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In this paper, new delay-dependent stability criteria for asymptotic stability of neural networks with time-varying

delays are derived. The stability conditions are represented in terms of linear matrix inequalities (LMIs) by constructing

new Lyapunov–Krasovskii functional. The proposed functional has an augmented quadratic form with states as well

as the nonlinear function to consider the sector and the slope constraints. The less conservativeness of the proposed

stability criteria can be guaranteed by using convex properties of the nonlinear function which satisfies the sector and

slope bound. Numerical examples are presented to show the effectiveness of the proposed method.
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1. Introduction

Neural networks have been investigated by many

researchers because of their various applications such

as pattern recognition, signal processing, content-

addressable memory, and optimization.[1−3] On the

other hand, time-delays are frequently encountered

in the implementation of neural networks as well as

in many fields of science and engineering, including

physics, large-scale systems, complex networks, pop-

ulation dynamics, biology, economy, etc.[4] Therefore,

the stability analysis of neural networks with time-

delay has been extensively studied and lots of papers

have derived various kinds of criteria for the stability

problem.[5−15] In general, one is more concerned with

the derivation of delay-dependent stability conditions

because delay-dependent stability conditions are often

less conservative than delay-independent ones when

delays are small. In the field of the delay-dependent

stability criteria, an important index for checking the

conservatism of stability criteria is to increase the fea-

sible region of stability criteria or to acqurie the maxi-

mum allowable bounds of time delays for guaranteeing

the stability of the networks.

Recently, in order to reduce the conservatism of

stability criteria, new Lyapunov–Krasovskii functional

with the technique of free-weighting matrices and the

discretization method was proposed.[12,14,15,16,17] In

the existing results, the activation function of neural

networks is assumed to be nondecreasing, bounded

and globally Lipschitz. Since the globally Lipschitz

condition can be expressed as the bounded sector con-

dition, their methods focused on the delay-dependent

stability criteria for the systems with only the sector

bounded condition.[5−15]

One of important kinds of the nonlinear systems

is the Lur’e system whose nonlinear element satisfies

certain sector constraints. Since the absolute stability

as a notion of global asymptotic stability was intro-

duced, stability analysis for Lur’e systems has been

extensively studied.[18] The stability criteria for the

Lur’e systems with slope-restricted nonlinearity are

also presented in Refs. [19]–[21].

In this paper, new delay-dependent stability con-

ditions for neural networks with time-varying delays

are investigated by considering the sector and slope

bound constraints. Less conservative LMI stability
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conditions are obtained by using the new Lyapunov–

Krasovskii functional subject to the equality con-

straints. The proposed functional is based on an

augmented vector which consists of state vector and

nonlinear functions of the systems. The nonlinear

functions of neural networks are expressed as convex

combinations of sector and slope bounds, so that the

equality constraint is derived by using convex proper-

ties of the nonlinear function. The equality constraint

is included to the LMI condition by using Finsler’s

lemma.[22] The LMI criterion obtained can be eas-

ily solved by effective convex optimization algorithms

such as interior point algorithm.[23] Finally, numeri-

cal examples show that the proposed method is less

conservative than those of the existing results.

In the sequel, the following notations will be used.

Rn is the n-dimensional Euclidean space. Rm×n de-

notes the set of m × n real matrix. ∗ denotes the

symmetric part. X > 0 (X ≥ 0) means that X is

a real symmetric positive definitive matrix (positive

semi-definite). I denotes the identity matrix with an

appropriate dimension. diag{. . .} denotes the block

diagonal matrix. A⊥ is the orthogonal complement

matrix of A.

2. Problem statement and pre-

liminaries

Consider the following neural networks with time-

varying delays:

ẏ(t) = −Ay(t)+W0g(y(t))+W1g(y(t−h(t))+b, (1)

where y(t) ∈ Rn is the neuron state vector, g(x(t)) =

[g1(x1(t)), . . . , gn(xn(t))]
T ∈ Rn denotes the neu-

ron activation function, g(x(t − h(t))) = [g1(x1(t −
h(t))), . . . , gn(xn(t − h(t)))]T ∈ Rn, A = diag{ai} ∈
Rn×n is the positive diagonal matrix, W0 ∈ Rn×n

and W1 ∈ Rn×n are the interconnection matrices rep-

resenting the weight coefficients of the neurons, and

b = [b1, b2, . . . , bn]
T ∈ Rn is the constant input vec-

tor.

The delay, h(t), is the time-varying continuous

function that satisfies:

0 ≤ h(t) ≤ h̄, ḣ(t) ≤ hD. (2)

The activation functions, gi(xi(t)), i = 1, . . . , n, are

assumed to be sector bounded, that is,

0 ≤ gi(σi)

σi
≤ li, σi,∈ R, i = 1, . . . , n (3)

where li is constant.

Also, the activation functions are assumed to sat-

isfy

0 ≤ dgi(σi)

dσi
≤ l′i, σi ∈ R, i = 1, . . . , n. (4)

For simplicity, by using the Brouwer’s fixed-point

theorem,[24] the equilibrium point y∗ = [y∗1 , . . . , y
∗
n]

T is

shifted to the origin by the x(·) = y(·)−y∗. Therefore,

system (5) is transformed into the following form:

ẋ(t) = −Ax(t) +W0f(x(t)) +W1f(x(t− h(t)), (5)

where x(t) is the state vector and fi(xi(t)) = gi(xi(t)+

y∗i )− gi(y
∗
i ) with fi(0) = 0, i = 1, . . . , n.

The following conditions are derived from Eqs. (3) and

(4):

0 ≤ fi(σi)

σi
≤ li, (6)

0 ≤ dfi(σi)

dσi
≤ l′i, ∀ σi ̸= 0, i = 1, · · · , n. (7)

In order to use the convexity of the nonlinear function,

we define

∆(x(t))
△
= diag{∆1(xi(t)), . . . , ∆n(xi(t))},

(8)

∆̄(x(t))
△
= diag{∆′

1(xi(t)), . . . , ∆
′
n(xi(t))},

(9)

where

∆i(x(t))
△
=

fi(xi(t))

xi(t)
, ∆′

i(x(t))
△
=

dfi(xi(t))

dxi(t)
. (10)

By the definition of f(·), the nonlinear function f(·)
is represented as

f(x(t)) = ∆(x(t))x(t), ḟ(x(t)) = ∆̄(x(t))ẋ(t) (11)

and the parameters ∆(·) belongs to the following sets,

respectively:

∆ := {∆(x(t)) ∈ Rm×m|∆(x(t)) ∈ Co{0, L}}, (12)

where Co denotes the convex hull and

L
△
= diag{l1, . . . , ln}, L̄

△
= diag{l′1, . . . , l′n}. (13)

The following lemmas will be utilized for deriving an

LMI condition of the stability of system (5).

Lemma 1[4] For any constant matrix W ∈ Rn×n >

0, a scalar τ > 0 and a vector function e(t) : R → Rn

such that the following integration is well defined, then
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−τ

∫ 0

−τ

ėT(t+ ξ)Wė(t+ ξ)dξ ≤ [ e(t)T e(t− τ)T ]

[
−W W

W −W

] [
e(t)

e(t− τ)

]
. (14)

The following Finsler Lemma will be utilized to convert an inequality subject to an equality constraint into an

inequality.

Lemma 2[22] Let x ∈ Rn, Θ = ΘT ∈ Rn×n, and Γ ∈ Rm×n. The following statements are equivalent:

(i) ξTΘξ < 0 s.t. Γξ = 0, and ∀xi ̸= 0,

(ii) Γ⊥T
ΘΓ⊥ < 0, where Γ⊥ is a matrix beloning to a null space of Γ .

3. Main results

In this section, we derive an LMI condition for systems (5) by using augmented variables and some useful

lemmas.

For simplicity, define the augmented vectors

xa(t) = [xT(t) fT(x(t)) ]
T
,

ζ(t) =
[
xT(t) fT(x(t)) xT(t− h(t)) fT(x(t− h(t))) xT(t− h̄/2) fT(x(t− h̄/2))

xT(t− h̄) fT(x(t− h̄)) ẋT(t) ḟT(x(t))
]T

, (15)

and the matrices

Ā =

[
0 0 0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 0 0 I

]
, I1 =

[
I 0 0 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0 0 0

]
,

I2 =

[
0 0 I 0 0 0 0 0 0 0

0 0 0 I 0 0 0 0 0 0

]
, I3 =


I 0 0 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0 0 0

0 0 0 0 I 0 0 0 0 0

0 0 0 0 0 I 0 0 0 0

 ,

I4 =


0 0 0 0 I 0 0 0 0 0

0 0 0 0 0 I 0 0 0 0

0 0 0 0 0 0 I 0 0 0

0 0 0 0 0 0 0 I 0 0

 , I5 = [ 0 0 0 0 0 0 0 0 0 I ] ,

I6 = [ 0 I 0 −I 0 0 0 0 0 0 ] , I7 = [ 0 0 0 I 0 −I 0 0 0 0 ] ,

I8 = [ 0 0 0 0 0 I 0 −I 0 0 ] , I9 = [ 0 I 0 0 0 −I 0 0 0 0 ] ,

I10 = [ 0 0 0 −I 0 I 0 0 0 0 ] , I11 = [ 0 0 0 I 0 0 0 −I 0 0 ] ,

Γ =

 −A W0 0 W1 0 0 0 0 −I 0

∆ −I 0 0 0 0 0 0 0 0

−∆̄A ∆̄W0 0 ∆̄W1 0 0 0 0 0 −I

 . (16)

Theorem 1 System (5) is asymptotically stable, if there exist positive symmetric matrices P 2n×2n, Q4n×4n
1 ,

Q4n×4n
2 , Rn×n

1 and Rn×n
2 such that the following LMIs hold:

NT
Γ (Σ1 +Σ2 +Σ3)NΓ < 0, NT

Γ (Σ1 +Σ2 +Σ4)NΓ < 0, (17)

where NΓ is orthogonal complement of Γ and

Σ1 = I1PĀ+ ĀTPIT
1

Σ2 = IT
1 Q1I1 − (1− hD)IT

2 Q1I2 + IT
3 Q2I3 − IT

4 Q2I4
Σ3 = (h̄/2)2IT

5 (R1 +R2)I5 − IT
6 R1I6 − IT

7 R1I7 − IT
8 R2I8

Σ4 = (h̄/2)2IT
5 (R1 +R2)I5 − IT

9 R1I9 − IT
10R2I10 − IT

11R2I11. (18)

Proof Take a candidate of the Lyapunov–Krasovskii functional as follows:

V = V1 + V2 + V3, (19)
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where

V1 = xa(t)
TPxa(t), (20)

V2 =

∫ t

t−h(t)

xt
a(s)Q1xa(s)ds+

∫ t

t−h̄/2

[
xa(s)

xa(s− h̄/2)

]T
Q2

[
xa(s)

xa(s− h̄/2)

]
ds, (21)

V3 = (h̄/2)

∫ t

t−h̄/2

∫ t

s

ḟT(x(u))R1ḟ(x(u))duds+ (h̄/2)

∫ t−h̄/2

t−h̄

∫ t

s

ḟT(x(u))R2ḟ(x(u))duds, (22)

then the time derivative of V1 will be obtained by using the definition in Eqs. (15) and (16) to be

V̇1 = ẋa(t)
TPxa(t) + xa(t)

TP ẋa(t) = ζT(t)Σ1ζ(t). (23)

Also, by using the augmented vector ζ(t) and augmented matrices in Eq. (16), the time derivative of V2 is

derived to be:

V̇2 = xT
a (t)Q1xa(t)− (1− ḣ(t))xa(t− h(t))TQ1xa(t− h(t))

+

[
xa(t)

xa(t− h̄/2)

]T
Q2

[
xa(t)

xa(t− h̄/2)

]
−
[
xa(t− h̄/2)

xa(t− h̄)

]T
Q2

[
xa(t− h̄/2)

xa(t− h̄)

]
≤ xT

a (t)Q1xa(t)− (1− hD)xa(t− h(t))TQ1xa(t− h(t)) + ζT(t)IT
3 Q2I3ζ(t)− ζT(t)IT

4 Q2I4ζ(t)
= ζT(t)Σ2ζ(t). (24)

Next, the time-varying delay h(t) can be considered in two intervals, i.e. [0, h̄/2) and [h̄/2, h̄], thus the time

derivative of V3 is obtained separately in the two intervals as indicated below.

(i) Case 1 0 ≤ h(t) ≤ h̄/2

For this case, we have

V̇3 ≤ ḟT(x(t))(h̄/2)2(R1 +R2)ḟ(x(t))− h̄/2

∫ t

t−h(t)

ḟT(x(s))R1ḟ(x(s))ds

− h̄/2

∫ t−h(t)

t−h̄/2

ḟT(x(s))R1ḟ(x(s))ds− h̄/2

∫ t−h̄/2

t−h̄

ḟT(x(s))R2ḟ(x(s))ds. (25)

By Lemma 1, the upper bound of the integral term can be estimated to be

V̇3 ≤ ḟT(x(t))(h̄/2)2(R1 +R2)ḟ(x(t))

+

[
f(x(t))

f(x(t− h(t)))

]T [
−R1 R1

R1 −R1

] [
f(x(t))

f(x(t− h(t)))

]
+

[
f(x(t− h(t)))

f(x(t− h̄/2))

]T [
−R1 R1

R1 −R1

] [
f(x(t− h(t)))

f(x(t− h̄/2))

]
+

[
f(x(t− h̄/2))

f(x(t− h̄))

]T [
−R2 R2

R2 −R2

] [
f(x(t− h̄/2))

f(x(t− h̄))

]
= ζT(t)Σ3ζ(t). (26)

(ii) Case 2 h̄/2 ≤ h(t) ≤ h̄

V̇3 ≤ ḟT(x(t))(h̄/2)2(R1 +R2)ḟ(x(t))− h̄/2

∫ t

t−h̄/2

ḟT(x(s))R1ḟ(x(s))ds

− h̄/2

∫ t−h̄/2

t−h(t)

ḟT(x(s))R2ḟ(x(s))ds− h̄/2

∫ t−h(t)

t−h̄

ḟT(x(s))R2ḟ(x(s))ds

≤ ḟT(x(t))(h̄/2)2(R1 +R2)ḟ(x(t))

+

[
f(x(t))

f(x(t− h̄/2))

]T [
−R1 R1

R1 −R1

] [
f(x(t))

f(x(t− h̄/2))

]
+

[
f(x(t− h̄/2))

f(x(t− h(t)))

]T [
−R2 R2

R2 −R2

] [
f(x(t− h̄/2))

f(x(t− h(t)))

]
+

[
f(x(t− h(t)))

f(x(t− h̄))

]T [
−R2 R2

R2 −R2

] [
f(x(t− h(t)))

f(x(t− h̄))

]
= ζT(t)Σ4ζ(t). (27)
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Now, using the convex representation, we can estab-

lish the equality constraints as follows:

f(x(t)) = ∆(x(t))x(t),

ḟ(x(t)) = −∆̄Ax(t) + ∆̄W0f(x(t))

+ ∆̄W1f(x(t− h(t))). (28)

Then, there exist parameter αk and ᾱk, where αk >

0, ᾱk > 0 for k = 1, 2,
∑2

k=1 αk = 1, and
∑2

k=1 ᾱk =

1 such that ∆ and ∆̄ can be expressed as a convex

combination of the vertex values as follows:

∆ =
2∑

k=1

αk∆
k, and ∆̄ =

2∑
k=1

ᾱk∆̄
k, (29)

where ∆1 = 0, ∆2 = L, ∆̄1 = 0, ∆̄2 = L̄.

Using Eq. (28) and the augmented vector ζ(t), we

obtain the equality constraint, Γζ(t) = 0.

Hence, the derivative of the Lyapunov function (19) is

ζ(t)T(Σ1 +Σ2 +Σ3)ζ(t) < 0,

ζ(t)T(Σ1 +Σ2 +Σ4)ζ(t) < 0, (30)

such that

Γζ(t) = 0. (31)

By applying the Finsler lemma to inequality (30) and

Eq. (31), we obtain the inequality (17). This com-

pletes our proof. �
By the convexities of the ∆(·) and ∆̄(·), Theorem 1

can be described as follows.

Corollary 1 The system (5) is asymptotically

stable, if there exist positive symmetric matrices

P 2n×2n, Q4n×4n
1 , Q4n×4n

2 , Rn×n
1 and Rn×n

2 such that

the following LMIs hold:

NT
Γ (i, j)(Σ1 +Σ2 +Σ3)NΓ (i, j) < 0,

NT
Γ (i, j)(Σ1 +Σ2 +Σ4)NΓ (i, j) < 0, (32)

where NΓ (i, j) is the orthogonal complement of Γ (i, j)

and

Γ (i, j) = Γ =

 −A W0 0 W1 0 0 0 0 −I 0

∆i −I 0 0 0 0 0 0 0 0

−∆̄jA ∆̄jW0 0 ∆̄jW1 0 0 0 0 0 −I

 , i, j = 1, 2. (33)

Remark 1 In order to reduce the conservatism in searching for the maximum allowable delay which

guarantees that the delayed neural networks are asymptotically stable, Kwon[14] used a method with fractional

delay interval and different free-weighting matrices in the upper bounds of integral terms. In the present paper,

we choose a different Lyapunov–Krasovskii’s functional with equality constraints instead of any free-weighting

matrices in obtaining upper bounds. Through two numerical examples, we show that the proposed method

provides the improved results compared with the recent ones in Refs. [11]–[14].

4. Numerical examples

Example 1 In order to show the effectiveness of the proposed method, consider the neural networks

studied in Ref. [14], decribed with

A =


1.2769 0 0 0

0 0.6231 0 0

0 0 0.9230 0

0 0 0 0.4480

 ,

W0 =


−0.0373 0.4852 −0.3351 0.2336

−1.6033 0.5988 −0.3224 1.2352

0.3394 −0.0860 −0.3824 −0.5785

−0.1311 0.3253 −0.9534 −0.5015

 ,

W1 =


0.8674 −1.2405 −0.5325 0.0220

0.0474 −0.9164 0.0360 0.9816

1.8495 2.6117 −0.3788 0.8428

−2.0413 0.5179 1.1734 −0.2775

 ,

L = diag{0.1137, 0.1279, 0.7994, 0.2368}. (34)
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The slope bound is given by L̄ = L. The maximum

allowable time-delay bound h̄ is found by solving the

LMIs in Corollary 1 for different values of hD.

Table 1 shows that the proposed method is less

conservative than the existing ones in Refs. [11]–[14].

For instance, when hD = 0.1, the maximum delay

bound[14] was 3.7525, while the proposed method is

3.9594. Also, when hD = 0.9, h̄ was 2.2760,[14] while

our result is 2.5447.

Table 1. Comparison among the values of maximum

time delay bound h̄, obtained at different values of hD

in Example 1.

hD 0.1 0.5 0.9

Li et al.[11] 3.2819 2.2261 1.6035

Chen et al.[12] 3.3428 2.5421 2.0867

Kwon et al.[14] 3.7525 2.7353 2.2760

Theorem 1 3.9594 2.9576 2.5447

Example 2 Consider neural networks (5) with

the following parameters:

A =

[
2 0

0 2

]
, W0 =

[
1 1

−1 −1

]
,

W1 =

[
0.88 1

1 1

]
, L = diag{0.4, 0.8}. (35)

By applying Corollary 1 to the above system when

the values of hD are 0.8 and 0.9, separately, the delay

bounds are shown in Table 2 when the slope bound

is given by L̄ = 0.99L. Table 2 gives the comparison

results on the maximum delay bound allowed via the

methods in recent studies. One can see that our result

is less conservative than existing results.

Table 2. Comparison among the values of maximum

time delay bound h̄, obtained at different values of hD

in Example 2.

hD 0.8 0.9

Chen et al.[12] 2.3534 1.6050

Kwon et al.[14] 2.8854 1.9631

Theorem 1 2.9101 2.0430

5. Conclusion

In this paper, the stability problem of time-

delayed neural networks with nonlinearities is consid-

ered. Based on the Finsler’s lemma and Lyapunov

stability theory, a new delay-dependent stability cri-

terion is derived in terms of LMIs by using the aug-

mented Lyapunov–Krasovskii functional which con-

sists of states and nonlinear functions. The new cri-

terion is less conservative than the existing ones. The

effectiveness of the proposed method is illustrated by

numerical examples.
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