
Scientific Programming 12 (2004) 185–196 185
IOS Press

Design metrics in quantum turbulence
simulations: How physics influences software
architecture

Damian W.I. Rousona,∗ and Yi Xiongb,∗∗
aMechanical Engineering Department, The City College of The City University of New York, Convent Ave. at 140th
St., New York, NY 10031, USA
Tel.: +1 212 650 5210; Fax: +1 815 572 8203; E-mail: rouson@ccny.cuny.edu
bMechanical Engineering Department, The Graduate Center of The City University of New York, Fifth Ave. at 34th
St., New York, NY 10015, USA
E-mail: yxiongcuny@hotmail.com

Abstract. The information hiding philosophy of object-oriented programming encourages localizing data structures within objects
rather than sharing data globally across different classes of objects. This emphasis on local data leads naturally to fine-grained
data abstractions, particularly in scientific simulations involving large collections of small, discrete physical or mathematical
objects. This paper focuses on a subset of such simulations where dynamically reconfigurable links bind the objects together. It
is demonstrated that fine-grained data structures reduce the complexity of local operations on the data at the potential expense
of increased global operation complexity. Two metrics are used to describe data structures: granularity is the number of
instantiations required to cover the data space, whereas extent is the continuously traversable length of the data along a given
direction. These definitions are applied to two abstractions for simulating the turbulent motion of quantum vortices in superfluid
liquid helium. Several local and global operations on a fine-grained linked list are compared with those on a coarse-grained array.
It is demonstrated that fine-grained data structures recover the simplicity of more coarse-grained structures if maximal extent is
maintained as the granularity increases.

1. Introduction

As scientific software projects grow in size,more sci-
entists and engineers are investigating object-oriented
programming (OOP) as a means of managing code
complexity [1,5,6]. The OOP strategy of constructing
inheritance hierarchies reduces the amount of redun-
dant code that must be written. The OOP philosophy of
encouraging polymorphism simplifies the protocol for
expressing similar functionality across different classes
of objects. And the OOP techniques of encapsulation

∗Corresponding author. Current address: US Naval Research
Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA.

∗∗Current address: Mechanical Engineering Department, Univer-
sity of California at Los Angeles, Los Angeles, CA 90095, USA.

and information hiding reduce interdependencies be-
tween code modules.

It can be argued that inheritance and polymorphism
attack problems that scale linearly with the size of the
code. Given a piece of code that is inherited across
G generations of a parent/child class hierarchy, inher-
itance reduces the number of times this code must be
replicated from G to 1. Given P common procedures
to be performed on C classes of objects, polymorphism
reduces the size of the protocol for performing those
procedures from CP to P . Note that the variables G,
C and P each appear with a unit exponent in the above
expressions.

By contrast, encapsulation and information hiding
render an otherwise quadratic problem scale invariant.
Consider that interactions between lines of code are me-
diated through access to shared data spaces (see Fig. 1).

ISSN 1058-9244/04/$17.00 2004 – IOS Press and the authors. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357347329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

186 D.W.I. Rouson and Y. Xiong / Design metrics in quantum turbulence simulations

Given software with N lines of code accessing globally
shared data, the maximum number of lines affected by
changing one line is N − 1. Hence, the interdepen-
dencies between lines scales as fN(N −1) = O(N 2),
where f is the fraction of lines changed. If instead the
data is encapsulated and hidden in small modules or
objects with M << N lines, the maximum number of
lines affected is M − 1 independent of N . If M is held
constant as N grows, the complexity of the design is
scale-invariant.

This elimination of quadratic complexity suggests
that at the intersection of data encapsulation and infor-
mation hiding lies rich territory for exploring ways to
significantly reduce program complexity. Encapsula-
tion determines how data is partitioned. Information
hiding determines how it is accessed. We present below
one metric describing the partitioning: data structure
granularity. We also present one describing the acces-
sibility: data structure extent. The central argument of
this paper is that the software design process simplifies
as granularity is increased while maintaining maximal
extent.

Although this paper focuses on quantum turbulence,
we emphasize here that the issues raised apply to a
broad class of problems involving the simulation of
large sets of objects with dynamically reconfigurable
interconnections, e.g. tracking points on a manifold
undergoing tearing and reconnection. Such tearing
and reconnection occurs at reaction sites on long chain
molecules and along separation lines on droplets pinch-
ing off from a continuous stream.

In Section 2 below, we define granularity and ex-
tent. In Section 3, we apply these metrics to the object
oriented design (OOD) of several data structures for
simulating the turbulent motion of quantum vortices in
superfluid liquid helium. The remainder of Section 3
presents the problem physics, the mathematical model,
and two data encapsulation alternatives. One encapsu-
lation strategy uses coarse-grained arrays and the other
fine-grained linked lists. The relative merit of each is
discussed in light of the resulting program logic. Sec-
tion 4 presents conclusions.

2. Methodology

2.1. Defining the data granularity metric

Granularity is often discussed in terms of procedural
parallelism [11,12]. In this context, it refers to the size
of the independent, parallel instruction streams into

which a given algorithm is decomposed. These streams
can be processes, threads, code blocks, or even individ-
ual instructions. One can therefore measure the degree
of procedural granularity by the number of instructions,
floating-point operations or clock cycles per instruction
stream. The higher the tally, the more coarse-grained
is the code. The lower the tally, the more fine-grained
is the code.

The above definition is inherently dynamic: pro-
cedural granularity determines run-time performance.
An analogous measure to be introduced here is data
structure granularity. This measure is static and fixed
by the OOD process.

Before a formal definition is given, it is useful to
consider a general class of scientific problems in which
it is necessary to simulate the behavior of a large col-
lection of small, discrete objects being modeled over a
period of time. These objects can be physical, such as
solid particles in a granular flow, or mathematical, such
as grid cells in a finite element code. A straightforward
OOD would typically create a one-to-one mapping be-
tween software objects and the corresponding physi-
cal or mathematical objects. The number of attributes
that must be stored for each software object depends
on the process being modeled and the marching algo-
rithm used to advance in time. In most applications,
however, the number of objects, No, will far exceed
the number of attributes. For example, Rouson and
Eaton [23] modeled the trajectory of No = 723 solid
particles immersed in a turbulent carrier gas by solving
ordinary differential equations of the form

drparticle

dt
= vparticle

dvparticle

dt
=

1
τ
(vgas − vparticle)

where rparticle and vparticle are the particle position
and velocity, respectively, vgas is the gas velocity and
τ is a particle time constant. A Navier-Stokes solver
provided the gas velocity separately.

Rouson and Eaton approximated the ODE with a
third-order Runge-Kutta scheme that required reserv-
ing memory for approximately 10 particle attributes per
particle throughout each time step. We consider here
the simpler case in which an explicit Euler marching
algorithm is used. Then a three-dimensional (3D) po-
sition vector and a 3D velocity vector must be stored
for each particle throughout each time-step. Thus, each
particle exists in a six-dimensional state space.

We can now define data structure granularity:

D.W.I. Rouson and Y. Xiong / Design metrics in quantum turbulence simulations 187

a(1,1)

 a(2,2)

 a(3,3)

SUBROUTINE bar()
COMMON a(3,3)
REAL b(3)
…
DO i=1,3
 b(i)=a(i,i)
END DO
…

SUBROUTINE foo()
COMMON a(3,3)
…
DO i=1,3
 a(i,i)=1
END DO
…

Fig. 1. Code line interactions mediated through shared access to data.

Definition 1: Given a class of objects, each in-
stantiation of which has an N−

s dimensional state
space, we define data structure granularity, g, as
the number, No, of objects required to cover the full
No × Ns-dimensional data space.

In the above particle simulations, g is high when
there exists a one-to-one mapping between instantia-
tions and particles, whereas g is minimal when all the
particles are grouped into one object. In the latter
case, we essentially recover the procedural program-
ming limit but only within the particle class. Classes
associated with, say, the carrier gas will still have infor-
mation hidden from the particle class, and so some OOP
benefits remain. In between these two extremes are
implementations wherein the global collection of parti-
cles is grouped into clusters – possibly based on spatial
proximity. Such groupings arise naturally in quantum
turbulence and are discussed in Section 3, where we
also demonstrate that high granularity simplifies local
operations such as object removal.

Next we define data structure extent:

Definition 2: Given a set of objects covering the
full data space, data structure extent is the contin-
uously traversable length, �e, of the data in a given
direction.

We refer to data as continuously traversable if we
can access each successive datum by elementary oper-
ations such as incrementing a single index or access-
ing the target of a single pointer. For example, if the
data space is covered by one object containing only a
one-dimensional (1D) array, then the extent along the
array’s one dimension is the length of the array since
we can traverse the data by incrementing the array’s
sole index. By contrast, if multiple objects cover the

data space and we traverse the direction orthogonal to
the object state space, then the extent is the number of
continuously accessible objects. We refer to this extent
as maximal, or global, when all objects can be so ac-
cessed. We demonstrate in Section 3 how maintaining
global extent simplifies global operations such as time
advancement.

2.2. Language choice

We present Fortran 90/95 code snippets in Sec-
tion 3.3 below. Since this language choice is very un-
usual for OOP, we now explain its advantages. The
reader may skip this section without loss of continuity.

Scientific software developers face a difficult choice
between programming languages suited to mathemati-
cal modeling and those with explicit support for modern
programming paradigms. The choice involves trade-
offs between development time and run-time perfor-
mance. One must balance the explicit support for
object-oriented programming (OOP) and garbage col-
lection in Java against the performance penalties as-
sociated with Java’s interpreted nature and its lack of
operator overloading – a feature that numerical library
developers have used to construct rich collections of
mathematical class templates in C++ [1,5,21]. Like-
wise, one must balance the freedom allowed for pointer
assignment in C++ with the difficulty it poses for opti-
mizing compiler techniques such as register allocation.
When considering Fortran 90/95, one must balance its
rich mathematical constructs against its lack of explicit
support for OOP.

Fortunately, many of the above choices will be less
difficult soon as the Fortran 2000 standard provides

188 D.W.I. Rouson and Y. Xiong / Design metrics in quantum turbulence simulations

explicit support for OOP, including inheritance, poly-
morphism, and dynamic type allocation [13]. In the
interim, a small set of researchers has developed tech-
niques to facilitate OOP in Fortran 90/95 [1,7–10].

Advantages of Fortran 90/95 include its notational
facilities for manipulating arrays, its intrinsic complex
number type, and its ability to express both fine- and
coarse-grainedparallelism at the source code level [18].
Emulating these features in C++ can lead to a four-
fold penalty in execution time [22]. Furthermore, For-
tran 90/95 requires all variables accessed through a
pointer be declared as pointer targets. This difference
from C++ greatly aids optimizing compilers [18]. Fi-
nally, Decyk, Norton and Szymanski [10] showed that
OOP abstractions lead to better cache utilization than
does procedural programming in Fortran 77. They also
demonstrated that OOP in Fortran 90 reduces execu-
tion times over C++ implementations. It even outper-
forms procedural programming in Fortran 77 on suf-
ficiently large problems despite the run-time overhead
associated with OOP.

3. Application

In the aforementioned simulation of solid particles,
each particle moves independently of the others. There
is therefore no reason to consider the relationship be-
tween them in the OOD process. Below we examine
a case where connections exist between objects and
demonstrate the influence of data structure granularity
and extent on program design.

3.1. The physics of quantum turbulence

Simulating the dynamics of turbulent flow in super-
fluid liquid helium presents significant challenges in
program design and computational cost. The mem-
ory requirements and execution time of turbulent flow
simulations are well documented [20]. The addition
of superfluidity does not appreciably alter the standard
estimates; however, we argue it greatly influences pro-
gram design. Before describing how, it will be useful
to describe the physics.

Natural helium has two isotopic forms, 4He
(99.999%) and 3He (0.001%). Liquid 4He exists in two
phases: Helium I and Helium II. Helium I is an ordi-
nary liquid, while Helium II is a superfluid that forms
below a temperature of approximately 2.17 K. Helium
II flows without resistance through capillaries with di-
ameters of the order of 10−6 m [3,4], yet its viscosity

is not much less than that of helium gas [14]. Thus,
Helium II is both viscous and inviscid. Tisza and Lan-
dau independently introduced the two-fluid model to
explain this phenomenon [16,28]. They described He-
lium II as interpenetrating components of normal fluid
and superfluid. The superfluid component behaves as
a classical inviscid fluid. The normal fluid component
behaves as a classical Newtonian fluid with a viscosity
equal to that of Helium II.

Above a threshold driving velocity, He II contains
vortices of quantum mechanical origin. Their unstable
interactions are referred to as quantum turbulence or
superfluid turbulence, and a network of such vortices is
sometimes termed a vortex tangle.

3.2. Numerical simulation of quantum turbulence

The velocity of the normal fluid, vn, is governed by
the Navier-Stokes equations supplemented by a differ-
ential statement of mass conservation for incompress-
ible liquids:

∂vn

∂t
+ vn · ∇vn = −∇p +

1
Re

∇2vn + f
(1)

∇ · vn = 0

where p is the mechanical pressure, Re is the Reynolds
number, and f is the mutual friction force between
the normal fluid component and the quantized vor-
tices in the superfluid component. Equation (1) is ap-
proximated numerically by direct numerical simulation
(DNS). In DNS, vn is sampled on a grid with sufficient
resolution to track all dynamically relevant scales of
motion [19]. The resulting data are now widely rec-
ognized as being as accurate as experimental data at
Reynolds numbers amenable to computation.

The velocity of the superfluid, vs, is governed by
Eq. (1) without the viscous (1/Re) term. It can be
shown that this implies the existence of a scalar poten-
tial such that vs ≡ ∇φ, where φ satisfies the Laplace
equation ∇2φ = 0. The linearity of the Laplace equa-
tion implies that the superfluid motion can be modeled
by the superposition of discrete singularities. When
the flow is rotational, these singularities take the form
of vortex filaments and can be modeled by methods
pioneered by Leonard [17].

In classical fluid mechanics, vortex filaments are an
idealization. Viscous effects smooth out discrete sin-
gularities. In quantum turbulence, vortex filaments are
real. The superfluid velocity matches that of an inviscid
vortex down to a 1-Angstrom diameter filament core.
Solutions to the nonlinear Schroedinger equation sug-

D.W.I. Rouson and Y. Xiong / Design metrics in quantum turbulence simulations 189

gest these cores are evacuated of any matter and thus
have no internal structure [24]. Hence, vortex filaments
are quite accurately modeled as 1D, curvilinear objects
embedded in 3D space. Given that vorticity, ∇ × v,
is tied to these vortices, Stokes’ Theorem implies that
filaments cannot end at a point in a simply connected
region. Thus, each filament forms a loop, attaches to a
boundary, or extends to infinity.

The equation of motion for each vortex filament can
be shown to be of the form

dS
dt

= vs + vi + αS′ ⊗ (vn − vs − vi) − α′S′

(2)
⊗(vn − vs − vi)]

where vs is the superfluid velocity imposed by bound-
ary and initial conditions; vi is the velocity induced by
quantum vortices; S is the position of a point on the
vortex filament; and S′ is the first derivative of S with
respect to arc-length along the vortex filament; and α
and α′ are temperature-dependent constants.

In the vortex filament method, a filament is repre-
sented by a series of mesh points along the vortex’s cen-
terline (see Fig. 2). The motions of these mesh points
determines the filament motion and shape. In addition,
two processes change the connectivity of the points.
First, as the distance between mesh points changes,new
points must be inserted and existing points removed to
balance resolution requirements against computational
cost and complexity. Second, when two filaments ap-
proach one another, their interaction tends to draw them
closer, resulting in anti-parallel vortices [25,26]. Ko-
plik and Levine showed that the filaments join and re-
connect whenever two anti-parallel vortex filaments ap-
proach within a few core diameters of each other (see
Fig. 3) [15].

Since the superfluid quantum vortices interact with
the surrounding normal fluid, it is convenient to use the
same algorithm to advance both fluids in time. Our
DNS code for normal fluid turbulence employs the
third-order Runge-Kutta scheme of Spalart, Moser and
Rogers [27]. Applying this algorithm to Eq. (2) re-
quires storing two copies of the position, S, for each
mesh point. (For simplicity, we store only one copy in
the next section, corresponding to explicit Euler time
advancement.) Also, mesh point ordering information
must be stored for the reconnection and remeshing al-
gorithms. Thus, the global state space is set by the
physics. Different data abstractions represent different
local partitionings of the state space. The next sec-
tion presents choices near two granularity extremes and
discusses the importance of data structure extent.

3.3. Data structure and software architecture

Central to the OOD process is the choice of ab-
stract data types. Two alternatives will now be
considered. First consider using three 1D arrays,
x(1:N), y(1:N), and z(1:N) to store mesh point po-
sition and two 1D arrays for connectivity information:
next(1:N) and last(1:N), whereN is the number of
mesh points. If these arrays are stored in one data struc-
ture, its state space will be of dimension Ns = 5N . In
Fortran 90/95, the abstract data type is then of the form
TYPE vortex tangle
PRIVATE ! Prevent public access
to the state.
REAL, DIMENSION(N) :: x, y, z
INTEGER, DIMENSION(N) :: next,
last

END TYPE vortex tangle
Only one instantiation is required, so the granularity,

g = 1, is minimal and the abstraction is coarse-grained.
However, the state remains private so some benefits of
object orientation remain. The superfluid data is hidden
from other classes, such as those describing the normal
fluid. (Following the approach of Decyk, Norton and
Szymanski [8], a class comprises a Fortran MODULE
containing an abstract data type and procedures with
an argument “this” of the corresponding type.)

At the beginning of a simulation, each mesh point is
assigned a unique integer identifier,ID, from 1 toN. For
a given ID M, the variables x(M), y(M), and z(M) store
the corresponding mesh point’s Cartesian coordinates,
while next(M) and last(M) store the ID of the points
immediately after and before M, respectively. Here,
“after” and “before” refer to physical ordering on the
vortex filament as opposed to logical order in the array.
Most values stored in next and last range from 1
to N. A value of 0 for either can be used to indicate a
filament end point, which can occur only at a boundary
as explained in Section 3.2.

In a fine-grained data abstraction, one might define
a node type as
TYPE node
PRIVATE
REAL :: x, y, z
TYPE(node), POINTER :: next,
last

END TYPE node
The x, y and z components of a node are the mesh

point coordinates. The next and last components are
pointers to other nodes. The node state space is five-
dimensional, so N instantiations are required to cover

190 D.W.I. Rouson and Y. Xiong / Design metrics in quantum turbulence simulations

C

 B D
 E F

A

Newly inserted Point marked
point for deletion

t

u
v

w

s

N+1

Fig. 2. Mesh points on three filaments, including one inserted and one to be deleted.

u

v

t

u

v

s

t

Reconnect
s

Fig. 3. Reconnection of vortex filaments.

the 5N -dimensional data space. The granularity, g =
N , is high and the abstraction is fine-grained. A vortex
tangle could be implemented as a linked list of nodes
as will be discussed below.

Figure 2 shows several linked nodes: B%last points
to node C and B%next points to A. The pointers next
and last establish a bi-directional linked list so when
B is visited, A and C can be referenced as B%next
and B%last, respectively. Then the component x of
A can be accessed by B%next%x. A similar state-
ment can be made for C, and D can be referenced as
B%last%last. If F%last points to A, and A%next
points to F, mesh points A to F form a vortex ring.
If A%last and F%next are disassociated using the
Fortran NULLIFY intrinsic, then points A to F form a
vortex line ending at A and F.

Figure 4 shows how the above data structures fit
into the overall software architecture as described us-
ing the Unified Modeling Language (UML) [2]. For
the coarse-grained implementation of Fig. 4(a), the

vortex tangle contains array components cover-
ing the requisite superfluid data space as well as a field
component representing the normal fluid velocity. The
relationship between the vortex tangle and field
classes is indicated by the UML aggregation symbol.
Note that the state of each class is private, but the func-
tionality is public as indicated by the UML + and –
symbols. Public functions in vortex tangle in-
clude move, remesh and reconnect, which solve the
quantum vortex equation of motion (2), remesh the
vortex tangle, and reconnect vortex rings, respectively.
The primary field component is a four-dimensional
array storing the three Cartesian vector components of
the normal fluid velocity field at each point on a rectan-
gular grid. The only public function shown in field
is Navier Stokes, which solves Eq. (1). Finally,
both classes implement certain generic, or polymor-
phic, behavior, including new, delete, and print
for construction, deconstruction, and output, respec-
tively. (Following Decyk, Norton and Szymanski [8],

D.W.I. Rouson and Y. Xiong / Design metrics in quantum turbulence simulations 191

(a)

(b)

 Legend
 Aggregation

Association
Polymorphic

 implementation
+ Public

 - Private

vortex_tangle

+ move(vortex_tangle)
+ remesh(vortex_tangle)
+ reconnect(vortex_tangle)

- N : integer
- x, y, z : real(N)
- next, last : integer(N)
- normal_fluid : field field

+ Navier_Stokes(field)

- Np : integer
- Vn : real(Np,Np,Np,3)

Generic behavior: new(), delete(), print()

Generic behavior: new(), delete(), print()

vortex_tangle

+ move(vortex_tangle)
+ remesh(vortex_tangle)
+ reconnect(vortex_tangle)

- N : integer
- normal_fluid : field
- point : node(N)

field

+ Navier_Stokes(field)

- Np : integer
- Vn : real(Np,Np,Np,3)

node

node

+ move(node)

- x,y,z : real
- next : node, pointer
- last : node, pointer
- global_next : node, pointer node

node

Fig. 4. Software architectures: (a) coarse-grained and (b) fine-grained.

constructors and destructors are implemented as For-
tran module procedures with generic interfaces.)

For the fine-grained architecture of Fig. 4(b), the
vortex tangle class contains a field component
and an array of node components. The array holds the
initial set of nodes. However, since the node connectiv-
ity information is stored in pointers (next and last),
a node can be inserted or removed without reallocating
the array. The node component global next will
be discussed in Section 3.5. The relationship between
vortex tangle and the initial node array is indi-
cated with the UML aggregation symbol; whereas the
relationship between individual nodes in the linked list
is shown with the UML association symbol. Other as-

pects of the design, including the polymorphic behavior
and the field class, remain as in the coarse-grained
design.

3.4. Local operations: Remeshing and reconnecting

Connections between vortex points change in two
ways: remeshing and reconnecting. In remeshing,
points are inserted or removed to balance resolution
requirements against computational cost. In reconnec-
tions, two vortex lines are torn asunder and the loose
ends are cross-connected. Each of these operations is
local. For some local operations, the higher data local-

192 D.W.I. Rouson and Y. Xiong / Design metrics in quantum turbulence simulations

ization of the fine-grained abstraction requires simpler
logic.

First, consider reconnecting points u, v, s, and
t, where u is immediately after v initially, and t is im-
mediately afters. After reconnection,t is immediately
after u; whereas v is immediately after s (see Fig. 3).
No operations on the position arrays are necessary. We
assume a vortex tangle has been instantiated as
follows:
TYPE(vortex tangle) :: tangle
CALL new(tangle)
Then for the coarse abstraction, the operations on the

connectivity arrays are
tangle%next(u)=t
tangle%last(t)=u
tangle%next(s)=v
tangle%last(v)=s
For the fine-grained design, operations on the con-

nectivity pointers are
tangle%point(u)%next => point(t)
tangle%point(t)%last => point(u)
tangle%point(s)%next => point(v)
tangle%point(v)%last => point(s)
Comparison indicates the two designs require similar

amounts of logic for reconnection.
Next consider inserting a new point with ID value

N+1 between points with ID values t and s, where
t immediately precedes s spatially on a filament but
not necessarily in storage (see Fig. 2). Assuming the
constructor “new” creates space at the N+1 slot in the
vortex tangle component arrays, the operations
on the coarse-grained structure are
CALL new(tangle,N+1)
tangle%x(N+1)=X new
tangle%y(N+1)=Y new
tangle%z(N+1)=Z new
tangle%last(N+1)=s
tangle%next(N+1)=t
tangle%next(s)=N+1
tangle%last(t)=N+1
In the pseudocode above, the declaration and con-

structor call are written for clarity. In an actual imple-
mentation, the constructor might determine the inser-
tion point ID based on a free space list or, if new space
is needed, it might add memory in large blocks, rather
than just in the N+1 slot.

For the fine-grained abstraction, point insertion re-
quires redirecting pointers in the nodes with ID values
s, t and N+1:
CALL new(tangle,N+1)
tangle%point(N+1)%x = X new

tangle%point(N+1)%y = Y new
tangle%point(N+1)%z = Z new
tangle%point(N+1)%next => point(t)
tangle%point(N+1)%last => point(s)
tangle%point(s)%next => point(N+1)
tangle%point(t)%last => point(N+1)
Again we have assumed a constructor named new

allocates memory if necessary, but we reiterate that the
actual ID of the new point could vary depending on
available free space. The logical complexity of point
insertion appears to be the same for both abstractions.

Finally, consider removing a mesh point with ID v
initially between points with ID values u and w (see
Fig. 2). Here, “between” refers to physical ordering
along a vortex filament as opposed to ordering in stor-
age. Since the data associated with v is no longer
needed, it is desirable to compress the array or to store
a free space map. The following code adjusts the con-
nectivity arrays, maps the free space, and compresses
out the free space:
TYPE(vortex tangle) :: tangle
LOGICAL, DIMENSION(N) :: free space
= .FALSE.
tangle%next(u)= w
tangle%last(w)= u
free space(v) = .TRUE.
DO i =v,N
tangle%x(i) = tangle%x(i+1)
tangle%y(i) = tangle%y(i+1)
tangle%z(i) = tangle%z(i+1)
tangle%next(i) = tangle%next(i+1)
tangle%last(i) = tangle%last(i+1)

END DO
The above loop section shows that compression dom-

inates the operation count for point insertion and af-
fects all array elements after v in memory. Thus, point
removal potentially has global effects on the coarse-
grained data structure.

For the fine-grained abstraction, both compression
and free space mapping are viable options since remov-
ing an object from a linked list has only local effects
on the list. Below we redirect the relevant pointers and
eliminate free space with the deconstructor delete:
LOGICAL, DIMENSION(N) :: free space
= .FALSE.
tangle%point(u)%next => point(w)
tangle%point(w)%last => point(u)
free space(v) = .TRUE.
delete(tangle%point(v))
Hence, management of the fine-grained data struc-

ture is potentially much simpler than for the coarse-
grained one.

D.W.I. Rouson and Y. Xiong / Design metrics in quantum turbulence simulations 193

a
b

c

k
l m

t

s

u

Fig. 5. Distinct vortex ring linked lists.

The above analysis suggests the fine-grained im-
plementation potentially simplifies the code and fa-
cilitates better memory management. In each of the
above cases, however, the resolution requirements and
the physics predetermine a small set of points to be
inserted, removed or reconnected. The next section
demonstrates that the coarse-grained abstraction re-
quires much simpler logic for operations visiting a
broader collection of points unless attention is paid to
maintaining global extent.

3.5. Global operations: Time advancement

In the context of the vortex filament model, remesh-
ing and reconnecting are instantaneous events that
scramble the links between a subset of the mesh points
at the end of each time step. Time advancement itself,
however, occurs in lock step for all mesh points. This
begs the question of how to visit all points in the sim-
ulation after the links between them have been rear-
ranged. Most importantly, how can we access points
on newly formed closed loops? We address this issue
for both abstractions below.

Even if there is only one vortex ring initially, re-
connections can break it into many rings. For coarse-
grained structures, this presents no difficulty. The
coarse-grained structure’s entire vortex tangle is con-
tinuously traversable via array index increments. Thus,
the data structure extent is global.

For the fine-grained abstraction, the situation is con-
siderably more complicated. Consider the configura-
tion in Fig. 5. Beginning with point a, one can visit b
by accessing point(a)%next. One then visits c by

accessing point(a)%next%next. Eventually this
process returns us to a, and therein lies the rub: how
does one reach points k, l, and m on a separate vortex
ring? One could visit each object in the point array, but
this could be wasteful if the array contains substantial
amounts of free space. (Note: for the fine-grained de-
sign, “compression” refers to freeing the memory in the
objects representing deleted points without necessarily
changing the point object array.)

The crux of this problem lies in the limited data
structure extent resulting from reconnections that pinch
off separate loops. The most straightforward way to
increase the extent is to link the individual rings arti-
ficially as in Fig. 6, where designated jump points on
each ring contain a link to a point on another ring. For
example, one could redefine the node type as follows:
TYPE node
PRIVATE
REAL :: x, y, z
TYPE(node), POINTER :: next,
last, next ring

END TYPE node
For most points, next ring could be disassoci-

ated; whereas for one point on each ring, next ring
would target a point on another ring. For global oper-
ations, one could start with any point, traverse its ring
fully, and then access the target of the ring’s jump point
via its next ring component. This process could
be repeated and end once the number of points visited
equals the number of points in the vortex tangle.

The latter data structure, however, still does not
have global extent because it uses one pointer
(next) to traverse individual rings and another pointer

194 D.W.I. Rouson and Y. Xiong / Design metrics in quantum turbulence simulations

a
b

c

k
l m

t

s

u

Fig. 6. Vortex rings with jump points (black).

 (a) (b)

I II

III IV
IV

III

II
I

Fig. 7. Reconnection with uneven distribution of jump points: (a) before and (b) after.

(next ring) to jump to other rings, so we cannot
access all the data by repeating one elemental opera-
tion. Although a seemingly trivial distinction, the im-
portance of this argument becomes clear when exam-
ining the four-vortex tangle of Fig. 7. Each ring has
one designated jump point shown in black. Two rings
are close enough for reconnection at the four points
marked with Roman numerals. The resulting recon-
nections create two new rings. One inherits two jump
points. Another gets none. Clearly one jump point
is now redundant. More importantly, one vortex ring
has now been completely disconnected from the tangle
and will subsequently be lost from the simulation. The
most straightforward solution is costly: for each recon-
nection involving a jump point, the resulting rings must
be traversed to identify redundancies. When a redun-
dancy is identified, one jump point on the correspond-
ing ring must become a generic point, while a generic

point on the other loop must become a jump point. For
a dense tangle, the resulting computational overhead is
cost prohibitive. In fact, since all point pairs can po-
tentially reconnect, we have likely traded an O(N2) de-
bugging problem for an O(N2) operation count. Worse
yet, other topological changes require different logic.
For example, if a reconnection combines two rings into
one, a redundant jump point must be eliminated but no
new jump point need be created.

Ultimately the simplest solution is to create a global
list of all mesh points that bears no relation to their
physical connectivity. One could implement such a
global list as follows:
TYPE node
PRIVATE
REAL :: x, y, z
TYPE(node), POINTER :: next,
last, global next, global, last

D.W.I. Rouson and Y. Xiong / Design metrics in quantum turbulence simulations 195

END TYPE NODE
The resulting design couples the high granularity of

the fine-grained abstraction with the global extent of the
coarse-grained abstraction. Such a design reduces the
computational overhead associated with certain local
operations such as point removal, while simultaneously
reducing the overhead associated with global opera-
tions such as time advancement. Memory associated
with removed points can be freed without compress-
ing the associated arrays. Each point in the tangle can
be visited by repetitively accessing the global next
pointer targets, ending after the number of points vis-
ited equals the number of points in the simulation.

4. Conclusion

This paper has focused on a class of scientific simula-
tions involving large sets of interconnected objects. In
particular, we have explored the implications of dynam-
ically reconfiguring the links between these objects.
Data structure granularity and extent have been intro-
duced as useful metrics for determining which data ab-
stractions lead to less computational overhead. Gran-
ularity was defined as the number of instantiations re-
quired to cover the full data space. Extent is defined in
a given direction as the continuously traversable length
of the data that are accessible through elemental oper-
ations, such as incrementing a single array index or ac-
cessing a single pointer target. In the direction orthog-
onal to the object state space, the extent is the number
of continuously traversable objects. When all objects
are so accessible, the extent is global.

Coarse-grained and fine-grained abstractions have
been presented for a representative problem: quantum
turbulence simulation. At one level of approximation,
quantum turbulence can be modeled as a tangled col-
lection of vortex filaments interacting with each other
and with surrounding normal fluid. The filaments can
be represented by a discrete set of connected points. As
the simulation progresses, points must be inserted and
removed and filaments must be torn and reconnected.
In addition to these local operations, such global oper-
ations as time advancement require visiting all points.

We have shown that increasing data structure gran-
ularity reduces the complexity of certain local opera-
tions at the potential expense of increased global oper-
ation complexity. We have further demonstrated that
maintaining global extent reduces the global opera-
tion complexity, making fine-grained abstractions ulti-
mately more attractive than their coarse-grained coun-
terparts.

Acknowledgements

This work was supported in part by Award No. 02061
52 from the National Science Foundation and Award
No. 64444-00 33 from the Professional Staff Congress
of the City University of New York (CUNY). The au-
thors would like to thank Prof. Joel Koplik of Levich
Institute at the City College of CUNY for many useful
discussions related to superfluidity, Dr. Charles Norton
of Jet Propulsion Laboratory for comments regarding
the manuscript, and Dr. Nagi Mansour of NASA Ames
Research for supporting the revision of this article dur-
ing the first author’s tenure as a NAFEO Faculty Fellow
at Ames.

The first author also thanks Prof. Oyekunle Oluko-
tun of Stanford University for suggesting software de-
sign metrics as a research subject and Dr. John J. Ken-
ney of Spirent PLC for introducing him to software
architecture.

References

[1] E. Akin, Object-oriented programming via Fortran 90/95,
Cambridge University Press, Great Britain, 2003.

[2] S.S. Alhir, UML in a Nutshell, O’Reilly Media, Inc., 1998.
[3] J.F. Allen and H. Jones, New Phenomena with Heat Flow in

Helium II, Nature, no. 3562, pp. 243–244.
[4] J.F Allen and A.D. Misener, Viscosity of liquid helium below

the lambda-point, Nature 141 (1938), 74–75.
[5] J.J. Barton and L.R. Nackman, Scientific and engineering

C++: an introduction with advanced examples, Addison-
Wesley, Massachusetts, 1994.

[6] G. Buzzi-Ferraris, Scientific C++, Addison-Wesley, Mas-
sachusetts, 1998.

[7] V.K. Decyk, C.D. Norton and B.K. Szymanski, Expressing
object-oriented concepts in Fortran 90, ACM Fortran Forum
15 (1997), 13–18.

[8] V.K. Decyk, C.D. Norton and B.K. Szymanski, How to ex-
press C++ concepts in Fortran 90, Scientific Programming 6
(1997), 363–390.

[9] V.K. Decyk, C.D. Norton and B.K. Szymanski, High perfor-
mance object-oriented programming in Fortran 90, in: Proc.
Eighth SIAM Conference On Parallel Processing for Scien-
tific Computing March 14–17, 1997, M. Heath et al., eds,
Minnesota, 1997.

[10] V.K. Decyk, C.D. Norton and B.K. Szymanski, How to sup-
port inheritance and run-time polymorphism in Fortran 90,
Computer Physics Communications 115 (1998), 9–17.

[11] G. Golub and J.M. Ortega, Scientific computing: an intro-
duction with parallel computing, Academic Press, Missouri,
1993.

[12] K. Hwang and Z. Xu, Scalable parallel computing: tech-
nology, architecture, programming, McGraw-Hill, New York,
1998.

[13] J3 Fortran Standards Technical Committee, ISO/IEC
1539 Working Draft, International Organization for Stan-
dards/International Electrotechnical Committee, Geneva,
Switzerland. 2001.

196 D.W.I. Rouson and Y. Xiong / Design metrics in quantum turbulence simulations

[14] P. Kapitza, Superfluidity observed, Nature 141 (1938), 74–75.
[15] J. Koplik and H. Levine, Vortex reconnection in superfluid

helium, Physical Review Letters 71 (1993), 1375–1378.
[16] L.D. Landau, The theory of superfluidity of Helium II, Journal

of Physics USSR 5(71) (1941), 71.
[17] A. Leonard, Vortex Methods for flow simulation, Journal of

Computational Physics 289 (1980), 289–335.
[18] M. Metcalf and J. Reid, Fortan 90/95 Explained, Oxford Uni-

versity Press, Great Britain, 1999.
[19] P. Moin and K. Mahesh, Direct numerical simulation: a tool

in turbulence research, annual, Annual Review of Fluid Me-
chanics 30 (1999), 539–578.

[20] S.B. Pope, Turbulent Flows, Cambridge University Press,
Great Britain, 2000.

[21] W.H. Press, W.T. Vetterling, B.P. Flannery and S.A. Teukolsky,
Numerical Recipes in C++: The Art of Scientific Computing,
2nd Edition, Cambridge University Press, Great Britain, 2002.

[22] A.D. Robison, C++ gets faster for scientific computing, Com-
puters in Physics 10 (1996), 458–462.

[23] D.W.I. Rouson and J.K. Eaton, On the preferential concentra-
tion of solid particles in a turbulent channel flow, Journal of
Fluid Mechanics v 428 (2001), 149–159.

[24] D.C. Samuels, Vortex filament methods for superfluids, in:
Quantized Vortex Dynamics and Superfluid Turbulence, C.F.
Barenghi, R.J. Donnelly and W.F. Vinen, eds, Telos Press,
New York, 2001.

[25] K.W. Schwarz, Three-dimensional vortex dynamics in super-
fluid 4He: line-line and line-boundary interactions, Physical
Review B 31 (1985), 5782–5804.

[26] K.W. Schwarz, Three dimensional vortex dynamics in super-
fluid 4He: homogeneous superfluid turbulence, Physical Re-
view B 38 (1988), 2398–2417.

[27] P.R. Spalart, R.D Moser and M.M. Rogers, Spectral methods
for the Navier-Stokes equations with one infinite and two pe-
riodic directions, Journal of Computational Physics 6 (1991),
297–324.

[28] L. Tisza, The λ-transition explained, Nature 141 (1938), 643–
644.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

