
A GATE-LEVEL STRATEGY TO DESIGN CARRY SELECT ADDERS

M. Alioto1, G. Palumbo2, M. Poli2

1 DII – Dipartimento di Ingegneria dell’Informazione, Università di Siena,

v. Roma n. 56, I-53100 - Siena (Italy)

Phone ++39.0577.234632; Fax ++39.0577.233602

malioto@dii.unisi.it
2 DIEES - Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi, Università di Catania,

viale Andrea Doria 6, I-95125 CATANIA - ITALY

Phone ++39.095.7382313; Fax ++39.095.330793
gpalumbo@diees.unict.it, mpoli@diees.unict.it

ABSTRACT

This paper addresses the gate-level design of Carry Select

Adders aiming at minimizing its delay through a proper selection

of the Full Adder groups sizes. It starts from a rigorous timing

analysis of the Carry Select Adder, from which a preliminary

procedure is formulated to build an incomplete nearly-optimum

adder. Then, the required number of bits is reached by adding

remaining bits into proper blocks minimizing the delay increase.

The design strategy proposed also accounts for the dependence

of multiplexer (MUX) delay on its fan-out, in contrast to the

usual and unrealistic assumption of a constant MUX delay. The

strategy proposed is applied in several design cases, whose

results shows that the delay achieved is usually minimum, and

only in a few cases delay it is lower than 2% of the optimum.

1. INTRODUCTION

Addition is the most frequently operation performed in both

general-purpose or application-specific digital systems [1], and

generally, it greatly affect the overall speed of these systems. For

this reason, many adder architectures have been proposed until

now, each of which offering specific tradeoffs in terms of area-

delay-power consumption. When a compromise between speed

and area is required, Carry Select Adders (CSAs) are a good

design choice [2], since they can be very fast [3]-[4] with a

reasonable area, especially when reduced-area schemes are used

[5].

The architecture of an N-bit CSA, reported in Fig. 1, is based

on the consideration that carry propagation in a carry chain of N

Full Adders can be speeded up by evaluating the carry output of

successive digits without waiting for the carry input arrival of the

previous ones. This is achieved by dividing the carry chain into

Q different blocks consisting of two Mi Full Adder chains (with

i=1…Q), one assuming that the block carry input is 1 and the

other assuming the carry input to be 0. In each block, the correct

carry (and sum) output is selected through multiplexers

according to the value of the carry input, i.e. the carry output of

the previous block. Obviously, the first block does not require

such a multiplexer, since its carry input coincides with that of the

adder, which is immediately available at the beginning of the

computation [6].

The speed performance of a CSA strongly depends on the

block sizing [7] (i.e. on the number of bits Mi computed by

each block), provided that the bit length N of operands is

achieved

NM
Q

i

i
=∑

=1

 (1)

In this paper, a design strategy to minimize the delay of a Carry

Select Adder is proposed. It allows for sizing the number of bits

computed by each block, according to criteria derived from a

preliminary timing analysis of the CSA. The strategy accounts

for the dependence of the MUX delay on its fan-out, which

greatly varies depending on the block considered. Optimization

of group sizes consists of two design steps, the first of which

leading to a nearly-optimum adder with a number of bits lower

than the required value N. In the second step, the nearly-

optimum adder is completed by keeping the delay increase

minimum.

2. TIMING ANALYSIS OF THE CSA

Let us consider the N-bit CSA in Fig. 1 with Full Adders

partitioned into Q groups with sizes (i.e., number of computed

bits) M1…MQ. The generic i-th block with i>1 consists of two

chains of Mi Full Adders whose carry input is equal to 0 and 1,

respectively. Its carry output (as well as sum outputs) is obtained

by selecting the correct result through the multiplexer MUXi,

whose selection signal is generated by the carry output of the

previous block, and input signals are the carry outputs of the two

Full Adders’ chains. Therefore, once all adder input signals are

available at time t=0, the worst-case time tin,i (reported in Fig. 1

in gray line) required to generate the two MUX input signals is

that needed by the carry propagation through all the Mi Full

Adders

CARRYiiin
Mt τ=, (2)

where τCARRY is the carry delay of each Full Adder (equal for all

Full Adders, since they have the same fan-out). Regarding the

selection signal of the MUXi, it is generated by the MUXi-1 of

the preceding block, having a delay τMUX,i-1. Therefore, such

signal is generated at time tsel,i equal to the sum of τMUX,i-1 and

the arrival time of the latest between the input and selection

signal of MUXi-1

1,1,1,,
),max(−−− +=

iMUXiseliinisel
ttt τ

 (3)

where the MUX delay is assumed to be equal to the sum of its

intrinsic delay τint (associated with its transistors’ parasitic

capacitances) and a term proportional to its fan-out FOi-1 (due to

the input capacitance of the driven gates)

1int1, −− +=
iFOiMUX

FOτττ
 (4)

II - 4650-7803-8251-X/04/$17.00 ©2004 IEEE ISCAS 2004

➠ ➡
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357347345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

X1 Y1

M1 -bit carry
chain

Cin Cout,1

S1

X2 Y2

M2 -bit carry
chain

0 Cout2,0

S2,0

M2 -bit carry
chain

1

X2 Y2

S2,1

S2

Cout,2

Cout,1

0

1

0

1

1st block 2nd block Q-th block

Cout2,1

XQ YQ

MQ-bit carry
chain

0

SQ,0

MQ-bit carry
chain

1

XQ YQ

SQ,1

SQ

Cout,Q=CQ

Cout,Q-1

0

1

0

1

CoutQ,0

CoutQ,1

MUX2 MUXQ

critical path

tin,2

tsel,2

tin,Q

tsel,Q

Figure 1. Carry Select Adder architecture.

where τFO is the MUX delay increase per unity fan-out increase.

It is worth noting that the generic MUXi-1 has a fan-out of

(Mi+1), since it drives the selection input of the Mi multiplexers

generating the sum bits of the successive block and its carry

output multiplexer. Therefore, by using eq. (4), relationship (3)

becomes

()1),max(int1,1,, +++= −− iFOiseliinisel
Mttt ττ (5)

for i=2…Q. In the following, these relationships are used to

derive fundamental criteria to optimally design CSAs in two

cases, one with a uniform block sizes, being useful to introduce

basic ideas and some notation, and the other with a variable

sizing.

2.1 Constant block sizing (Mi=M).

In the constant block sizing, all Q blocks compute the same

number M of bits, i.e., Mi=M for i=1…Q, where the number of

blocks Q is equal to N/M. In this case, Full Adder chains in all

blocks generate their output at time M⋅τCARRY, thus from (2)

and Fig.1 it follows that

CARRYiinsel
Mtt τ== ,2, (6)

By iteratively substituting eq. (6), eq. (5) becomes

() ()[]12 int, ++−+= MiMt
FOCARRYisel

τττ (7)

for i=3…Q, which is always greater than tin,i in (6). Therefore,

the latest arriving signal of each MUX is always its selection

signal. Thus the adder critical path crosses all the (Q-2)

multiplexers MUX2…MUXQ-1 and finally the sum and carry

output multiplexers of the last block (which are assumed to

have a unity fan-out, without loss of generality), as highlighted

in Fig. 1 by the gray line. Thus, the worst-case adder delay is

()[] []
FOFOCARRYPD

MQM ττττττ ++++−+=
intint

1)2(

 (8)

where the last Full Adder delay to generate its sum output was

assumed to be equal to the carry delay without loss of

generality (a different value simply adds a constant term to (8),

and hence it does not affect the adder optimization).

By substituting Q=N/M and minimizing (8), it can be easily

derived that delay is minimized for the following value of M

()
FOCARRY

FO

opt

N
M

ττ
ττ
2

int

−
+

= (9)

and the resulting minimum delay is

()()
intint,

22 τττττττ −++−=
FOFOFOCARRYoptPD

NN

 (10)

which is essentially proportional to N . Note that, in order

to have a speed advantage over the simple Ripple Carry Adder

(RCA) (whose delay is equal to N⋅τCARRY [7]), the MUX

parameters τint and τFO must be much lower than τCARRY. These

conditions are well satisfied in practical cases, as can be

verified from timing parameters in Table I of Mirror Full

Adders and TG MUXes (symmetrically designed for minimum

power consumption) by using a 0.35-µm CMOS process.

TABLE I

τCARRY τint τFO

517 ps 97 ps 19 ps

2.2 Variable block sizing (Mi≥≥≥≥Mi-1)

In the constant block sizing case, the input signal of each

MUX arrive before its selection signal (i.e., tsel,i > tin,i from

(7)). Therefore, from relationship (5), the arrival time tin,i of

MUX input signals (and hence the number Mi of bits computed

in the i-th block, from (2)) can be increased up to tsel,i

iseliin
tt

,,
≤ (11)

without modifying the critical path. This justifies the well-

known higher performance of the variable block size CSA,

since it allows for increasing the number of bits computed by

each block without significantly increasing the overall delay.

Minimum delay is achieved when each block has the maximum

number of bits satisfying (11), i.e. with a strict equality. In this

case, the first and the second block size is the same

2,121 MMM == (12)

since they must provide the selection and input signal of to

MUX2 at the same time (i.e., tsel,2=M1τCARRY=tin,2=M2τCARRY).

II - 466

➡ ➡

For next blocks (i=3…Q), by substituting eqs. (2)-(5),

relationship (11) with strict equality becomes

()1
int1 +++= − iFOCARRYiCARRYi

MMM ττττ (13)

and thus Mi results

β
βα
−
++

= −

1

1i

i

M
M (14)

where α and β are the MUX timing parameters normalized to

τCARRY, τin/τCARRY and τFO/τCARRY, respectively (much lower than

unity, in practical cases).

By iteratively applying (14), Mi is easily found to result as

() ()

() ()[] Qi
M

M
M

i

i

i

j

jii

....3111
1

11

2

2

2,1

2

1

2

2,1

=−−⎟⎟⎠

⎞
⎜⎜⎝

⎛
++

−
=

=
−
++

−
=

−
−

−

=
− ∑

β
β
α

β

β
βα

β
(15)

Now let us minimize the overall delay, by remembering

that the critical path must cross all MUXes, hence the latest

arriving signal in the CSA is the output of MUXes in the last

block. under (11) with strict equality and (2), this signal is

generated in a time

() ()[] βαβ
β
α

β

βα
τ
τ

ττ
τ

++−−⎟⎟⎠

⎞
⎜⎜⎝

⎛
++

−
=

=++=+=

−
− 111

1

2

2

2,1

,,

Q

Q

Q

CARRY

QMUX

CARRY

Qsel

CARRY

PD

M

M
t

(16)

where the adder delay τPD was normalized to τCARRY to simplify

notation and (15) was used to evaluate MQ. For the same

reasons as the constant block sizing case, the Full Adder sum

delay was assumed to be equal to the carry delay and a unity

fan-out was assumed for the last MUX.

Once MUX and Full Adder timing parameters are known,

the CSA delay in (16) is a function of M1,2 and Q, where the

former can be easily expressed as a function of the latter by

using constraint (1) after substituting (15)

()() ()[]
() ββββ

βββαβ
−−⋅+⋅

−−−−+−⋅
=

−

−

Q

Q
QN

M
22

22

2,1

12

211
 (17)

After substituting (17) into (16) and performing some tedious

calculations, relationship (16) results to be minimum for M1,2

equal to

() () β
βα

ββ
βα +−

−⋅⋅−
+=

121ln
2,1 opt

M (18)

which is plotted in Fig. 2 for some typical values of α and β.

As a result, the CSA delay is minimized by setting the size of the

first two blocks equal to (18), and the successive blocks as in

(15). However, since (15)-(18) provide a non-integer number of

Full Adders, this analytical strategy is not adequate in real cases,

and some modification must be applied, as will be shown in

Section 3.

3. A STRATEGY TO DESIGN CSAS

In this section a practical design procedure that ensures integer

values of Mi is presented. Being based on the previous timing

analysis, the strategy consists of two basic steps, where a

nearly-optimum CSA (whose critical path crosses all MUXes)

is first built and then refined by adding bits until the required

number N is achieved.

0

1

2

3

4

5

0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45ββββ

M
1

,2
o

p
t

a=0.05 a=0.1 a=0.15

a=0.2 a=0.25 a=0.3

a=0.35 a=0.4 a=0.45

Figure 2. Plot of M1,2opt versus β for some values of α.

3.1 Building a nearly-optimum CSA.

To achieve integer values of M1,2, result from (18) must be

rounded to the nearest (nonzero) integer, which can be

graphically evaluated from the plot in Fig. 2. To ensure that

the critical path crosses all MUXes, each (integer) value of Mi

for i=3…Q must satisfy (11)

()[]∑∑
=

−

=

+++=+≤
i

j

jopt

i

j

jMUXopti MMMM
3

2,1

1

2

,2,1 1βατ

 (19)

that, solved for the greatest integer value of Mi, leads to

()()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

+−++
=

∑
−

=

β

βαβ

1

2
1

3

2,1 iMM

floorM

i

j

jopt

i
 (20)

for i=4…Q (for i=3, (20) must be modified by deleting term

∑
−

=

1

3

i

j

j
Mβ).

By rounding (18) and then iteratively evaluate (20), we can

build a CSA whose blocks have the maximum number of bits

which allows for satisfying relationship (11) (i.e. ensuring the

critical path to cross all MUXes). Therefore, by iteratively

adding such blocks, an increasing overall number of computed

bits is achieved. Addition of blocks must be stopped when,

adding one more block, the overall number of computed bits

becomes greater than the required value N. Let N* the

maximum overall number of bits lower than or equal to N that

such a CSA can have. If N*=N, the design procedure is

concluded. If N*<N, further bits must be added to the nearly-

optimum CSA according to criteria discussed in the following

subsection.

As an example, consider a CSA with N=32, α=0.33 and

β=0.26. From (18), which gives 1.81, M1 and M2 are set to 2,

while iterative relationship (20) leads to M3=3, M4=5, M5=7

and M6=11, leading to a 30-bit CSA. Addition of a further

II - 467

➡ ➡

block would lead to a number of bits greater than 32 (since

(20) would result to M7=15), thus the CSA obtained is the

nearly-optimum with N*=30. Its timing analysis is reported in

Table II.

TABLE II
i 1 2 3 4 5 6

iCARRYiin Mt =τ/
, 2 2 3 5 7 11

CARRYiselt τ/
, - 2 3.37 5.26 7.93 11.45

3.2 Completing the nearly-optimum CSA.

When the N-N* bits are added to the nearly-optimum CSA,

relationship (11) is violated, since block sizes in the nearly-

optimum CSA assume the maximum values that satisfy (11).

Therefore, such bits must be inserted in proper blocks leading

to minimum delay increase compared to the nearly-optimum

adder.

When the first bit is added to the i-th block of this CSA,

parameter increases by τCARRY from (2), while its tsel,i increases

by τFO from (5). Since tin,i becomes greater than tsel,i, the new

critical path starts from Full Adders of the i-th block and

crosses all the successive MUXes. Thus, the overall delay

increases by the difference of the new value of tin,i (equal to

the previous one plus τCARRY) and the previous value of tsel,i. As

a result, the best block of the nearly-optimum CSA where the

first bit has to be added is that maximizing difference tsel,i-tin,i

in the nearly-optimum adder. Analogously, eventual

successive bits added to complete the adder have to be inserted

in blocks that lead to a minimum delay increase, which are

identified by simply comparing the delay increase associated

with each block.

As an example, let us complete the nearly-optimum CSA

introduced in the previous subsection, where two more bits are

required. By inspection of Table II, the first block has to be

added to the 5-th block (having
i

in

i

sel
tt − =0.93), thus resulting

to the CSA shown in Table III. Finally, a simple timing

analysis of this adder shows that the last bit should be added to

the 6-th block, leading to the final 32-bit adder with block

sizes 2, 2, 3, 5, 8, 12. The obtained CSA has the same block

sizes as the optimum CSA that was identified through

exhaustive research in the design space (i.e., the CSA obtained

is optimum).

TABLE III
i 1 2 3 4 5 6

iCARRYiin Mt =τ/
, 2 2 3 5 8 11

CARRYiselt τ/
, - 2 3.37 5.26 7.93 11.71

4. VALIDATION AND CONCLUSIONS

The results obtained with the procedure proposed were

compared to optimum results (achieved through exhaustive

selection of block sizing that leads to minimum delay). Delay

of the former was compared to the latter in more than 100

design cases by considering different values of N (32 and 64),

α and β (both ranging from 0.05 to 0.45, to ensure the MUX

delay with unity fan-out α+β to be lower than τCARRY). Results

obtained show that in most cases the procedure provides

optimum results, and only in a few cases delay achieved is

greater than the minimum achievable by less than 2.5% (some

results, including all worst cases, are summarized in Table IV).

Therefore, for practical purposes, the design strategy proposed

leads to optimum results, and can thus be suitably used to

optimally set block sizes to minimize the adder delay.

It is worth noting that the proposed procedure is simple and can

be used for pencil-and-paper design. In addition, being based on

a rigorous timing analysis of the adder, the strategy provides the

designer with an intuitive understanding of the optimum block

size, affording a deeper insight into the optimization process.

5. REFERENCES
[1] C. Nagendra, M. J. Irwin, M. Owens, “Area-Time-Power Tradeoffs

in Parallel Adders,” Trans. on CAS- part II, vol. 43, no. 10, pp. 689-

702, Oct. 1996.

[2] O. Bedrij, “Carry Select Adder,” IRE Trans. on Electronic

Computers, vol. EC-11, pp. 340-346, 1962.

[3] Y. Huang, J. B. Kuo, “A High-Speed Conditional Carry Select

(CCS) Adder Circuit with a Successively Incremented Carry

Number Block (SICNB) Structure for Low-Voltage VLSI

Implementation,” IEEE Trans. on CAS – part II, vol. 47, no. 10, pp.

1074-1079, Oct. 2000.

[4] M. Suzuki, N. Ohkubo, T. Shinbo, T. Yamanaka, A. Shimizu, K.

Sakai, Y. Nakagome, “A 1.5-ns 32-b CMOS ALU in Double Pass-

Transistor Logic,” IEEE J. Solid-State Circuits, vol. 28, pp. 1145-

1150, Nov. 1993.

[5] A. Tyagi, “A Reduced-Area Scheme for Carry-Select Adder,” Trans.

on Computers, vol. 42, no. 10, pp. 1163-1170, Oct. 1993.

[6] B. Parhami, Computer Arithmetic, Algorithms and Hardware

Designs, Oxford University Press, 2000.

[7] J. M. Rabaey, A. Chandrakasan, B. Nikolic, Digital

Integrated Circuits: a Design Perspective, 2nd Ed., Prentice-Hall, 2003.

TABLE IV

Ν α
β

Design

procedure
Block sizing τPD/τCARRY

proposed 2 2 3 5 8 12 12.76
32

0.05

0.33 optimum 2 2 3 5 8 12 “

proposed 1 1 2 3 4 5 7 9 9.93
32

0.2

0.21 optimum 1 1 2 3 4 5 7 9 “

proposed 1 1 1 1 2 3 3 4 5 5 6 6.85
32

0.21

0.10 optimum 1 1 1 1 2 3 3 4 5 5 6 “

proposed 1 1 1 2 2 3 4 5 6 7 7
32

0.30

0.08 optimum 1 1 1 1 2 3 3 4 5 5 6 6.82

proposed 3 3 5 8 13 13
32

0.33

0.30 optimum 2 2 3 5 8 12 12.92

proposed 9 9 14 15.48
32

0.48

0.40 optimum 9 9 14 “

proposed 1 1 2 4 5 7 10 14 20 20.25
64

0.20

0.25 optimum 1 1 1 2 3 5 7 10 14 20 20.1

proposed 1 1 2 3 5 7 10 15 20 20.58
64

0.33

0.25 optimum 1 1 2 3 5 7 10 15 20 “

proposed 1 1 1 2 3 4 4 5 6 7 9 10 11 11.68
64

0.42

0.08 optimum 1 1 1 2 3 4 4 5 6 7 9 10 11 “

proposed 1 1 2 4 5 8 10 14 19 19
64

0.42

0.21 optimum 3 3 3 6 8 11 13 17 18.96

proposed 3 3 6 10 16 26 26.51
64

0.42

0.35 optimum 3 3 6 10 16 26 “

proposed 1 1 2 4 5 8 10 14 19 19.21
64

0.48

0.21 optimum 1 1 2 4 5 8 10 14 19 “

II - 468

➡ ➠

