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Abstract 
 
The paper determines possibilities of cost optimisation in the production of GX2CrNiMoCu25-6-3-3 type duplex cast steel castings 
through selection of appropriate solution heat treatment temperature, which value depends on the content of alloying elements. 
Metallographic analysis was carried out for as-cast and heat treated cast steel. Hardness and impact strength of the cast steel were 
determined, which were correlated with the volume fraction of phases determined by means of ImagePro computer image analyser.  
It has been shown that increased carbon content creates a need to use higher treatment temperatures, thereby increasing the production 
cost. With increasing carbon content the cast steel hardness after solution heat treatment increases, however, crack resistance decreases  
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1. Introduction 
 
Austenitic-ferritic duplex stainless steel (DSS) is very 

attractive as a structural material in the fields of energy/ 
environmental systems where both high mechanical strength and 
excellent resistance to localized and stress corrosion are required 
[1,2]. In DSS the corrosion properties of both ferrite and austenite 
depend strongly on the actual chemical composition. The main 
alloying elements chromium, molybdenum, nickel and nitrogen 
are not equally distributed in ferrite and austenite. The austenite is 
enriched in nickel and nitrogen, while the ferrite is enriched in 
chromium and molybdenum. The partitioning of these elements 
affects the corrosion resistance of both, the single phase and the 
entire alloy [3].  

Generally, these alloys have two to three times higher yield 
strength and exhibit greater resistance to localized and stress 
corrosion than type 300-sersies austenitic stainless steels at a 

comparable cost [4,5]. It is well know that such good properties of 
duplex stainless and cast steels related on the two-phase 
microstructure comprised of a mixture with approximately equal 
amounts of ferrite (δ) and austenite (γ) [6,7]. However, a number 
of undesirable phases such as carbides, nitrides and intermetallic 
compounds may appear in δ-ferrite areas and at the δ/γ interfaces 
if the manufacturing process are not carefully controlled [8-11]. 
Among these secondary precipitates, σ-phase, R-phase and 
carbides with fast formation kinetics have been particularly 
noticed because they can cause dramatic deterioration of the 
toughness and the corrosion resistance of duplex stainless  
steel [12-14].   

The stainless and cast steels typically have an annealed 
structure that is roughly half austenite and half ferrite, although 
the ratios can vary form roughly 35/65 to 55/45. The difficulty in 
preciding the microstructure is due essentially to the effects of the 
alloying elements, which modify the Fe-Cr-Ni phase diagram 
[15]. Alloy producers use empirical formula, in which 
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proportionality coefficients are attributed to each element, and the 
later are grouped together, depending on their tendency to 
stabilise either the ferrite (Cr, Mo, Si, etc.) either the austenite 
(Ni, N, C, etc.).  In practise, the annealing temperature is chosen 
as low as possible, but sufficient to take into solution any 
precipitate phases. The relative amounts of the δ - ferrite and γ – 
austenite phases is then essentially determined by the chemical 
composition, particularly as regards the balance between δ - 
stabilizers and γ – stabilizers [16].  

The paper determines possibilities of cost optimisation in the 
production of GX2CrNiMoCu25-6-3-3 type duplex cast steel 
castings through selection of appropriate solution heat treatment 
temperature, which value depends on the content of alloying 
elements. 

 

2. Methodology and materials for 
research 
 

The chemical composition of the highly alloy ferritic-austenitic 
duplex cast steel used for the present work is listed in  
table 1. 

  
Table. 1.  
The chemical composition of examined cast steel [%] 

C Cr Ni Mo Mn S Si P Cu 
heat No. 1 

0.028 24.20 8.82 2.30 0.46 0.010 0.85 0.011 0.02 
heat No. 2 

0.055 24.40 6.71 2.40 0.14 0.020 0.81 0.020 3.08 
 

Samples were solution annealed in water after 2h of soaking 
at a temperature of 1050˚C, 1080˚C, 1150˚C 

 The microscopic analysis of the cast steel after heat treatment 
was performed on a Zeiss Axiovert 25 optical microscope. In 
order to disclose the structure, the cast steel was chemically 
etched with reagent Mi21Fe (30g potassium ferricyanide + 30g 
potassium hydroxide + 60ml distilled water).  

Volume fraction of ferrite austenite and sigma phase was 
performed on ImagePro Plus computer program. 

Hardness was measured by the Brinell method. Impact 
resistance was measured on Charpy V specimens at ambient 
temperature on a hammer of an initial energy of 300 J. 
  

3. Results and discussion 
 

Examinations of raw cast steel structure have shown that with 
decreasing carbon content the amount of unfavourable 
intermetallic phases precipitates goes down. Those precipitates, 
creating a characteristic network at the boundaries of primary 
solidification grains (Fig. 1c,d), substantially deteriorate the 
impact strength of raw cast steel, which for a cast steel containing 
0.055% C amounted to only 7J. In the cast steel from heat 1, 
containing C=0.028%, a uniform ferritic-austenitic structure has 
been obtained (Fig. 1a,b), ensuring a high, ~60J, impact strength 
in the as-cast state.  

The structure of raw cast steel, an in particular the presence of 
σ phase precipitates, has major influence on the choice of 
optimum solution heat treatment temperature. 

 
 

 
Fig. 1. The ferritic-austenitic microstructure of cast steel in 

as-cast condition: a,b) heat No. 1, c,d) heat No. 2 
 

To determine parameters of heat treatment, the cast steel 
examined was solution heat treated in water after two-hour 
annealing at 10500C , 10800C and 1150°C. Example of structure 
images are presented in Figure 2, and changes in ferrite and 
austenite fractions versus temperature in Figures 3 and 4. 

 

 
Fig. 2. The ferritic-austenitic microstructure of cast steel after the 

solution heat treatment in 10500C: a) heat No. 1, b) heat No. 2 
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In the structure of cast steel from heat 2, solution heat treated 
from 1050°C, around 3% of σ phase existed apart from ferrite and 
austenite (Fig. 2b, Fig. 3). This proves too low annealing 
temperature, which did not allow its full dissolution, and a high 
stability of part of σ phase is related to a high content of 
molybdenum existing in it, what has been described at length in 
authors’ papers [17]. The structure of cast steel solution heat 
treated from 1080°C consisted of around 55% of ferrite and 45% 
of austenite, while solution heat treated from 1150°C – of 65% of 
ferrite and around 35% of austenite (Fig. 3). 
 

 
 

Fig. 3. Volume fraction of phase occurred in heat No. 2 depended 
on temperature of solution heat treatment 

 
Solution heat treatment of cast steel from heat No. 1 in the 
temperature range between 10500C and 1150°C did not have 
significant influence on ferrite and austenite fractions in the 
structure (Fig. 4), what is related to high nickel and manganese 
contents in the alloy, i.e. elements which strongly stabilise the 
austenite (Tab. 1). The structure of cast steel solution heat treated 
from 1050°C consisted of around 55% of austenite and 45% of 
ferrite, while as a result of solution heat treatment from 1150°C 
the amount of ferrite increased slightly by around 3%, at the cost 
of austenite (Fig. 4). 
 

 
 

Fig. 4. Volume fraction of phase occurred in heat No. 1 depended 
on temperature of solution heat treatment 

   
  The hardness measurements specified in Fig. 5 show that 

with increasing solution heat treatment temperature the alloys’ 
hardness increases, what is related to higher volume fraction of 
harder ferrite in the structure. A clear increase in hardness of cast 
steel from heat No. 2, from 241 HB for the cast steel solution heat 

treated from 1050°C to 264 HB for the cast steel solution heat 
treated from 1150°C, is caused just by γ → δ transformation and 
related presence of around 60% of ferrite in the alloy structure. 
Small changes in the hardness of cast steel from heat No. 1  
(Fig. 5) result from small changes in ferrite and austenite fractions 
resulting from solution heat treatment in the temperature range  
1050–1150°C (Fig. 4). 
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Fig. 5. Hardens of  the investigated cast steel after the solution 

heat treatment 
 

Impact strength measurements specified in Fig. 6 show that in 
the solution heat treated cast steel, even at higher carbon contents, 
very high impact strength may be obtained, comparable to cast 
steels containing less than 0.03 carbon. However, the existence of 
even small amounts of σ phase has significant and adverse 
influence on the impact strength of solution heat treated cast steel. 
For the cast steel from heat No. 2 after solution heat treatment 
from 1050°C, at the presence of around 3% of σ phase, the impact 
strength of the cast steel amounted to 70J as against 142J obtained 
for pure ferritic-austenitic structure after solution heat treatment 
from 1080°C. 
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Fig. 6. Impact strength of  the investigated cast steel after the 

solution heat treatment 
 

Cast steel with low carbon content (heat No. 1) features 
high energy of breaking, equal to ~160J for cast steel solution 
heat treated from 1050°C. The increase in solution heat treatment 
temperature does not have a significant influence on the energy of 
breaking (Fig. 6), what is connected with small mutual changes in 
ferrite and austenite fractions in the structure (Fig. 4). 
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4. Conclusions 
 
The examinations carried out allow formulating the following 
statements and conclusions: 
- duplex cast steels provide high possibilities of structure 

optimisation from the point of view of castings’ operating 
properties. Mutual ferrite and austenite fractions in the 
structure and hence final properties of components may be 
controlled through appropriate selection of solution heat 
treatment temperature. With increasing solution heat 
treatment temperature the amount of ferrite increases, what 
results in increased alloy hardness at simultaneous 
maintenance of good resistance to cracking; 

- heat No. 1, with the lowest carbon content, features impact 
strength of around 160J, while in heat No. 2, with higher 
carbon content, the minimum impact strength amounted to 
60J, what anyhow is higher than the required minimum of 27J 
for structural materials. However, increased carbon content in 
a duplex cast steel results in the need to use higher solution 
heat treatment temperature, ensuring dissolving of undesired 
intermetallic phases. Optimum arrangement of properties and 
comparable volume fraction of ferrite and austenite in the 
structure of cast steel from heat No. 1 was obtained as a result 
of solution heat treatment form 1050°C, while of cast steel 
from heat No. 2 after solution heat treatment form 1080°C; 

- the guaranteeing of low carbon content creates a possibility to 
lower the solution heat treatment temperature by around 40°C, 
what will have a significant influence on reducing the 
production costs of castings. 
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