criteria to optimally design CSAs in two 

cases, one with a uniform block sizes, being useful to introduce 

basic ideas and some notation, and the other with a variable 

sizing.

2.1 Constant block sizing (Mi=M). 

In the constant block sizing, all Q blocks compute the same 

number M of bits, i.e., Mi=M for i=1…Q, where the number of 

blocks Q is equal to N/M. In this case, Full Adder chains in all 

blocks generate their output at time M⋅τCARRY, thus from (2) 

and Fig.1 it follows that 

CARRYiinsel
Mtt τ== ,2,     (6) 

By iteratively substituting eq. (6), eq. (5) becomes 

( ) ( )[ ]12 int, ++−+= MiMt
FOCARRYisel

τττ  (7) 

for i=3…Q, which is always greater than tin,i in (6). Therefore, 

the latest arriving signal of each MUX is always its selection 

signal. Thus the adder critical path crosses all the (Q-2) 

multiplexers MUX2…MUXQ-1 and finally the sum and carry 

output multiplexers of the last block (which are assumed to 

have a unity fan-out, without loss of generality), as highlighted 

in Fig. 1 by the gray line. Thus, the worst-case adder delay is 

( )[ ] [ ]
FOFOCARRYPD

MQM ττττττ ++++−+=
intint

1)2(

      (8) 

where the last Full Adder delay to generate its sum output was 

assumed to be equal to the carry delay without loss of 

generality (a different value simply adds a constant term to (8), 

and hence it does not affect the adder optimization). 

By substituting Q=N/M and minimizing (8), it can be easily 

derived that delay is minimized for the following value of M

( )
FOCARRY

FO

opt

N
M

ττ
ττ
2
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+

=    (9) 

and the resulting minimum delay is 

( )( )
intint,

22 τττττττ −++−=
FOFOFOCARRYoptPD

NN

      (10) 

which is essentially proportional to N . Note that, in order 

to have a speed advantage over the simple Ripple Carry Adder 

(RCA) (whose delay is equal to N⋅τCARRY [7]), the MUX 

parameters τint and τFO must be much lower than τCARRY. These 

conditions are well satisfied in practical cases, as can be 

verified from timing parameters in Table I of Mirror Full 

Adders and TG MUXes (symmetrically designed for minimum 

power consumption) by using a 0.35-µm CMOS process. 

TABLE I 

τCARRY τint τFO

517 ps 97 ps 19 ps 

2.2 Variable block sizing (Mi≥≥≥≥Mi-1)

In the constant block sizing case, the input signal of each 

MUX arrive before its selection signal (i.e., tsel,i > tin,i  from 

(7)). Therefore, from relationship (5), the arrival time tin,i of 

MUX input signals (and hence the number Mi of bits computed 

in the i-th block, from (2)) can be increased up to tsel,i

iseliin
tt

,,
≤      (11) 

without modifying the critical path. This justifies the well-

known higher performance of the variable block size CSA, 

since it allows for increasing the number of bits computed by 

each block without significantly increasing the overall delay. 

Minimum delay is achieved when each block has the maximum 

number of bits satisfying (11), i.e. with a strict equality. In this 

case, the first and the second block size is the same 

2,121 MMM ==     (12) 

since they must provide the selection and input signal of to 

MUX2 at the same time (i.e., tsel,2=M1τCARRY=tin,2=M2τCARRY). 
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For next blocks (i=3…Q), by substituting eqs. (2)-(5), 

relationship (11) with strict equality becomes 

( )1
int1 +++= − iFOCARRYiCARRYi

MMM ττττ  (13) 

and thus Mi results  

β
βα
−
++

= −

1

1i

i

M
M     (14) 

where α and β are the MUX timing parameters  normalized to 

τCARRY, τin/τCARRY and τFO/τCARRY, respectively (much lower than 

unity, in practical cases). 

By iteratively applying (14),  Mi is easily found to result as 
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Now let us minimize the overall delay, by remembering 

that the critical path must cross all MUXes, hence the latest 

arriving signal in the CSA is the output of MUXes in the last 

block. under (11) with strict equality and (2), this signal is 

generated in a time  
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where the adder delay τPD was normalized to τCARRY to simplify 

notation and (15) was used to evaluate MQ. For the same 

reasons as the constant block sizing case, the Full Adder sum 

delay was assumed to be equal to the carry delay and a unity 

fan-out was assumed for the last MUX. 

Once MUX and Full Adder timing parameters are known, 

the CSA delay in (16) is a function of M1,2 and Q, where the 

former can be easily expressed as a function of the latter by 

using constraint (1) after substituting (15) 

( )( ) ( )[ ]
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After substituting (17) into (16) and performing  some tedious 

calculations, relationship (16) results to be minimum for M1,2

equal to 

( ) ( ) β
βα

ββ
βα +−

−⋅⋅−
+=

121ln
2,1 opt

M   (18) 

which is plotted in Fig. 2 for some typical values of α and β.

As a result, the CSA delay is minimized by setting the size of the 

first two blocks equal to (18), and the successive blocks as in 

(15). However, since (15)-(18) provide a non-integer number of 

Full Adders, this  analytical strategy is not adequate in real cases, 

and some modification must be applied, as will be shown in 

Section 3. 

3. A STRATEGY TO DESIGN CSAS 

In this section a practical design procedure that ensures integer 

values of Mi is presented. Being based on the previous timing 

analysis, the strategy consists of two basic steps, where a 

nearly-optimum CSA (whose critical path crosses all MUXes) 

is first built and then refined by adding bits until the required 

number N is achieved. 
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Figure 2. Plot of M1,2opt versus β for some values of α.

3.1 Building a nearly-optimum CSA. 

To achieve integer values of M1,2, result from (18) must be 

rounded to the nearest (nonzero) integer, which can be 

graphically evaluated from the plot in Fig. 2. To ensure that 

the critical path crosses all MUXes, each (integer) value of Mi

for i=3…Q must satisfy (11) 
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      (19) 

that, solved for the greatest integer value of Mi, leads to 
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for i=4…Q (for i=3, (20) must be modified by deleting term 

∑
−

=

1

3

i

j

j
Mβ ).

By rounding (18) and then iteratively evaluate (20), we can 

build a CSA whose blocks have the maximum number of bits 

which allows for satisfying relationship (11) (i.e. ensuring the 

critical path to cross all MUXes). Therefore, by iteratively 

adding such blocks, an increasing overall number of computed 

bits is achieved. Addition of blocks must be stopped when, 

adding one more block, the overall number of computed bits 

becomes greater than the required value N. Let N* the 

maximum overall number of bits lower than or equal to N that 

such a CSA can have. If N*=N, the design procedure is 

concluded. If N*<N, further bits must be added to the nearly-

optimum CSA according to criteria discussed in the following 

subsection. 

As an example, consider a CSA with N=32, α=0.33 and 

β=0.26. From (18), which gives 1.81, M1 and M2 are set to 2, 

while iterative relationship (20) leads to M3=3, M4=5, M5=7 

and M6=11, leading to a 30-bit CSA. Addition of a further 
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block would lead to a number of bits greater than 32 (since 

(20) would result to M7=15), thus the CSA obtained is the 

nearly-optimum with N*=30. Its timing analysis is reported in 

Table II. 

TABLE II 
i 1 2 3 4 5 6 

iCARRYiin Mt =τ/
, 2 2 3 5 7 11 

CARRYiselt τ/
, - 2 3.37 5.26 7.93 11.45 

3.2 Completing the nearly-optimum CSA. 

When the N-N* bits are added to the nearly-optimum CSA, 

relationship (11) is violated, since block sizes in the nearly-

optimum CSA assume the maximum values that satisfy (11). 

Therefore, such bits must be inserted in proper blocks leading 

to minimum delay increase compared to the nearly-optimum 

adder. 

When the first bit is added to the i-th block of this CSA, 

parameter increases by τCARRY from (2), while its tsel,i increases 

by τFO from (5). Since tin,i becomes greater than tsel,i, the new 

critical path starts from Full Adders of the i-th block and  

crosses all the successive MUXes. Thus, the overall delay 

increases by the difference of the new value of tin,i (equal to 

the previous one plus τCARRY) and the previous value of tsel,i. As 

a result, the best block of the nearly-optimum CSA where the 

first bit has to be added is that maximizing difference tsel,i-tin,i

in the nearly-optimum adder. Analogously, eventual 

successive bits added to complete the adder have to be inserted 

in blocks that lead to a minimum delay increase, which are 

identified by simply comparing the delay increase associated 

with each block. 

As an example, let us complete the nearly-optimum CSA 

introduced in the previous subsection, where two more bits are 

required. By inspection of Table II, the first block has to be 

added to the 5-th block (having 
i

in

i

sel
tt − =0.93), thus resulting 

to the CSA shown in Table III. Finally, a simple timing 

analysis of this adder shows that the last bit should be added to 

the 6-th block, leading to the final 32-bit adder with block 

sizes 2, 2, 3, 5, 8, 12. The obtained CSA has the same block 

sizes as the optimum CSA that was identified through 

exhaustive research in the design space (i.e., the CSA obtained 

is optimum). 

TABLE III 
i 1 2 3 4 5 6 

iCARRYiin Mt =τ/
, 2 2 3 5 8 11 

CARRYiselt τ/
, - 2 3.37 5.26 7.93 11.71 

4. VALIDATION AND CONCLUSIONS 

The results obtained with the procedure proposed were 

compared to optimum results (achieved through exhaustive 

selection of block sizing that leads to minimum delay). Delay 

of the former was compared to the latter in more than 100 

design cases by considering different values of N (32 and 64), 

α and β (both ranging from 0.05 to 0.45, to ensure the MUX 

delay with unity fan-out α+β to be lower than τCARRY). Results 

obtained show that in most cases the procedure provides 

optimum results, and only in a few cases delay achieved is 

greater than the minimum achievable by less than 2.5% (some 

results, including all worst cases, are summarized in Table IV). 

Therefore, for practical purposes, the design strategy proposed 

leads to optimum results, and can thus be suitably used to 

optimally set block sizes to minimize the adder delay. 

It is worth noting that the proposed procedure is simple and can 

be used for pencil-and-paper design. In addition, being based on 

a rigorous timing analysis of the adder, the strategy provides the 

designer with an intuitive understanding of the optimum block 

size, affording a deeper insight into the optimization process. 
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TABLE IV 

Ν α 
β 

Design 

procedure 
Block sizing τPD/τCARRY

proposed 2 2 3 5 8 12 12.76 
32

0.05

0.33 optimum 2 2 3 5 8 12 “ 

proposed 1 1 2 3 4 5 7 9 9.93 
32

0.2 

0.21 optimum 1 1 2 3 4 5 7 9 “ 

proposed 1 1 1 1 2 3 3 4 5 5 6 6.85 
32

0.21

0.10 optimum 1 1 1 1 2 3 3 4 5 5 6 “ 

proposed 1 1 1 2 2 3 4 5 6 7 7 
32

0.30

0.08 optimum 1 1 1 1 2 3 3 4 5 5 6 6.82 

proposed 3 3 5 8 13 13 
32

0.33

0.30 optimum 2 2 3 5 8 12 12.92 

proposed 9 9 14 15.48 
32

0.48

0.40 optimum 9 9 14 “ 

proposed 1 1 2 4 5 7 10 14 20 20.25 
64

0.20

0.25 optimum 1 1 1 2 3 5 7 10 14 20 20.1 

proposed 1 1 2 3 5 7 10 15 20 20.58 
64

0.33

0.25 optimum 1 1 2 3 5 7 10 15 20 “ 

proposed 1 1 1 2 3 4 4 5 6 7 9 10 11 11.68 
64

0.42

0.08 optimum 1 1 1 2 3 4 4 5 6 7 9 10 11 “ 

proposed 1 1 2 4 5 8 10 14 19 19 
64

0.42

0.21 optimum 3 3 3 6 8 11 13 17 18.96 

proposed 3 3 6 10 16 26 26.51 
64

0.42

0.35 optimum 3 3 6 10 16 26 “ 

proposed 1 1 2 4 5 8 10 14 19 19.21 
64

0.48

0.21 optimum 1 1 2 4 5 8 10 14 19 “ 
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