
The Layered Learning method and its application to
generation of evaluation functions for the game of

checkers
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Abstract. In this paper we describe and analyze a Computational Intelligence
(CI)-based approach to creating evaluation functions for two player mind games
(i.e. classical turn-based board games that require mental skills, such as chess,
checkers, Go, Othello, etc.). The method allows gradual, step-by-step training,
starting with end-game positions and gradually moving towards the root of the
game tree. In each phase a new training set is generated basing on results of pre-
vious training stages and any supervised learning method can be used for actual
development of the evaluation function.
We validate the usefulness of the approach by employing it to develop heuristics
for the game of checkers. Since in previous experiments we applied it to training
evaluation functions encoded as linear combinations of game state statistics, this
time we concentrate on development of artificial neural network (ANN)-based
heuristics.

Games provide cheap, reproducible environments suitable for testing new search
algorithms, pattern-based evaluation methods or learning concepts. Since the seminal
papers devoted to programming chess [1–3] and checkers [4] in the 1950s., games re-
mained through decades an interesting topic for both classical AI and CI-based ap-
proaches.

Most examples of application of CI methods to mind game playing make use of
either reinforcement learning methods, neural networks-based approaches, evolution-
ary methods or hybrid neuro-genetic solutions, e.g. in chess [5–7], checkers [8–11],
Go [12], Othello [13], or give-away-checkers [14, 15].

The main focus of this paper is on testing the efficacy of what we call Layered
Learning - a generally-applicable approach to building the evaluation function for two-
player games (checkers in here) which can be implemented either in the evolutionary
mode or as a gradient backpropagation-type neural network training. The method, orig-
inally proposed in [16], was used previously by the authors in the case of linear heuristic
composed of checkers-specific components [17, 18]. In this paper a more detailed de-
scription of the method is provided along with some modifications to the previously
used version. Furthermore, as opposed to [17] and [18], where evolutionary learning
methods were employed, this work concentrates on applicability of Layered Learning
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to the case of artificial neural networks (ANNs) based evaluation functions with much
lesser use of pre-defined domain knowledge.

The reminder of the paper is organized as follows: in section 1 the basic idea of the
proposed Layered Learning method is described along with its several modifications
and enhancements. The next two sections present the experimental setup and the results
of experiments, respectively. Conclusions and summary of possible research prospects
are placed in section 4.

1 Layered Learning

1.1 Learning method

Layered Learning (LL), schematically depicted in fig. 1, is an end-game first method.
Similarly to TD(λ) [19] it attempts to propagate the knowledge of final game results
from endgame positions up the game tree. Still, we believe that it differs enough to be
worth separate analysis and evaluation.

This learning scheme starts with division of the game tree into a number of disjoint
stages, depending on the game progress. The simplest criterion that can be employed
here in case of checkers is the number of moves performed. The whole process starts
with positions expected to be very close to the end of the game. They are analyzed by
a minimax algorithm (typically employing alpha-beta pruning) with a null evaluation
function. It is assumed that in most cases the analysis will be able to reach the leaves of
the game tree and the heuristic evaluation function will not be needed. The other cases
are treated as draws and have neutral value assigned by the evaluation function.

Once a set of assessed game positions is obtained, it can be used as training data for
any supervised learning approach, so as to create an evaluation function able to assess
those endgame positions. In our experiments we employed both evolutionary methods
(with various representations of heuristic evaluation functions) and backpropagation
learning methods (in case of ANNs).

Having trained an evaluation function for one stage, the algorithm moves to the next
stage, closer to the beginning of the game. A number of game states from this new stage
are generated and, again, they are analyzed with a minimax algorithm. It is expected that
its search depth will be enough to always reach positions from the previously trained
stage. In that case, the result of previous stage can be used as the evaluation function for
this analysis and another training set can easily be generated. This process, repeated for
all game stages, should lead to creation of an evaluation function capable of assessing
positions from all game stages (or an ensemble of such functions covering the whole
game).

1.2 Method variations

The general approach described in previous section can be implemented in several dif-
ferent ways and its quality may be influenced by a number of fine details of the algo-
rithm. Implementors of LL scheme have, of course, to tackle all typical hurdles of CI



Fig. 1. Layered Learning method - an overview

methods application, such as choosing learning coefficients, designing ANN architec-
ture, or defining evolutionary operators etc. There are, however, also several decisions
typical for LL learning that must be made.

First of all, implementors should settle on supervised learning method. Our first ex-
periments concentrated on using evolutionary methods - initially with evaluation func-
tions represented as linear combinations of simple game state features. More sophisti-
cated checkers position description features were introduced afterwards, and the defi-
nition of evaluation function was modified so as to allow dynamic switching of linear
combinations’ coefficients depending on game progress.

In the experiments described in this document we concentrated on evaluation func-
tions represented by ANNs in the form of fully connected feed-forward multi-layer
perceptrons. Input vectors would contain either only board content representation (with
no preprocessing applied) or, alternatively, also values of a number of simple game
state features. The ANNs would be trained either by backpropagation (RPROP [20]) or
evolutionary methods.

Another problem faced by implementors of the LL method may be the risk of trained
evaluators (be it ANN or any other representation) ‘forgetting’ knowledge learned dur-
ing previous stages. There are several ways this issue can be dealt with. It is possible to
train a separate evaluator in each stage and treat the resulting ensemble as the output of
the training process. Each evaluator would then be used only in the stage it was trained
for. Otherwise, special care must be taken to ensure that no (or next to no) ’forgetting’
takes place. One way to achieve that is to make sure, that in each phase, evaluator is
trained not only on positions from the current stage but also a number of game states
from previous stages. These historical positions can be either regenerated each time they
are needed (to improve the diversity of training positions), or reused in all subsequent
training phases (to save time required for their regeneration and minimax analysis).



Whatever the choice, the current stage positions should be slightly over-represented in
the training set, as they introduce new knowledge not yet acquired by trained evaluator.

One of the problems obvious in most training approaches in the domain of CI appli-
cation to mind games is the selection of training games, positions or opponents. Since
some players can be very successful against specific opponents while at the same time
being of inferior quality to all the others, it is important to train them on a wide selection
of game strategies they should be able to deal with. In the case of LL, training positions
are in the simplest case generated by playing random games till given depth in game
tree is reached.

This approach, however, brings about the risk that the training game states will not
be representative of positions encountered in real games against intelligent players. One
of the possible ways to circumvent this risk is modification of the positions generation
process. Instead of random players, a set of varied intelligent agents can be used to
play the games (possibly changing playing agent after each move) in order to generate
the required collection of game states. Results of preliminary tests of this approach
proved, however, to be unsatisfactory. This may, nevertheless, have been caused by
poor selection of playing agents and we still consider this idea worth further testing.

2 Experiments setup

First of all, it should be stressed that the aim of the experiment was not to create a
master level player capable of competing with commercial checkers applications. Our
solution was not fully optimized for speed, employed only basic alpha-beta pruning
algorithm with no further modifications and used only simple fully-connected ANNs
for evaluation function representation.

During our experiments we tested several different sets of control parameters in
combination with varied evaluation function architectures, which makes it impossible
to list all of them in such a short document. Still, we will point out the most typical
values (or intervals) of the coefficients used during training and indicate whenever an
atypical value was employed. We also believe that there is a huge potential for results
improvement by further tuning all the learning parameters and coefficients, considering
how little attention has yet been devoted to the LL method.

We concentrate in this paper on analysis of the learning method itself and try to
prove its applicability to mind games such as checkers, especially in zero-initial-knowledge
training scheme. We hope to present LL method to wider audience and point out possi-
ble directions for further research.

2.1 Neural networks architecture

All our ANN-based experiments (as opposed to earlier experiments described in [17,
18]) involved feed-forward fully-connected multi-layered perceptrons. Ideally, we wanted
their input vectors to contain board description only. They would, therefore, consist of
32 neurons representing individual board squares, each with one of five values: −2, −1,
0, 1 and 2 representing, respectively, opponent’s king, opponent’s checker, empty square
and current player’s checker or king. In some of the experiments the input layer would
further be extended to contain a number of simple game state description features:



– differences between player’s and opponent’s checkers and kings counts;
– differences between player’s and opponent’s safe (i.e. adjacent to the edge of the

board) checkers and kings counts;
– differences between player’s and opponent’s moveable (i.e. able to perform move

other than capturing, ignoring capturing priority) checkers and kings counts;
– difference between player’s and opponent’s aggregated distances of checkers to

promotion line;
– difference between player’s and opponent’s unoccupied fields on promotion line

count.

For comparison, some experiments with input vectors containing only the game state
features (without raw game state representation) were performed as well. In most ex-
periments, the neural networks would contain one hidden layer of up to 10 neurons.
Output layer would always contain a single neuron expected to output game state eval-
uation within the interval [−1,1].

2.2 RPROP training

During the first phase of our experiments evaluators were trained using RPROP back-
ropopagation method. In order to minimize the chance of random factors hindering the
learning process, learning process was augmented by elements of evolutionary training
procedures. At every stage of the algorithm 8 networks were trained simultaneously on
the same training set. Each training phase consisted of 4 generations. After each gener-
ation, the quality of all candidate evaluators was tested by computing their mean square
errors on a test set. Test set used for this task was separate from training sets and con-
tained a number of game positions from all game stages trained on so far (including the
current one). Candidate solutions were afterwards sorted based on their thus measured
quality and the worse half of them was replaced by mutated copies of the best networks.

During the RPROP learning, training patterns were presented to the networks in
random order (independent for each network). After each training phase, a more signif-
icant modification of the population took place. Only two best networks survived intact
to the next phase. Additional 4 were generated by mutating them - once with lower
(0.01 to 0.03) and once with higher (0.1) mutation probabilities. Further two candidate
solutions were created with fully random weight values.

Mutation was applied independently to each weight in the mutated network, with
each connection having equal probability to mutate. Once it was decided that given con-
nection value should change, one of four possible mutations would be applied to it (each
with equal probability): multiplication by 2, division by 2, sign change (multiplication
by -1) or replacement with random value.

Results of preliminary experiments comparing training for varied number of epochs
and with varied training set sizes (not presented here in details due to lack of space),
suggest that one of the main problems hindering further improvement of the solutions
generated by backpropagation method was the risk of overtraining. With high ANN
capacities, small training sets and long training the networks would quickly loose their
generalization capabilities. This would result in low training set errors but higher test
set errors and poor performance in actual comparison games.



In order to overcome this hurdle, in the subsequent experiments we limited the
ANNs’ sizes and attempted to use training sets as big as possible, which, of course, re-
sulted in slower training process. This meant, however, that in order to keep the training
time within reasonable limits we had to reuse the same training boards across multiple
training phases (continuously increasing the training set size with positions from lower
depths in game tree).

Finally, we decided to employ early stopping routine as a way to define stop condi-
tion for training, so that the probability of overtraining is reduced. It proved, however,
less successful than we expected. It turned out that the specificity of the problem caused
the validation set error to fluctuate significantly - sometimes rising for several epochs
only to drop afterwards. Early stopping, even modified to accept temporary rise of vali-
dation set error, was prone to ceasing the training too early, which forced us to train all
networks for a preset number of epochs before the technique was employed.

2.3 Evolutionary training

Second phase of our experiments made use of a simple evolutionary approach. The
trained population would, in this case, contain several dozen (up to 100, depending
on individual experiment settings; 40 in most runs) candidate networks that would be
modified over several hundred generations in each training phase.

In each generation mean square error of training boards assessment was calculated
for each candidate ANN. Afterwards, a number (55% of population size in the most
successful experiments) of the worst performing solutions were discarded. The remain-
ing individuals were replicated with mutation, with a subset of them (typically the top
5% of the original population size) being replicated twice (once with lower and once
with higher mutation probability coefficients). In case the resulting number of individ-
uals was still lower than the requested population size, additional candidate solutions
were generated randomly.

After each phase, population was refreshed in similar manner but with different
control parameters. In that case, only 30% of the population would survive. Thus, after
each generation a significant number of candidate solutions was regenerated randomly.

In most experiments the evolutionary method was additionally augmented by ele-
ment of RPROP training. Namely, each newly created (be it randomly or via replication
and mutation) network was first once trained on all training patterns. The RPROP train-
ing was also repeated for all networks after each training set change, i.e. at the beginning
of each training phase.

3 Results analysis

3.1 Evaluators comparison

In order to analyze the results of our experiments we first decided to perform direct
comparison of resulting evaluation functions by means of tournament, in which each
agent played 20 games against every other one (with sides swapped after each game).
Search depth limit for alpha-beta algorithm used in these comparison was set to rela-
tively low limit of 4 - thus increasing the influence of evaluation function quality on the



final score (in the case of greater search depths, score differences might prove less sig-
nificant). Games played by each selected pair of agents were pairwise different thanks
to the fact that, in each position, available moves were considered by the alpha-beta
algorithm in random order. In order to make the results of the tournament as represen-
tative of the true quality as possible, it included a significant number of various agents
trained in these and earlier experiments. Two scoring schemes were used in the tourna-
ment: games-based and clashes-based. In the former, agents were assigned points for
each individual game: 2 points for a win and 1 point for draw. In the latter, contestants
were scored analogically based on 20-game clashes (series of games against a single
opponent).

Figure 2 presents results of the tournament for selected most important evaluation
functions:

– HG-Expert3Phase the most successful evaluation function generated in the first
Layered Learning experiment described in [18], consisting of 3 linear combinations
of advanced game position features - each applied to one of disjoint phases of the
game;

– BoardsAndFeatures5N - ANN trained with backpropagation method (RPROP), with
5 neurons in its single hidden layer and input vector containing both plain board de-
scription and basic game position numerical features;

– BoardsAndFeatures10N - ANN similar to the previous one but with doubled num-
ber of neurons in hidden layer;

– PlainBoard5N - ANN, differing from BoardsAndFeatures5N only in size of its
input layer, as it did not include precalculated checkers position features;

– PlainBoard10N - ANN similar to the previous one but with doubled number of
neurons in hidden layer;

– EvoPlainBoard10NWithRPROP - ANN trained using evolutionary approach (aug-
mented by RPROP procedure), with hidden layer of 10 neurons;

– EvoPlainBoard10NNoRPROP - ANN with architecture identical to the previous
one, but trained with pure evolutionary approach (with no backpropagation learning
component);

– EvoPlainBoard10NWithRPROPNoBoardsReuse - yet another identical ANN, but
this time trained with training boards set fully regenerated after each phase.

Based on the results of the described tournament and several minor comparisons
performed independently, several conclusions can be drawn. First of all, it can easily be
spotted that none of the evaluation functions generated in the current experiment man-
aged to surpass the best results of the original experiment based on game state descrip-
tion features. The explanation of this fact is twofold. Firstly, the experiments differed in
their focus and amount of learning parameters tuning applied. More importantly, how-
ever, it should not be forgotten that the most successful linear heuristics operated on
manually defined advanced game positions characteristics. At the same time ANN had
access to either raw board position or the simplest game position features only.

What is interesting, no significant difference in quality was observed between eval-
uators being provided with raw board representation only and those having additionally
access to simple game state statistics. Since earlier experiments confirmed that those
statistics are actually important in evaluation function building, it can be inferred that



(a) Individual games (b) 20-game clashes

Fig. 2. Comparison of evaluators based on individual games scores or clashes scores

the trained neural networks were actually able to successfully learn to compute at least
some of them basing on the raw position description only.

Better results of smaller networks confirmed our preliminary expectations of over-
fitting being a common and serious problem for our training process. It should also not
be omitted here that our decision to mix elements of evolutionary and backpropagation
training was a highly successful one. Both training methods yielded far weaker solu-
tions when used independently. In case of evolutionary method this fact is clearly visible
in figure 2 with EvoPlainBoard10NNoRPROP being scored more than 20% lower than
EvoPlainBoard10NWithRPROP. At the same time, analysis of the training logs of the
backpropagation-based processes clearly indicates that in this case a significant number
of mutations led to improvement of ANNs’ mean square errors.

3.2 Training progress analysis

In order to verify the training process itself and evaluators’ quality improvement from
phase to phase, for several selected individual experiments we decided to perform fur-
ther tournaments comparing solutions generated in subsequent phases of the same train-
ing process. We were aware that poor choice of training configuration might cause the
evaluators to loose during the training knowledge gathered in earlier phases. What is
more, any errors in heuristic generated in one of the early phases, would be repeated or
even magnified during the training process, because the results of previous phases are
used to generate training sets for further training.

It should also be stressed that, even if none of the above dangers actually applied,
in case of such a comparison we had no reason to expect a monotonous increase in
scores, as all but the last few evaluation functions were in no way prepared to play full
games, having been trained only on their final stages. This fact might have lead them
to choosing seemingly random moves in the first parts of games which could in conse-
quence cause the objectively better end-game players to arrive at very disadvantageous



positions. We expected, however, the heuristics generated in last training phases to play
significantly better than the earlier ones.

Since in our experiments we decided to divide the game into 14 stages, we expected
the winner to be one of evaluation functions generated in stages 11 to 14. This assump-
tion proved, in general, to be true. The results of further classification proved, however,
sometimes surprising. In some cases (for example for PlainBoard5N as visible in fig-
ure 3) one or more of the early stage evaluators turned out to be unexpectedly strong
players as well. This can be attributed to the fact that it can be expected for such early
heuristics to rely heavily on material differences and such a simple approach may be
enough to beat opponents using evaluation functions being more sophisticated but ap-
plicable to mid-game positions only (with no ability to play any reasonable opening
moves).

Fig. 3. Comparison of results of subsequent phases

4 Conclusions

In this paper a generally-applicable game learning approach to creating evaluation func-
tion for two-player games has been described.

To verify usefulness of this training method, we decided to apply it to the game of
checkers. Following our previous experiments, in which we evolved linear-combination-
based heuristics, this time we concentrated on training ANNs.

We believe that our experiments prove the method is worth further analysis, testing
its various aspects and applicability to other mind games. We identified some of the
most troublesome aspects of the approach and proposed several modifications to it, that
we think are worth further research.

Although the method was introduced some time ago [16] it hasn’t been extensively
researched yet. Since only few experiments utilizing LL method have been performed
so far, we think that its true potential is still yet to be discovered. We also believe that



the name Layered Learning coined in this paper aptly describes the general idea of the
method.

Our current research is focused on direct comparison of the LL method with the
TD(λ) learning scheme.
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