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Most research on depth cue integration has focused on stimulus regimes in which stimuli contain the small cue conflicts that
one might expect to normally arise from sensory noise. In these regimes, linear models for cue integration provide a good
approximation to system performance. This article focuses on situations in which large cue conflicts can naturally occur in
stimuli. We describe a Bayesian model for nonlinear cue integration that makes rational inferences about scenes across the
entire range of possible cue conflicts. The model derives from the simple intuition that multiple properties of scenes or
causal factors give rise to the image information associated with most cues. To make perceptual inferences about one
property of a scene, an ideal observer must necessarily take into account the possible contribution of these other factors to
the information provided by a cue. In the context of classical depth cues, large cue conflicts most commonly arise when one
or another cue is generated by an object or scene that violates the strongest form of constraint that makes the cue
informative. For example, when binocularly viewing a slanted trapezoid, the slant interpretation of the figure derived by
assuming that the figure is rectangular may conflict greatly with the slant suggested by stereoscopic disparities. An optimal
Bayesian estimator incorporates the possibility that different constraints might apply to objects in the world and robustly
integrates cues with large conflicts by effectively switching between different internal models of the prior constraints
underlying one or both cues. We performed two experiments to test the predictions of the model when applied to estimating
surface slant from binocular disparities and the compression cue (the aspect ratio of figures in an image). The apparent
weight that subjects gave to the compression cue decreased smoothly as a function of the conflict between the cues but did
not shrink to zero; that is, subjects did not fully veto the compression cue at large cue conflicts. A Bayesian model that
assumes a mixed prior distribution of figure shapes in the world, with a large proportion being very regular and a smaller
proportion having random shapes, provides a good quantitative fit for subjects’ performance. The best fitting model
parameters are consistent with the sensory noise to be expected in measurements of figure shape, further supporting the
Bayesian model as an account of robust cue integration.
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Introduction

Images contain many different cues to the three-dimen-
sional (3D) layout of objects in a sceneVretinal disparity,
motion, texture, figure shape, and shading. The visual
system integrates these cues to estimate objects’ 3D
properties both for perception and to guide action. When
different cues suggest similar values for a scene parameter
(curvature, slant, etc.), one can reasonably approximate
cue integration as a linear combination of the estimates
suggested by each cue individually. A large body of
contemporary research has focused on how the human
visual system integrates cues when operating in this linear
regime (Alais & Burr, 2004; Jacobs, 2002; Johnston,
Cumming, & Landy, 1994; Johnston, Cumming, &
Parker, 1993; Landy, Maloney, Johnston, & Young,
1995; Young, Landy, & Maloney, 1993). Thus, for
example, research has shown that humans weight cues,
both within and across sensory modalities, according to
their relative reliabilities. As cue reliability changes across

stimulus conditions, so do the weights that subjects give to
the cues (Alais & Burr, 2004; Ernst & Banks, 2002; Hillis,
Watt, Landy, & Banks, 2004; Knill & Saunders, 2003).
The fact that cue weights in a local linear model of cue
integration change across stimulus conditions reflects one
form of global nonlinearity in how the brain integrates
cues. Another potential form of nonlinearity can arise
when sensory cues suggest very different estimates of a
scene parameter, requiring the use of nonlinear, robust
strategies for integrating cues (Landy et al., 1995). This
article describes a Bayesian approach to modeling cue
integration in large-conflict situations and describes two
experiments designed to test a Bayesian model for
integrating figural shape cues and binocular disparity cues
to surface slant. The analysis provides a test of the
explanatory power of the Bayesian approach for charac-
terizing nonlinear, robust cue integration behaviors.
Pictures provide a prototypical, if somewhat artificial,

example of large cue conflicts. Pictorial cues suggest the 3D
layout of the photographed scene, but binocular disparities
suggest a flat surface. In these cases, our brains resolve the
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conflict by supporting two modes of viewingVa real mode
and a depicted mode. Asked to grasp the page, we would
orient our hands to match the slant of the page; however, we
also see the depicted surfaces as having slant, curvature,
and variations in depth that are different than those of the
printed page. What happens in the real world when faced
with large cue conflicts, when an observer cannot use the
pictorial explanation to explain away the conflict? How, for
example, does the brain interpret retinal image information
when the texture projected from a surface suggests an
orientation very different from that suggested by binocular
disparities?
One answer is that the visual system should veto one of

the two cues in a process akin to outlier rejection in
statistics (Landy et al., 1995). Which cue to veto could
depend on which one is least reliable or, when more than
two cues are available, which one is most inconsistent
with the others. As with many approaches to outlier
rejection in statistics, these strategies are heuristics for
deciding which cue (or cues) to reject. Consideration of
the situations in natural viewing that lead to large cue
conflicts suggests a principled Bayesian approach to the
problem. The fundamental observation underlying the
approach is that most cues rely on a mixture of possible
prior assumptions or constraints about objects in the world
(Knill, 2003; Yuille & Bulthoff, 1996). Some constraints
render cues reliable and some less so. Multiple cues can
interact to effectively determine which constraints apply in
a given scene. Texture information provides a prototypical
example. Surface textures may be homogeneous and
isotropic (have no global orientation); they may simply be
homogeneous or they may be neither. At a finer level of
categorization, some homogeneous textures are stochastic,
whereas others are regular. The information provided by
image textures depends critically on which model applies
to the surface texture being viewed. Thus, for example,
when stereoscopic disparities specify a slant very different
from the slant suggested by texture, as interpreted using an
isotropy assumption, a rational visual system might
determine that the most likely interpretation is that the
surface texture is not isotropic (but is perhaps homoge-
neous). This would appear as cue vetoing or, at least,
down-weighting the texture cue (Knill, 2003). Similar
observations apply to almost all monocular depth cues (e.
g., motions may be rigid, elastic, etc.). In the real world,
the visual system must necessarily take into account the
possibility that any of these prior models might apply to
an object property when interpreting a visual cue.

A normative model for robust cue
integration
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The denominator is a constant (it depends only on the
given image measurements and not on S
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When the likelihood functions associated with each cue
and the prior are all Gaussian, both the mean and the
mode of the posterior density is a weighted sum of the
means (or modes) of those functions. The weights are
inversely proportional to the variance of each of the
functions, leading to the now well-tested hypothesis that
subjects, when they integrate cues linearly, should weight
sensory cues in inverse proportion to their individual
uncertainty (Alais & Burr, 2004; Ernst & Banks, 2002;
Hillis et al., 2004; Knill & Saunders, 2003). A little
thought, however, reveals that the Gaussian model is not a
good model of the true likelihood functions that should be
associated with each cue. In this section, we will explore
one particular feature of more naturalistic models of the
likelihood functions that, when built into a Bayesian
observer, gives rise to robust cue integration behavior:
apparent down-weighting of one or another cue in the
presence of large conflicts.
Most monocular depth cues derive their informativeness

from prior constraints on hidden parameters describing
object or scene properties that an observer is not
necessarily estimating. For example, the shapes of figures
in an image only provide cues to the figure’s 3D
orientation because of statistical constraints on the shapes
of figures to be found in our environment. Because figures
come in different categories (symmetric, isotropic, ran-
dom, etc.), the true prior probability density function over
the space of shape parameters is really a mixture of
qualitatively different priors. The important consequence
of this structure for cue integration is that the likelihood
function associated with a cue that depends on a mixture
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of priors is itself an additive mixture of likelihood
functions. Each component likelihood function is derived
using a different prior model and then weighted by the
probability that the prior model applies to the object being
viewed (e.g., the probability that a figure is symmetric)
and added together to form the full likelihood function for
the cue. This is expressed in the equation

p I
Y jSY

� �
¼ :1p I

Y jSY;M1

� �
þ :2 p I

Y jSY;M2

� �
I ð3Þ

where I
Y

is a vector representing the image measurements
associated with a cue, S

Y
is a vector representing the

object parameters being estimated, and Mi are the different
prior models used to compute the components of the
mixed likelihood function. :i are the probabilities asso-
ciated with each model (e.g., the probability that a surface
texture is isotropic).
In general, the likelihood functions resulting from such

mixtures can be arbitrarily complex with, for example,
multiple peaks for different values of S

Y
. Much of the

structure in the priors, however, is hierarchical, and the
different prior models that could possibly apply to a given
image can be arranged according to the degree to which
they constrain the hidden parameters. This formally
appears as a set of priors that restrict the space of
allowable interpretations of the hidden parameters to
lower and lower dimensional subspaces of the total
parameter space. The information provided by the shapes
of ellipses in the retinal image about surface slant
provides a particularly simple example of this. As
illustrated in Figure 1, human observers typically perceive
elliptical figures in an image as slanted circles. This
reflects a strong prior belief that circles are the most
common form of ellipse found in our environment.
Because not all ellipses in the world are circles, a
reasonable prior model for ellipses in the world is that
they come in two classesVrandomly shaped ellipses and
circles. The former would be defined by a prior density
function over the range of aspect ratios. The latter would
be defined by a density function that concentrates all of

the probability at a single aspect ratio (one). The like-
lihood function for slant derived from the shape of an
ellipse in the image is an additive mixture of the
likelihoods associated with each of the two prior models
on figure shapes in the world. The model likelihood
functions depend both on the amount of noise in sensory
measurements of aspect ratio and on the spread of the
prior density function of aspect ratios associated with the
models; therefore, the likelihood function for the circle
prior will be narrower than the likelihood for the random
ellipse prior. Figure 2 illustrates the calculation of this
type of mixed likelihood function.
Figure 3 illustrates the behavior of a Bayesian model for

estimating surface slant-from-figure shape information
and stereoscopic information that incorporates a mixture
of prior models for figure shape. The joint likelihood
function computed from figure shape and stereopsis is the
product of the mixed likelihood function for slant-from-
figure shape and the one derived from stereoscopic
information, which gives
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where I
Y

F represents the image measurements that charac-
terize figure shape (in our example, this would be aspect
ratio) and I

Y

s represents the image measurements that
characterize stereoscopic disparities. Which of the two
terms dominates the likelihood function depends both on
the prior probabilities associated with the two models for
figure shape (:circle and :ellipse) and on whether the
stereoscopic likelihood function is centered near the peak
of the figure shape likelihood or is centered over one of its
extended tails. When stereoscopic information suggests a
slant similar to that suggested by the circle interpretation
of a figure, the combined likelihood function is centered at
a point that is well characterized by a weighted sum of the
two. As the deviation between the two increases, the peak
of the joint likelihood function shifts toward the peak of
the stereoscopic likelihood function until, at high ‘‘con-
flicts’’, it almost perfectly aligns with the stereoscopic
peak. At this point, a Bayesian estimator will appear to
have nearly turned off the figure shape cue. This is
because the stereoscopic information at large conflicts is
not consistent with the circle model and the random
ellipse model in the mixed likelihood function for figure
shape dominates the combined likelihood.
Figure 3D shows how this behavior reflects itself in the

weights that a Bayesian observer would appear to give to
the compression cue as a function of the size of the cue
conflict. Note that we use the term compression cue to
refer to the slant suggested by the shape of the ellipse in

Figure 1. Both figures appear to be circular cylinders but with
different orientations. The sides of the figures have the same
lengths and orientations. Only the aspect ratios of the elliptical
outlines at the tops and bottoms of the figures differ.
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the image under the assumption that the figure is a circle
in the world. The three plots show the patterns of weights
one would observe for an observer who assumes each of
three prior models on figure shapes in the world. In the
first model, all ellipses in the world are assumed to be
circles. In the second model, all ellipses in the world are
assumed to be randomly drawn from a set of ellipses with
aspect ratios having a distribution that is peaked at 1
(biased toward circles) but has a standard deviation of
0.25 (circles are not a privileged category). The third
model is a mixture of the first two. It reflects a world in

which 90% of figures are circles, but 10% are drawn from
the random set of ellipses characterized by Model 2. Note
that for small cue conflicts, the Bayesian observer using
the mixed model operates in a regime that is intermediate
between what would be predicted from the two compo-
nent models on figure shape; that is, both models
contribute to the behavior of the observer. This is true
even at the smallest conflicts, where the contribution of
the random ellipse model decreases the apparent weight
given to the compression cue. The apparent weight given
to the compression cue decreases smoothly as the conflict

Figure 2. Given the shape of an ellipse in the retinal image, the likelihood function for slant is a mixture of likelihood functions derived from
different prior models on the aspect ratios of ellipses in the world. The likelihoods shown above were derived by assuming that noise
associated with sensory measurements of aspect ratio has a standard deviation of 0.03 (taken from thresholds for discriminating aspect
ratios of ellipses; Regan & Hamstra, 1992), that the prior distribution of aspect ratios of randomly shaped ellipses in the world has a
standard deviation of 0.25, and that 90% of ellipses in the world are circles. The mixture of narrow and broad likelihood functions creates a
likelihood function with long tails, as shown in the blowup. The existence of these tails is the critical feature that supports robust cue
integration.
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between cues increases until it asymptotes at the weights
predicted by less constrained model of figures.
Several experimental results are consistent with a

Bayesian model for robust cue integration. Knill (2003)
has shown that subjects turn off the isotropy constraint for

interpreting surface textures when viewing monocular
images of slanted textures that have been strongly com-
pressed in one direction (are very anisotropic). That is, as
one compresses a surface texture by larger and larger
amounts before projecting it into the image, subjects

Figure 3. (A) When stereoscopically viewing an ellipse with an aspect ratio (in the world) close to 1 (in this case, 0.9), the likelihood
function for the figure shape cue is shifted away from the likelihood function for the disparity cue because of the strong bias to interpret the
figure as a circle. The figure shape likelihood function shown here is a long-tailed mixture of likelihoods derived using the same prior
density and noise parameters used to generate the likelihood function in Figure 2. The stereoscopic likelihood function is Gaussian with a
standard deviation of 3.5-, reflecting the uncertainty in slant-from-stereo discrimination judgments found experimentally (Hillis et al., 2004).
The product of the likelihood functions lies intermediate between the peaks of the two cues’ likelihood functions. The best estimate of slant in

this case lies in between the estimates one would derive from either cue individually. (B and C) For projections of ellipses with aspect ratios

very different from 1.0 (0.8 and 0.7, respectively), the combined cue likelihood function gradually shifts to become more concentrated near

the slant-from-disparity likelihood function. For ellipses with aspect ratios very different from 1 (large cue conflicts), the stereoscopic

likelihood function is concentrated over the tail of the figure shape likelihood. The long tail in the figure shape likelihood function causes the

shift in the combined likelihood toward the stereoscopic likelihood. One can use these likelihood functions as the basis for an optimal

Bayesian slant estimator by combining the joint likelihood with a prior on slant (the generic viewpoint prior is sin(A)) and defining a cost

function on errors in slant estimates. (D) Predicted compression cue weights for a Bayesian estimator that calculates the mean slant

conditioned on the image information, plotted as a function of the difference between the slant suggested by the compression cue (the

slant suggested by a circle interpretation of the figure) and the slant suggested by the disparity cue (assuming a stereoscopic slant of

35-). A compression cue weight of 0.5 reflects equal weighting of the compression cue and stereopsis. Compression cue weights are

shown for an estimator that uses three different prior models for ellipses in the worldVall circles, all random ellipses drawn from a

distribution of aspect ratios (SD = 0.25), or 90% circles and 10% random ellipses drawn from the same distribution.
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initially show biases to interpret the texture as isotropic,
but eventually, the bias weakens and almost disappears.
The result is consistent with a model that uses both texture
foreshortening (which is subject to the isotropy bias) and
texture scaling (which is not) as cues to slant. At large
compression factors, the scaling information is strong
enough to turn off the isotropy bias. The Bayesian model
of robust cue integration predicts that measurements of the
weights that subjects give to cues will spontaneously and
smoothly vary as a function of the conflict between the
cues. In particular, because stereoscopic cues do not rely
on hidden prior assumptions on objects in the same way
that pictorial cues do, subjects should appear to down-
weight pictorial cues relative to binocular disparities as
the conflict between the two increases (but see the
discussion for possible violations of this behavior).
We performed two experiments to test whether subjects

show this behavior when integrating the information
provided by the shapes of 2D figures in the image and
stereoscopic disparities to judge the slants of planar
surfaces. We fit a Bayesian model to subjects’ data to test
whether a Bayesian account parameterized by reasonable
levels of sensory noise (taken from previous psychophys-
ical literature) is consistent with subjects’ performance
and to derive a model of the prior distribution on figure
shape that underlay subjects’ judgments. The results show
that subjects did appear to down-weight the information
provided by figure shape as conflicts with binocular
disparity grew in magnitude but that they did not
completely veto the shape cue. Rather, their behavior
was well fit by a Bayesian model that assumes two
categories of elliptical figuresVcircles and ellipses with
random aspect ratios, whose probability density peaks at 1
(i.e., still shows a preference for circles).

Preview

We measured subjects’ judgments of surface slant for
stereoscopic images of ellipses, as depicted in Figure 4.
Subjects are strongly biased to see slanted ellipses as
circles. The cue to surface orientation provided by the
orientation and aspect ratios of figures under an assump-
tion of circularity (for ellipses) or isotropy (for arbitrary
figures) is typically referred to as compression. The
advantage of using ellipses as stimuli is that, under
perspective projection, slanted ellipses project to ellipses
in the retinal image, retaining the fundamental ambiguity
in the percept. This means that the only monocular cue to
3D orientation provided by these stimulus images is the
aspect ratio and orientation of an ellipse in the image.
Furthermore, the information about surface orientation
provided by ellipses is easily characterized by a prior on
aspect ratio and a model of sensory noise on the measured
aspect ratios and orientations of ellipses in the image. The
ellipses were filled with random dots to provide a rich

source of stereoscopic disparities while limiting texture
information. Texture density contributes minimally to
slant perception (Braunstein & Payne, 1967; Buckley,
Frisby, & Blake, 1996; Cumming, Johnston, & Parker,
1993; Cutting & Millard, 1984; Knill, 1998a, 1998b), and
we randomized the sizes and shapes of the texels to reduce
the salience of local texture shape cues. Nevertheless, the
textures potentially provided some information about
slant. Because this was always consistent with the stereo-
scopic cues, further references to stereoscopic cues or
stereoscopic slant, strictly speaking, refer to combined
stereoscopic and texture cues.
The experiments measured subjects’ estimates of surface

slant for binocularly presented ellipses with a range of
aspect ratios. Images of ellipses with different aspect ratios
have different degrees of conflict between the orientations
suggested by the compression cue and stereoscopic
disparities. All ellipses were oriented horizontally and
slanted around the horizontal axis to simplify the analysis
and limit the number of experimental conditions. Thus,
conflicts were limited to the slant of the figure (angle away
from fronto-parallel). Subjects were asked to judge the
3D orientations of the figures by adjusting a stereoscopi-
cally presented line probe to appear perpendicular to the
figures, as in Figure 4. Experiment 1 measured cue
weights when stereoscopic disparities specified a slant of
35-. Experiment 2 measured cue weights when stereo-
scopic disparities specified a slant of 55-.
We formulated the optimal Bayesian estimator for

estimating slant from stereoscopic images of ellipses using
a prior distribution of aspect ratios that contained a mix-
ture of (1) a delta function at 1 (circles) and (2) a broader

Figure 4. The stimulus used in the experiments (shown here in
gray-scale for purposes of printing and reproduction). Subjects
adjusted the 3D orientation of the line probe to appear perpen-
dicular to the surface.
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distribution of aspect ratios. Data from previous experiments
allowed us to estimate the average of subjects’ sensory
uncertainty in estimating slant-from-stereo disparities. The
principal free parameters in the model, therefore, were the
uncertainty in sensory estimates of the aspect ratios of
ellipses in the retinal image and parameters describing the
prior distribution of aspect ratios. We fit this model to the
data from the experiments to test whether it accurately
characterized subjects’ nonlinear behavior in combining the
figural and binocular information in the stimulus images.
Bayes’ optimality predicts that the same prior model will
accurately fit data from both of the slant conditions used in
Experiments 1 and 2.

Experiments

Figure 4 shows an example of the stimuli used in the
experiments. Both the surfaces and the line probes were
presented stereoscopically. On each trial, the orientation
of the probe was randomized in an annular region on the
view sphere around the true (stereoscopic) orientation of
the stimulus surface. Subjects used the computer mouse to
adjust the 3D orientation of the line probe to appear
perpendicular to the surface in the stimulus. Test stimuli
consisted of stereoscopic views of an elliptical figure filled
with randomly positioned dots at a fixed slant (35- for
Experiment 1 and 55- for Experiment 2). Surface tilt was
fixed at vertical in all stimuli. Test stimuli were given
random aspect ratios by compressing or stretching a circle
in the vertical direction (in the plane of the surface) so as
to keep the area of the figure constant. Different subjects
were used in the two experiments to keep the experiments
short (two 1-hr sessions each) and to minimize potential
effects of learning.
Data analysis was performed on subjects’ slant settings

as measured by the matching probe orientations. Because
both subjects’ slant estimates and their estimates of probe
orientation were likely to be biased, we randomly
intermixed a large number of baseline trials containing
stereoscopic images of circles at slants ranging from 15-
to 65-. Data from these conditions allowed us to map
subjects’ probe settings on test trials to equivalent slants
of cue-consistent stimuli. The adjusted slants were used
for analysis (e.g., to compute cue weights).

Methods
Visual stimuli

Visual displays were presented on a computer monitor
viewed through a mirror (see Figure 5) using CrystalEyes
shutter glasses to present different stereo views to the left
and right eyes. Displays had a resolution of 1,280 � 1,024
pixels and a refresh rate of 118 Hz (59 Hz for each eye’s
view). Stimuli were drawn in red to take advantage of the
comparatively faster red phosphor of the monitor and

prevent interocular cross talk. Viewing distance to the
monitor (or its virtual image behind the mirror) was
approximately 50 cm, although it varied slightly from
subject to subject. The viewing angle to the monitor was
approximately 38-, although it, too, varied slightly from
subject to subject.
A rectangular black occluder was placed on the mirror

to obscure the frame of the monitor from subjects’ view.
Stimuli were centered on the center of the virtual image of
the CRT in 3D space. Stimuli consisted of planar,
elliptical disks filled with random dot textures. Disks
were created from circles with a radius of 6 cm. Figures in
the baseline stimuli, consisting of circles projected at
slants ranging from 15- to 65- viewed from 50 cm,
subtended approximately 13.8- horizontally and 5.8–13.4-
vertically from the point of view of a subject. Because
figures were rotated around the horizontal axis, the
horizontal extent of the figures in the stimulus images
changed only slightly as a function of surface slant. Test
stimuli containing ellipses with aspect ratios different
from 1 were created by compressing or stretching circles
in a direction perpendicular to the horizontal axis. Figures
were then scaled to maintain their area in the plane of the
surface. Thus, for example, an ellipse with an aspect ratio
of 0.8 had a horizontal radius of 7.5 cm in the virtual
world. Random dot textures were created from constrained
random lattices of points in the plane. The random lattices
were samples from a stochastic reaction–diffusion process

Figure 5. The viewing arrangement used in the experiments.
Stimuli appeared as slanted ellipses floating in space behind the
mirror.
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that effectively perturbed the positions of the points in the
lattice away from a rectangular grid. The resulting lattices
represented a trade-off between a completely random
selection of points in the plan and a regular lattice that
would have created linear perspective cues. The points
in the random lattice were used to create a Voronoi
patternVa collection of polygons centered on the points in
the lattice that tiled the plane. The randomly shaped
polygons generated in this way were then shrunk to a width
of 0.22 cm (È15 arcmin), on average, to create a set of
randomly shaped ‘‘dots’’. By generating dots in the texture
pattern in this way, we weakened local figure shape cues
that would be provided were the dots drawn as circles. The
textures were not compressed with the ellipses for the
noncircular ellipse stimuli; thus, texture cues, to the extent
that subjects could use them, were always consistent with
the stereoscopically defined slant. Twenty different ran-
dom textures were used in the experiment.
A line probe was rendered with its base at the center of

the stimulus surfaces. The line itself was rendered as a
cylinder with a radius of 0.25 cm. It had balls attached to
the tops and bottoms to eliminate monocular cues to line
orientation that would have been provided by the
projections of the circular cross sections of the cylinder.

Apparatus

Figure 5 shows a schematic diagram of the viewing
apparatus used in the experiment. Subjects placed their
heads in a chin rest, resting against a headrest. Subjects
adjusted the orientation of the line probe using a mouse
placed on the table positioned under the mirror. Spatial
calibration of the virtual environment required computing
the positions of subjects’ two eyes relative to the virtual
image of the screen. These parameters were determined at
the start of each experimental session using an optical
matching procedure. The backing of the half-silvered
mirror was temporarily removed so that subjects could see
their hand and the monitor simultaneously. A test grid
containing thin rods with varying heights and positions
was placed on a tabletop aligned with the monitor under
the mirror. Subjects aligned a crosshair on the display
with the tips of rods on the test grid. A total of 23 positions
subtending approximately 35- � 7- of visual angle were
matched. Matches were performed monocularly in sepa-
rate sequences for left and right eyes. The combined
responses for both eyes were used to determine a globally
optimal combination of 3D reference frame and eye
position. The cyclopean reference frame used to create
stimuli had its origin at the point halfway between the two
eyes and had a horizontal axis defined by the vector
difference between the two eyes’ positions.

Procedure

Sixteen stimulus conditions were used in the experi-
ment. Six of these were baseline conditions containing

circular stimuli presented at slants of 15-, 25-, 35-, 45-,
55-, and 65-. The other 10 ‘‘test’’ conditions were ellipses
presented at a slant of 35- (Experiment 1) or 55-
(Experiment 2). In Experiment 1, the aspect ratios of the
ellipses in the test conditions were 0.6, 0.7, 0.8, 0.85, 0.9,
0.95, 1.05, 1.1, 1.15, and 1.2. This created cue conflicts
between the compression cue and stereoscopic disparities
of 25.6-, 20-, 14.1-, 10.9-, 7.5-, 3.9-, j4.3-, j9.3-,
j15.4-, and j24.4-. In Experiment 2, the aspect ratios of
ellipses in test stimuli were 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1.1,
1.2, 1.35, and 1.5. This gave a similar range of cue
conflicts as in Experiment 1V25.1-, 18.3-, 14.9-, 11.3-,
7.7-, 3.9-, j4.1-, j8.5-, j13.2-, and j24.4-. Subjects
performed two sessions on different days, each containing
four blocks of trials. Each block contained 14 each of the
baseline conditions and 4 each of the test conditions,
giving a total of 124 trials per block. Subjects took, on
average, 7 minutes to complete a block; hence, each
session took approximately 45 minutes to run, including
the time for calibration and breaks between blocks. Stimuli
were presented with an intertrial interval of 500 ms and
remained on the display until subjects pressed the mouse
button to indicate a match.

Subjects

Subjects were 16 undergraduates at the University of
Rochester who were naive to the goals of the experiment.
There were eight subjects in Experiment 1 and eight in
Experiment 2. Subjects had normal or corrected-to-normal
vision and normal stereo vision.

Results
Experiment 1

Figure 6A shows slant settings for three representative
subjects in the baseline conditions. Subjects’ settings in
the test conditions were all well within the range of their
baseline settings for stimuli between 25- and 45-; there-
fore, we used subjects’ slant settings on those baseline
trials to remove biases from subjects’ slant settings in
the test trials. Because of significant nonlinearities in
some subjects’ slant judgments (see, e.g., the red curve
in Figure 6A), we performed a least squares, quadratic
regression to fit subjects’ probe slant settings as a function
of the true stimulus slant,

sprobe ¼ as2stimulus þ bsstimulus þ cþ Noise; ð5Þ
where sprobe represents subjects’ probe slant settings and
sstimulus represents the stimulus slant. We then computed
corrected (unbiased) slant settings, sprobe, on test trials by
inverting this equation

s ¼
jbþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 j 4a c j sprobe

� �q
2a

ð6Þ
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The corrected slant settings, s, are estimates of the slants
of cue-consistent stimuli (stereoscopic images of circles)
that would appear to have the same slants as the test
stimuli. Figure 6B shows the same three subjects’
corrected slant settings on test trials, as a function of the
aspect ratio of the ellipse projected into the stimulus.
Figure 6C shows average, corrected slant settings across
all eight subjects.
As illustrated in the figure, subjects showed an initial

bias to interpret the figure as a circle, but this bias
weakened at aspect ratios very different from 1. Figure 6D
replots subjects’ average slant settings on test trials as a
function of the conflict between the slant suggested by the
compression cue (the circle interpretation of a stimulus)
and the stereoscopic cue (fixed at 35- for these trials). For
aspect ratios close to 1, subjects behaved as if linearly

combining the slant suggested by stereopsis and the slant
suggested by the compression cue but appeared to down-
weight the compression cue at large conflicts. A linear cue
integration model approximates subjects’ slant settings for
a given stimulus condition as a weighted linear sum of the
slants suggested by the compression cue and by stereo-
scopic disparities,

s ¼ wcompression scompression þ wstereo sstereo

¼ wcompression scompression þ 1jwcompression

� �
35; ð7Þ

where scompression represents the slant suggested by the
compression cue or, equivalently, the slant consistent with
a circle interpretation of the projected ellipse. Rearranging
terms, we arrive at an expression for the weight that

Figure 6. (A) Slant settings for three subjects on baseline trials in Experiment 1. (B) Corrected slant settings on the test stimuli for the
same three subjects as a function of the aspect ratio of the ellipse. Corrected slant settings were computed by inverting the fitted quadratic
function that mapped stimulus slant and subjects' settings on baseline trials at slants of 25-, 35-, and 45-. (C) Average corrected slants
across all eight subjects, as a function of ellipse aspect ratio. (D) The same data replotted as a function of the slant suggested by
the compression cue (the circle interpretation of the test stimuli) at each of the 10 test aspect ratios. Error bars for individual subjects
(A and B) are standard errors of the mean settings for those subjects. For the grouped data (C and D), they are standard errors of the
means computed across subjects.
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subjects effectively gave to the compression cue in each
stimulus condition

wcompression ¼ sj35

scompressionj35
; ð8Þ

For the slant and field of view used in the experiment, the
slant suggested by the compression cue is given very
accurately by the cosine law approximation of perspective
foreshortening,

scompression ¼ cosj1 ! cos 35:ð Þ½ �: ð9Þ

Equation 8 provides an empirical measure of the in-
fluence of the circle bias on subjects’ judgments. Figure 7
shows subjects’ average corrected slant estimates replot-
ted as compression cue ‘‘weights’’. To test the statistical
significance of the effect of ellipse aspect ratio (or
equivalently, the cue conflict) on the effective weights
that subjects gave to the compression cue, we performed a
two-way ANOVA with subjects as a factor. The results
showed that the effect of aspect ratio was significant, F
(9, 7) = 6.73; p G .0001.

Experiment 2

We analyzed the results of Experiment 2 in the same
way, but we used probe slant settings at baseline slants of
45-, 55-, and 65- to derive the quadratric correction for
the slant settings. Results are shown in Figures 8 and 9.
Again, the effect of aspect ratio on the weights that
subjects gave to the compression cue was significant, F
(9, 7) = 2.89; p G .006.

Discussion of results

Several features are notable in the results shown in
Figures 7 and 9. First, the influence of the circle bias
peaked for images of ellipses that were nearly circular but
dropped off as ellipses became more compressed or
elongated. Second, the influence of the circle bias was
asymmetric as a function of the cue conflict. At negative
conflicts (when the circle bias suggested a lower slant than
stereopsis), the influence of the circle bias decreased
monotonically with the magnitude of the conflict. At
positive conflicts, the influence of the circle bias leveled
off at a near-constant value. This would not have been
expected from a pure form of cue vetoing. Subjects did not
‘‘turn off’’ the compression cue but appeared to down-
weight it. Averaging slant settings across trials and
subjects as we did would have blurred out sharp transitions
that might be indicative of cue vetoing. Thus, cue vetoing
is not inconsistent with a gradual reduction in average
cue weights. Cue vetoing, however, does predict that cue
weights would have gone monotonically toward zero as

the size of the cue conflict increased. Subjects’ compres-
sion cue weights clearly asymptoted at large positive cue
conflicts, however, suggesting that they effectively down-
weighted the compression cue to a smaller nonzero value.
Before inferring from the observed changes in cue

‘‘weights’’ that subjects used a Bayesian strategy for
robust cue integration based on mixtures of priors, we
must consider several simpler accounts for the results.
First is the possibility that subjects were biased to use
stereoscopic information because the probe that they used
to match the slant of the figure was presented stereoscopi-
cally. This might affect the weights that subjects gave the
cues for small conflicts and might bias subjects to veto the
monocular cues at large conflicts. This account is strongly
argued against by previous results using the same task and
almost the same stimuli (stimuli only differed in the

Figure 7. (A) The apparent weights that subjects give to a circle
interpretation of test stimuli with aspect ratios different from 1,
computed using Equation 8. (B) The same data replotted as a
function of the conflict between the slant suggested by a circle
interpretation of the elliptical stimuli and the slant suggested by
stereoscopic disparities. Error bars are standard errors of the
mean weights computed across subjects.
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texture used to fill the ellipses), in which we found that the
weights that subjects gave to monocular and stereoscopic
cues were the same when the stereoscopic probe and a
haptic matching task were used, in which subjects
oriented an unseen cylinder to ‘‘feel’’ like it was at the
same orientation as the stimulus. Moreover, the stereo-
scopic weights measured using the stereoscopic probe
were actually lower than those measured using a motor
task in which subjects placed a cylinder onto the stimulus
surface (Knill, 2005).
Second, we must consider the already well-supported

model that changes in cue weights resulted from changes
in cue reliability across stimulus conditions. According to
this account, the apparent changes in weight could have
resulted from changes in the uncertainty attached to
sensory estimates of the aspect ratios of ellipses in the

Figure 9. (A) The apparent weights that subjects give to a circle
interpretation of test stimuli with aspect ratios different from 1 in
Experiment 2. (B) The same data replotted as a function of the
conflict between the slant suggested by a circle interpretation of
the elliptical stimuli and the slant suggested by stereoscopic
disparities. Error bars are standard errors of the means of the
subjects' weights.

Figure 8. (A) Corrected slant settings for three subjects on test
trials in Experiment 2, plotted as a function of an ellipse's aspect
ratio. (B) Average corrected slants across all eight subjects, as a
function of ellipse aspect ratio. (D) The same data replotted as a
function of the slant suggested by the circle interpretation of test
stimuli at each of the 10 test aspect ratios. Error bars are standard
errors of the means.
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image. This assumes that because the true stimulus slant
was fixed within an experiment, the uncertainty in stereo-
scopic slant estimates remained approximately constant
as a function of ellipse aspect ratio. Comparing Figures 7
and 9 provides a quick negative answer to the simple
hypothesis. In Experiment 2 (Figure 9A), because ellipses
at higher slants were foreshortened more by perspective,
the projected aspect ratio of the ellipse whose real aspect
ratio was 0.9 was essentially equal to the projected
aspect ratio of the ellipse in Experiment 1 whose real
aspect ratio was 0.6 (0.52 vs. 0.49). Thus, the uncertainty
associated with the figure shape information should have
been essentially equivalent in these two conditions.
However, subjects effectively gave more weight to the
compression cue in this condition in Experiment 2 than in
Experiment 1V0.41 (T0.057 SE) versus 0.15 (T0.025 SE),
despite the fact that slant-from-disparity is more reliable at
55- (in Experiment 2) than at 35- (in Experiment 1; Hillis
et al., 2004; Knill & Saunders, 2003). The performance of
the Bayesian model that assumes a simple prior on aspect
ratios provides further insight into this issue. Figure 3
shows two such observersVone that assumes all ellipses are
circles and one that assumes a log-Gaussian distribution of
aspect ratios that is peaked at 1 (circles) and has a standard
deviation of 0.25. Both observers show amonotonic increase
in the apparent weight given to the compression cue as
difference between the slant suggested by the compression
cue and the slant suggested by stereopsis increases from
large negative values to large positive values, that is, as the
slant suggested by the compression cue increases from near
0- to near 60-. This behavior reflects the change in the
uncertainty induced by measurement noise as a function of
the aspect ratio of the retinal ellipse, itself caused by the
cosine law of projective foreshortening.
Finally, we should consider what effects cues like

accommodation and blur might have had on subjects’
performance. In theory, were these cues to suggest a slant
very different from the stereoscopic cues, they could have
had a significant nonlinear impact on subjects’ performance
because their weights would depend on the uncertainty
associated with the combined stereoscopic/figure shape
cues. This would only have had a significant impact if
the cues were strong. That they were not very strong is
argued for by the fact that the gain in subjects’ slant
settings as a function of stimulus slant for cue-consistent
stimuli was almost exactly 1, on average (see Figure 6A).
Because cues like accommodation suggested a fixed slant
(approximately 38-), any impact they would have had
would have been to shrink the gain of that function. While
it may be that the impact of the cues was counterbalanced
by subjective biases in subjects’ mapping between stimulus
and probe slant, it seems unlikely that this effect was large
enough to significantly impact performance. Moreover, in
Experiment 1, at least, the slant suggested by uncontrolled
for cues was almost the same as that of the stereoscopic
cues. In this situation, the presence of the cues would not
have changed the predictions of the model in any

qualitative wayVtheir contributions would only have
shrunk somewhat the apparent weight that subjects gave
to the compression cue.

Modeling robust cue integration:
Bayesian model selection

A Bayesian model that uses a mixture of prior models on
the shapes of figures in the world would seem to account
for the qualitative pattern of subjects’ slant judgments. To
test such an account more quantitatively, we fit a Bayesian
model to subjects’ data. The Bayesian model has four free
parameters. Two parameters describe subjects’ prior dis-
tributions on aspect ratios of ellipses in the worldVthe
proportion of circles in the world and the spread of the
distribution of aspect ratios for ellipses that are not circles.
The other two characterize the uncertainty in sensory
measurements of the aspect ratios of ellipses in the retinal
image and of slant-from-disparity. Preliminary simulations
showed that for the 55- stimuli in Experiment 2, the
Bayesian model was slightly more skewed toward negative
slant conflicts than subjects’ data would suggest but
otherwise could fit the shape of the weight function well.
We therefore added a fifth free parameter to the model that
represented possible biases in subjects’ estimates of slant-
from-stereo. This could arise from known biases in depth
estimates from stereopsis or from small biases in the
calibration procedure (e.g., of the interocular distance).

The structure of the model

We modeled subjects’ prior beliefs about the aspect
ratios of ellipses in the world, !, as a mixture of a delta
function at ! = 1 (all ellipses in the category are circles)
and a log-Gaussian distribution over aspect ratios. The
log-Gaussian distribution ensures that the probability
density function for 1/! is equal to the density function
for ! (necessary to make the prior invariant to rotations).
The prior density function was given by

pð!Þ ¼ :circle pcircleð!Þ þ :ellipse pellipseð!Þ
¼ :circle % !j1ð Þ

þ :ellipse
1

!

1ffiffiffiffiffiffi
2:

p
A!

exp j log !ð Þ2=2A2
!

h i� �
; ð10Þ

where we have labeled the categories of figures as circles
or ellipses. The prior model has two free parametersVthe
relative probability of figures being circles, :circle
(:ellipse = 1 j :circle), and the standard deviation of the
log-Gaussian distribution of aspect ratios in the ellipse
category, A!.
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We modeled the aspect ratio of the ellipse in a stimulus
image, A, as the aspect ratio of the projected ellipse
corrupted by random Gaussian noise,

A , ! cos Sð Þ þ 4A; ð11Þ
where 4A is a random noise variable that is normally
distributed with mean 0 and standard deviation, AA, and S
is the slant of the surface. For the field of view used in the
experiment, the cosine foreshortening law is within 1% of
the true perspective foreshortening. Finally, we modeled
the disparity cue as an estimate of slant corrupted by
Gaussian noise

Sstereo ¼ Sþ 4stereo; ð12Þ
where 4stereo is a random noise variable that is normally
distributed with a standard deviation, Astereo. We left the
mean of the noise process as a free parameter to model
biases in perceived slant-from-stereo.
The likelihood function for the compression cue is a

weighted sum of likelihood functions derived from the
circle and ellipse priors on shapes in the world,

p AjSð Þ ¼ :circle pcircle AjSð Þ þ :ellipsepellipse AjSð Þ

¼ :circle

Z V

0

p AjS; !ð Þpcircle !ð Þd!

þ :ellipse

Z V

0

p AjS; !ð Þpellipse !ð Þd!

¼ 1ffiffiffiffiffiffi
2:

p
AA

:circleexp j Aj cosðSÞð Þ2=2A2
A

h i
þ

:ellipse

Z V

0

exp j Aj!cosðSÞð Þ2=2A2
A

h i
pellipse !ð Þd!

8>><
>>:

9>>=
>>;
;

ð13Þ
where pellipse(!) is taken from Equation 10. The first term
in the mixture is an integral of the product of a Gaussian
density function with a delta function on !. This results in
a Gaussian function with ! replaced by the value that sets
the argument of the delta function equal to 0 (in this case,
! = 1). This is equivalent to the likelihood one would
obtain by simply setting ! = 1, rather than integrating over
a delta function prior on !. The second term in the mixture
is an integral over the possible aspect ratios in the ellipse
model. This has the effect of shrinking the magnitude of
that component of the likelihood function. The likelihood
function shown in Figure 2 was computed using this model.
The likelihood function for stereoscopic disparities is

simply a Gaussian with standard deviation, Astereo, and
mean equal to the true slant plus the bias term. The
posterior distribution of slant, given the measured aspect
ratio of an ellipse in the image and the measured
stereoscopic disparities, is given by the product of this
Gaussian with the likelihood function for compression and
the prior on slant, which, assuming a generic viewpoint on
a surface, is given by sin(S). In the simulations described
below, we used a minimum mean square error estimator.

The estimator selected as its best estimate of the slant on a
given trial the expected value of slant computed from the
normalized joint likelihood function. The results were
essentially the same when we used a maximum a
posteriori (MAP) estimator that selected the mode of the
posterior distribution on each trial.

Fitting the model to the data

The model has five free parametersVtwo determine
the sensory uncertainty associated with each cue, two
describe the prior distribution on aspect ratios assumed to
characterize the world, and the fifth is a bias term that
accommodates relative biases in observers’ estimates of
slant-from-stereopsis. The data from the experiments do
not support fitting absolute measures of sensory noise
(which determine variability in subjects judgments), in part
because subjects’ variability is confounded with uncer-
tainty in the probe slant settings and in part because their
variability is increased by attentional lapses, decision noise,
and so forth. We dealt with this difficulty by fixing the
standard deviation of the slant-from-disparity noise based
on data from other, more sensitive experiments (see the
Appendix for details). The resulting values for Astereo were
3.5- and 2.59- for the 35- and 55- slant conditions,
respectively. The difference reflects the fact that disparity
cues to slant improve slightly as a function of increasing
slant (Hillis et al., 2004).
Because we have access only to an estimate of the

average variance in subjects’ slant-from-stereo estimates,
we fit the Bayesian model to the compression cue weights
averaged across subjects, as plotted in Figures 7 and 9.
The Appendix gives details of the model fitting procedure.
Table 1 lists the model parameters for the best fits to the
data from Experiment 1 and 2, respectively, and Figure 10
plots the predicted compression cue weights for the best
fitting models along with subjects’ data. Although not
exactly equivalent, the parameters characterizing the best-
fitting prior distributions were similar for the two exper-
imental conditions. Given the approximate methods used
to set the noise parameters for slant-from-stereo in the two
experimental conditions, we cannot expect exact equiv-
alence in our model fits across the two conditions. The
estimate of the sensory noise in subjects’ visual estimates
of aspect ratio is in fairly close accord with published data
on aspect ratio discrimination, which range from 0.02 to
0.04 (Regan & Hamstra, 1992). We should note, however,
that published data for aspect ratio discrimination are for
ellipses that subtend only 1- of visual angle.

General discussion

The impact of the subjects’ biases to interpret an
elliptical figure as a circle shrank as the conflict between
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this interpretation and stereoscopic cues to slant grew, but
it never disappeared. In the standard terminology of cue
integration, subjects appeared to down-weight but not to

veto the compression cue to slant at large conflicts with
stereoscopic cues. Subjects’ behavior was consistent with
a Bayesian model of robust cue integration that accom-
modates the possibility of interpreting pictorial cues
according to either a strong prior (circles) or a weak prior
(ellipses with constrained aspect ratios). The model does
not explicitly change cue weightsVit computes an
estimate based on the likelihood function computed by
multiplying a likelihood function for slant-from-disparity
with a mixed likelihood function for slant-from-figure
shape. It gradually shifts from being dominated by the
component of the slant-from-figure shape likelihood
function derived from the circle prior to the component
derived from the random ellipse prior.

Comparisons with other approaches to robust
cue integration

Landy et al. (1995) were the first to formally connect
the problem of integrating depth cues to statistical
approaches to robust estimation. They did not propose a
specific model for robustly integrating discrepant depth
cues, but they did suggest that methods from robust
statistics should be applied. By and large, these methods
apply to problems somewhat different in kind from the
cue integration problem. Specifically, they deal with
problems in which many data points are available to
estimate some parameter. The methods are nonlinear
techniques that either determine outlier points to discard
from analysis or adjust how points are weighted to
estimate a parameter (Wonnacott & Wonnacott, 1990).
On the face of it, these methods appear like they would be
applicable to cue integration; however, they rely on
having a large number of data points available. Consider
the example of the trimmed mean technique for estimating
a population mean (Wonnacott & Wonnacott, 1990). This
method excludes some percentage (e.g., 5%) of the points
in the two tails of the data histogram before calculating a
standard sample average to estimate the mean. By
analogy, this would suggest a strategy whereby the visual
system vetoes a cue when it disagrees by a large amount
from another set of cues.
The problem with the analogy is that the trimmed mean

technique is only effective when a sizable number of
samples are available. In vision, the number of available
cues is relatively small (perhaps two to six). The methods
do not easily apply to a situation like the one described here

Slant
Proportion of

ellipses (:ellipse)

Standard deviation of
aspect ratios in the
ellipse model (A!)

Standard deviation of
aspect ratio

measurements (AA)

Bias in visual
estimates of

slant-from-stereo

35- 0.124 (T0.037) 0.127 (T0.0085) 0.024 (T0.0086) j0.489 (T0.4511)
55- 0.039 (T0.025) 0.104 (T0.011) 0.036 (T0.0048) j3.49 (T1.07)

Figure 10. Expected compression cue weights for the best fitting
models for (A) Experiment 1 and (B) Experiment 2 (solid curves)
plotted along with subjects' average compression cue weights in
the two experiments. The expected model weights were com-
puted using the same analysis applied to subjects' dataVfirst
removing estimator bias (due to the slant-from-stereopsis bias
term) from slant estimates using a quadratic fit and then applying
Equation 8 to compute compression cue weights. Note the shift in
the peak for the model weights for Experiment 2. Error bars are
the standard errors of the mean weights computed across
subjects.

Table 1. Best fitting model parameters for Experiment 1 and 2. Standard errors in parentheses were derived from the Hessian of the log-
likelihood function for the model fits.
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in which only two cues are available; hence, we cannot
directly translate standard methods for robust statistical
estimation to the problem of visual cue integration. Because
of this, there are no extant models for robust visual cue
integration that are well specified enough to make quantifi-
ably testable predictions of human performance.
The alternative model that would seem to compete with

the Bayesian account is that the visual system vetoes or
down-weights one of a set of grossly discrepant cues. To
be tested experimentally, however, this proposal requires
a specification of a principled method for determining
which cue to veto or down-weightVand, in the latter case,
how to down-weight it. In the next two sections, we will
describe how both of these models can arise naturally as
implementations of an optimal Bayesian observer who
uses mixed priors to interpret a cue. The hard computa-
tional problem in such systems is determining how to
reweight cues or which cue to veto. The Bayesian model,
in this context, can be seen as characterizing the optimal
way to perform either of these functions. The cost
function that an estimator is designed to minimize will
determine whether the estimator behaves as a linear
integrator with graded reweighting of cues or as a system
that vetoes one or another cue as a function of cue
uncertainty and the size of cue conflict.

Comparing Bayesian cue integration with reweighting

When the likelihood functions for different cues and the
prior density function are Gaussians or mixtures of
Gaussians, a robust Bayesian estimator that uses the mean
of the posterior density function as its estimate of a
surface property can be expressed as a linear combination
of individual estimates of that property. Rather than
having a single estimate for each cue, however, the
system linearly combines estimates derived using each
of the prior models that can be used to interpret that cue.
Figure 11 illustrates a linear system that effectively
implements the optimal Bayesian estimator for the stereo-
psis/figure shape integration problem under the approx-
imation that the likelihood function for slant-from-figure
shape is a mixture of Gaussians. It is a cascade of linear
processes. In the first stage, the figure shape cue is
interpreted by two different estimators, each of which
relies on a different prior model for ellipses in the
worldVthat all ellipses are circles or that ellipses are
drawn from a random ensemble of ellipses. These
estimates are linearly combined with the estimate of
slant-from-stereopsis and the slant suggested by an
observer’s prior model. The weights in this stage of cue
combination are specified in the usual way for linear
combination; that is, they are in inverse proportion to the

Figure 11. When the likelihood functions associated with each of the prior models that can be used to interpret one cue are Gaussian, the
likelihood function for another cue is Gaussian, and the prior density function for the parameter being estimated is Gaussian, one can
model the optimal Bayesian estimator as a cascade of linear integrators. The integrators compute weighted sums of estimates derived
from each of three processesVan estimator that uses one of the prior models to interpret the first cue (here, we use the figure cue as an
example), an estimator that uses a different prior model to interpret the first cue, an estimator that uses the second cue (here, we use
stereopsis as an example), and a prior estimate of S (see text for discussion of the weights in each stage).
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variance of the associated likelihood functions (or of the
prior density function). In the second stage, the slant
estimates derived by integrating stereopsis with each of
the estimates derived from the figure’s shape are linearly
combined to derive a final estimate of slant. The weights
in the second stage are determined by several factorsVthe
probabilities of each of the prior models for Cue 1 being
true in the world, the heights of the joint likelihood
functions computed from combining Cue 2 with Cue 1
under each prior model, and the reliabilities of the
estimates derived from each estimator (the spread of the
associated likelihood functions).
To see this, we expand the posterior density function for

slant conditioned on figure shape and stereoscopic
information as a weighted sum of the posteriors derived
from the circle and random ellipse models of figures

p Sj!; dY
� �

¼ p M ¼ circlej!; dY
� �

pcircle Sj!; dY
� �

þ p M ¼ ellipsej!; dY
� �

pellipse Sj!; dY
� �

;

ð14Þ

where ! is the aspect ratio of the figure in the image and
d
Y

is a vector of disparities that represents the information
provided by stereopsis. The expected value (mean) of the
posterior density function is a weighted average of the
means of the posterior density functions derived form
each mode

S ¼ E Sj!; dY
h i

¼ p M ¼ circlej!; dY
� �

Scircle

þ p M ¼ ellipsej!; dY
� �

Sellipse; ð15Þ

where Scircle is the mean of the posterior density function
derived from the circle model of figures and Sellipse is the
mean of the posterior density function derived from the
random ellipse model. When the likelihood functions and
the prior density are Gaussian, these means are the
weighted sums of slant estimates derived from the differ-
ent cues and the prior as in the standard linear model of
cue integration (Landy et al., 1995).

S ¼ E Sj!; dY
h i

¼ p M ¼ circlej!; dY
� �

� w
ðcircleÞ
figure S

circle
þ w

ðcircleÞ
stereo Sstereo þ w

ðcircleÞ
prior Sprior

� �

þ p M ¼ ellipsej!; dY
� �

� w
ðellipseÞ
figure S

ellipse
þ w

ðellipseÞ
stereo Sstereo þ w

ðellipseÞ
prior Sprior

� �
;

ð16Þ

where the weights are in inverse proportion to the
variances of the associated likelihoods and priors and the
weights within each term sum to 1. The weights in the first
term are given by

w
ðcircleÞ
figure ¼ 1=A2

circle

1=A2
circle þ 1=A2

stereo þ 1=A2
prior

w
ðcircleÞ
stereo ¼ 1=A2

stereo

1=A2
circle þ 1=A2

stereo þ 1=A2
prior

w
ðcircleÞ
prior ¼ 1=A2

prior

1=A2
circle þ 1=A2

stereo þ 1=A2
prior

ð17Þ

where Acircle
2 is the variance of the likelihood function for

slant-from-figure shape given that the figure in the world
is a circle, Astereo

2 is the variance of the likelihood function
for slant-from-stereopsis, and Aprior

2 is the variance of the
prior density function for slant. The weights in the second
term are similarly given by

w
ðellipseÞ
figure ¼ 1=A2

ellipse

1=A2
ellipse þ 1=A2

stereo þ 1=A2
prior

w
ðellipseÞ
stereo ¼ 1=A2

stereo

1=A2
ellipse þ 1=A2

stereo þ 1=A2
prior

w
ðellipseÞ
prior ¼ 1=A2

prior

1=A2
ellipse þ 1=A2

stereo þ 1=A2
prior

: ð18Þ

The only difference between the weights in the two terms
is the replacement of Acircle

2 with Aellipse
2 , the variance of

the likelihood function for slant-from-figure shape given
that the figure in the world is taken form a random
ensemble of ellipses.
The weights in the second stage are given by the

posterior probability of each model for the figures given
all of the image data. These weights depend on many
factorsVthe variance of the likelihood functions associ-
ated with the figure cue and each prior model, the variance
of the stereoscopic cue, the conflict between the inter-
pretation suggested by the stereoscopic cues and the
interpretations suggested by the figure cue using each of
the two prior models, and the prior probabilities of the
figure being drawn from each model. These effects are
summarized below.

& Size of conflict: The probability of a particular model
given the image data decreases as the size of the
conflict between the estimate derived using that model
and the interpretations derived from other cues
increases. This effect depends on the size of the
conflict relative to the variances of the associated
likelihood functions. A less constrained prior model is
less affected by conflict size than a more constrained
prior model because the latter leads to a lower
variance likelihood function for interpreting a cue.
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This is the reason why a Bayesian observer switches
to a less constrained model at large cue conflicts.

& Occam’s razor: The number of parameters that are free
to vary in a model and thus that need to be
marginalized over to calculate that model’s likelihood
function determines in part the magnitude of the
likelihood of the modeVthe greater the number of
these parameters, the smaller the likelihood of the
model. In this article’s example, the random ellipse
model has one free parameterVthe figure’s aspect
ratio, but in general, it has twoVaspect ratio and
orientation. The circle model has no free parameters.
This biases the Bayesian estimator toward the more
constrained model, until the previous factor overcomes
this effect. For other cues, for example, texture cues
provided by images of lattice textures, the random
texture model can have a large number of free
parameters. When viewing a perspective image of a
square lattice, the likelihood of the random texture
model is extremely low because of this Occam’s razor
effect, whereas the likelihood of the square lattice
interpretation is highVassuming the prior probability
of viewing a square lattice is not exceedingly low.

& The prior probability of a model: This is a simple
multiplicative factor that appears in the posterior
probability for a model given the available image
data. Higher probability models are more likely given
the image data.

Because the linear formulation can implement a robust
Bayesian cue integrator in some situations, one way to
view the Bayesian model is that it provides a rational way
to determine the weights that one should assign cues as a
function of the conflict between them. Calculating the
weights, however, is a nontrivial computation. Moreover,
taking this perspective on robust cue integration has two
dangers. First, it only truly applies when the likelihood
functions are Gaussian. Second, it obscures the conceptual
power of the approach, which is to reconceptualize robust
cue integration as parameter estimation in a more complex
worldVone that has the type of categorical structure that
exists in our environment.

Comparing Bayesian integration with cue vetoing

The linear formulation of the optimal Bayesian integra-
tor derives from assuming a particular cost function for
specifying the optimal estimate; in particular, a mean-
squared error cost function. This results in an optimal
estimator that selects the mean of the posterior density
function on the scene parameter being estimated. A MAP
estimator (which picks as its estimate the peak of the
posterior density function), for example, cannot be exactly
implemented by such a linear scheme. Both of these
estimators assume that an observer implicitly considers
only errors in one variable (e.g., slant) as contributing to
the cost. An estimator that imposes a large cost on

determining the right model to use for making its
inference will behave quite differently. Such an estimator
can be thought of as estimating two variables (at least)Va
continuous object parameter like its slant and a discrete
parameter specifying the category within which the object
falls (e.g., circle vs. ellipse).
An observer who assumes a high cost for errors in the

categorical judgment and who enforces a constraint that
the categorical judgment and the continuous estimate be
consistent with one another will operate in two steps.
The observer will first determine the most likely model
to use for interpreting a cue and then use that model and
only that model when integrating the cue with other cues
to estimate the continuous variable. Using the example
of elliptical figures, such an observer will first calculate
the a posteriori most probable shape category for the
figure (circle or ellipse) and then use only the likelihood
function derived for that model when integrating the
figure shape cue with stereopsis. If the prior on figure
shape in the random ellipse model is very broad, such an
observer will appear to effectively veto the compression
cue at large cue conflicts, because in those stimulus
conditions, the random ellipse interpretation is more
likely than the circle interpretation and the broad prior
on the random ellipse model renders it useless as a slant
cue.
A cost function that gives rise to behavior somewhere

between the ‘‘linear-with-reweighting’’ scheme and pure
cue vetoing is a local mass cost function, in which the cost
of errors in an observer’s estimates grows with the square
of the error (as in the mean square error cost function) up
to a point, at which it remains fixed. When applied to a
simple problem like estimating the mean of a set of
sample data points, this cost function gives rise to an
estimator much like the trimmed mean referred to earlier.
The logic behind using this cost function to derive an
optimal estimator is that beyond some magnitude, all
errors are equally costly. Because large errors caused by
outliers are not penalized as heavily as they would be with
a quadratic cost function, estimators like this are robust to
outliers. In the context of cue integration, such a cost
function results in an estimator that is unaffected by the
tails of a likelihood function far away from its peak.
Because these tails are dominated by the less likely of the
different models that could be used to interpret a cue, an
estimator that uses such a cost function behaves in many
stimulus regimes as if it has vetoed those cues; that is, as
if it has selected one model to interpret a cue and ignored
the others. The behavior is not exactly equivalent to
vetoing, and such an estimator will still show a graded
transition between states in which one or another model is
dominant, but the transition will be sharper than with the
linear-with-reweighting model.
Which of these cost functions was implicitly used by

observers in the experiment described here is difficult to
determine. As noted earlier, trial-by-trial variation in the
decision whether or not to veto the compression cue
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would certainly lead to what appears as a smooth
transition to lower cue weights at large cue conflicts, as
seen here. However, one would expect a system that
employed a discrete process of cue vetoing, even were the
data smoothed by trial-to-trial and subject-to-subject
variance, to have compression cue weights that monotoni-
cally decreased to zero as a function of the magnitude of
cue conflict. Subjects’ weights, however, asymptoted at a
nonzero value at large positive cue conflicts. In Bayesian
terms, observers behaved at extreme conflicts as if they
had switched models for interpreting the figure shape cue
to a less constrained model of figure shape, but the
unconstrained model is still constrained enough that
observers gave some weight to the compression cue when
operating in ‘‘random ellipse’’ mode.

Interpretation of the model

As the previous discussion suggests, the Bayesian
model for robust cue integration and either the cue
reweighting or cue vetoing models should not properly
be considered competing models. Rather, the models are
targeted at different levels of explanation of the problem.
To use Marr’s (1982) terminology, the cue reweighting
and cue vetoing models would be, were they fleshed out to
detail the mechanisms that determine cue weights or to
decide which cue to veto, models of the algorithm used by
the visual system to integrate cues. This is true even if
these mechanisms do not exactly implement the Bayesian
calculations needed to optimally reweight or veto cues,
but rather implement some heuristics that approximate
optimal performance. The Bayesian model itself is a
computational model of human performance. It provides
an explanation of performance in terms of the computa-
tions that are effectively implemented by the system. It
does so by modeling human behavior as if they were
optimal observers in a particular world. This world is
defined primarily by two sets of parametersVthose
characterizing low-level visual noise associated with each
of several cues and those describing the statistical
structure of the world.
In the case of integrating the shapes of retinal ellipses

with stereoscopic information about surface slant, the
sensory noise parameter that was left free to vary when
fitting the model was the noise on measurements of ellipse
aspect ratio. The model parameters estimated for subjects’
data accord well with published data on human subjects’
ability to discriminate the aspect ratios of ellipses in the
image plane. These data suggest an effective standard
deviation between 0.02 and 0.04 in subjects’ estimates of
aspect ratio (Regan & Hamstra, 1992). The model
parameters fit to subjects’ data were within this range
(0.024 and 0.036 in Experiments 1 and 2, respectively).
Even considering only the small conflict conditions, in
which the parameters for the prior density on aspect ratios
do not interact strongly with the sensory noise estimates,

this suggests that subjects are near optimal in how they
integrate the compression cue with stereopsis.
The prior model parameters fit to the data from each

experiment further suggest that subjects were behaving as
if in a very regular world. The proportion of random
ellipses is small and the standard deviation of ellipses
among the random ellipse set is also apparently small.
Figure 12 illustrates the fitted prior distributions on aspect
ratios in the random ellipse category. Below the graph are
drawn ellipses with aspect ratios at the 95% bounds on
aspect ratios derived from Experiment 1. It is notable,
however, that although the range 0.75–1.333 seems small
numerically, it appears much larger visually, when
comparing the perceived shapes of the corresponding
ellipses. Moreover, the small proportion of circles in the
model that was fit to the data is enough to give rise to
apparent down-weighting of the compression cue at large
cue conflicts with stereopsis.

The effects of different perceptual factors on
nonlinear cue integration behavior

As is traditionally done, we have quantified subjects’
cue integration behavior using linear weights calculated
by regressing subjects’ slant settings against the slants
suggested by each of a pair of cues. In the context of the
nonlinear Bayesian model, however, it should be clear that
this is strictly a means of quantifying subjects’ average
behavior. Because the weights are linear functions of
subjects’ corrected slant settings (eliminating quadratic
biases between physical slant and subjects’ slant settings),
we could have as easily fit the model parameters to
subjects’ corrected slant settings. Calculating cue weights

Figure 12. The probability density functions on aspect ratio for the
``random ellipse'' component of the mixed prior on figure shape,
as fit to the data for the two experiments.
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has the advantage of providing a picture of the relative
importance of the cues to subjects’ judgments; however,
they should not be thought of as characterizing a model of
the mechanism that implements cue integration.
Looking at how the ideal observers’ cue weights change

as a function of the model parameters also provides
insight into the functional role of distinct parts of the
perceptual system, particularly sensory noise and prior
assumptions. Figure 13 shows how the model behaves for
a number of variations on model parameters (holding the
others fixed) for the 35- slant condition used in Experi-
ment 1. Not surprisingly, changing the standard deviation
of subjects’ sensory estimates of aspect ratio in the retinal
image has the effect of decreasing the weight that the
model gives to the compression cue. This change is
localized to the small cue-conflict conditions, because in
these conditions, the circle model dominates subjects’
estimates of slant from the figural cue, so that the primary
source of uncertainty is in the sensory noise on aspect
ratio measurements. At large cue conflicts, the effect of
changing the sensory noise is negligible, because the
random ellipse model dominates judgments and the
sensory noise is small relative to the uncertainty in
the prior distribution of aspect ratios in the world.
Changing the proportion of random ellipses assumed to

be in the environment has a very similar effect on the
weight function. Because the total likelihood function for
the figure shape cue is an average of the likelihood
functions for circles and random ellipses, weighted by the
relative proportions of the two types of figures, the
effective weight of the compression cue depends on that
proportion. This effect is apparent at small cue conflicts
but not at larger conflicts. This is because the random
ellipse model has a prior peaked at ! = 1, as does the
circle model. At large cue conflicts, the tails of likelihood
function for the random ellipse model are proportionally
so much larger than the tails of the likelihood function for
the circle model that the random ellipse model over-
whelms the circle model when stereoscopic cues conflict
by a great deal with the circle interpretation of slant, even
when the proportion of circles in the environment is high.
Finally, changing the standard deviation of the random
ellipse model has a somewhat complicated effect on

performanceVit lowers the compression cue weights at
large cue conflicts but slightly raises compression cue
weights at small conflicts.
Particularly interesting in these data are the effects of

the two different parts of the prior model on subjects’

Figure 13. The effects of different model parameters on perfor-
mance. In all cases, we have fixed all but one of the model
parameters to those fit to subjects' data in Experiment 1, in which
stereoscopic cues indicated a 35- slant. Different parameters
(indicated in the legends) were varied for the simulations
represented in the three graphs. The three graphs show perfor-
mance for (A) different levels of sensory estimates of aspect ratio,
represented as the standard deviation in aspect ratio measure-
ments; (B) different proportions of random ellipses/circles in the
world; and (C) different standard deviations on the range of ellipse
aspect ratios included in the random ellipse category.
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performance. First, increasing the proportion of random
ellipses in the prior model shrinks the apparent weight of
the compression cue at low cue-conflict levels. This
derives from the fact that the likelihood function for
slant-from-figure shape is a mixture of the functions
derived for circles and random ellipses. Both priors are
peaked at aspect ratios = 1 (circles) but have different
spreads. Thus, both induce a bias toward a circle
interpretation. When combined with the likelihood func-
tion from stereo disparities, the result is a combined
likelihood function that is skewed toward the stereo slant
interpretation (see Figure 2). The degree of skew depends
on the weighting of the two component functions that
make up the slant-from-figure shape likelihood. The
skew shifts the expected value of slant derived from
the joint cue likelihood function toward the peak of the
slant-from-stereo likelihood.
The effect of the spread of ellipse aspect ratios in the

random ellipse model is more complicated and less
intuitive. That the compression cue weights at large cue
conflicts shrink with increasing spread of this distribution
simply reflects the fact that performance at large cue
conflicts is dominated by the random ellipse model, which
is less reliable when the ellipse category contains a
broader range of shapes. The slight increase in compres-
sion cue weight at low conflicts derives from a more
subtle behavior of the likelihood functions derived for
different models. While the increased spread of the
component likelihood function associated with the random
ellipse category will tend to reduce the weight of the
compression cue at small conflicts, the relative contribu-
tion of this component to overall performance depends on
the absolute height of the function. This decreases with
increasing spread of the prior on aspect ratios, which tends
to down-weight its contribution to performance at low
conflict conditions. The overall pattern is the result of this
trade-off.

Is the prior on figure shape really categorical?

We have presented the categorical nature of the prior
model as its critical featureVthe one that drives robust
performance at large cue conflicts. Mathematically, how-
ever, the behavior of the model fundamentally derives
from the long tails of the prior distribution on aspect
ratiosVtails that do not go to zero as fast as a Gaussian. It
is worth asking, therefore, how useful the mixture model
is for characterizing human perceptual performance. The
first answer to this question is empirical. The large
weights that subjects give to the compression cue at
small cue conflicts suggest a very strong peak in the
prior density function at 1. If we assume that subjects
behave near-optimally, we can assume that this weight is
largely determined by the relative spreads of the slant-
from-stereopsis and slant-from-figure shape likelihood

functions near their peaks. We have fixed the spread on
the slant-from-stereopsis likelihood function based on
previous psychophysical data. The spread of the slant-
from-figure shape likelihood function is a function of the
spread in the prior near 1 and the sensory noise on aspect
ratio measurements. As noted above, the sensory noise
levels fit to the data are very near those estimated from
psychophysical experiments on aspect ratio discrimination
(Regan & Hamstra, 1992). This leaves little room for
uncertainty induced by spread in the prior distribution on
aspect ratios.
The second argument for a mixture model is largely

conceptual. It seems appropriate for many of the prior
models that we use to characterize objects in the world.
Circles are ‘‘special’’ in our environment. Similarly,
symmetry is ubiquitous in both artifactual and natural
environments. Most objects are rigid (not simply biased
toward being rigid). The list can go on. Furthermore, it
matches our phenomenal experience. As one example of
this, subjects who have participated in experiments like
the one described here, in which we ran subjects 1 day
using all circle stimuli or stimuli with small cue conflicts
and then on another day used randomly shaped ellipses,
spontaneously commented on the second day that we had
changed the stimuli from all circles to circles combined
with ellipses. Finally, mixture models with modal priors
provide a natural constraint on constructing model priors
with tight peaks and long tails.

Generalizations of the model

The Bayesian model presented here is a special case of
hierarchical Bayesian inference (Tenenbaum, Griffiths, &
Kemp, 2006). Here, we have only considered one aspect
of the generative model that gives rise to the image data
associated with sensory cuesVthe different prior models
that might be applied to interpret a cue. This can be
thought of as a discrete variable on which the likelihood
function for the cue depends. Hierarchical Bayesian
inference models can be applied to a wider range of
nonlinear cue integration behavior. We describe a few of
these generalizations here.

Multisensory integration

The problem of how the brain integrates information
from multiple sensory modalities to infer the properties of
objects (position, size, etc.) has recently garnered much
attention in the psychophysics literature. Like earlier
research on visual depth cue integration, this work has
focused on the question of whether or not the brain
combines multimodal information in a statistically
optimal way when operating in a linear regime (it does;
Alais & Burr, 2004; Battaglia, Jacobs, & Aslin, 2003;
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Ernst & Banks, 2002). One might well ask how an
observer should behave when faced with large conflicts
between modalities, for example, when the direction of a
sound signaled by audition is very different from the
direction signaled by vision. The notion that different priors
might be used to interpret one cue or another does not seem
applicable in this situation. A very similar observation,
however, does, that is, that the auditory and visual signals
could arise from the same or different physical sources.
Formulating the idea that sensory signals from different
modalities could arise from the same or different causal
events in the world in a Bayesian framework leads to
essentially the same model presented hereVa mixture of
different models that could have generated the sensory data.
Kording et al. (2007) have shown that this model can
explain a range of nonlinear data in subjective judgments
of auditory and visual source localization when the two
signals are presented simultaneously.

Multiple sources of noise

The model that we applied to explain figural and
stereoscopic cue integration assumes a special place for
stereopsis, namely, that its likelihood is localized in the
slant domain. This predicts that in the presence of large
cue conflicts between stereopsis and monocular depth cues
that rely on mixtures of priors, stereoscopic information
will dominate in the sense that it will lead to a switch in
the interpretation of the monocular cues. In special
situations, an observer can attribute different causal events
to the stereoscopic cues and the monocular cues. This is
what happens when viewing a picture. The pictorial cues
in a picture are attributed to the 3D layout of the scene
rendered in the picture, whereas the stereoscopic cues are
attributed to the paper on a scene that is rendered. This
may also apply to our percepts of stereographic displays
presented on a computer monitor and almost certainly
does when care is not taken to eliminate many of the cues
indicating that a display is flat. In the real world, such
explanations of large cue conflicts are difficult to
conceive. It remains possible, however, that the stereo-
scopic system is corrupted by qualitatively different noise
sources that lead to different likelihood functions for depth
or shape from disparity. Landy et al. (1995) acknowledge
this as a motivating factor for robust integration schemes
by noting that stereoscopic noise can be ‘‘local’’, as in
simple Gaussian noise on disparity measures, or more
global, as in noise caused by mismatches in the solution of
the correspondence problem.
It is conceivable that for some stimuli, monocular cues

can serve to down-weight stereoscopic cues in a rational
way. For example, a perspective image of a slanted,
square grid provides very reliable evidence that the texture
is, in fact, a slanted square grid. The likelihood for a
nonsquare interpretation of the grid is considerably lower
than that for the square grid because of the Occam’s razor
effect alluded to previouslyVa form of the generic view

argument for why we see perspective images of regular
patterns so reliably rather than frontal views of irregular
patterns that happen to mimic perspective. Such patterns
would be highly accidental if drawn from an ensemble of
random patterns. When the unconstrained interpretation of
a monocular cue has a likelihood that is low enough, it
could be lower than the likelihood that the noise in the
stereoscopic system comes from an outlier process,
leading to apparent down-weighting of the stereoscopic
cue or even bimodal perceptual effects like those
described by van Ee, Adams, and Mamassian (2003) for
these types of stimuli.

Adaptation and recalibration

One way in which the brain can resolve large conflicts
between cues from different modalities is to recalibrate
how it interprets one of the cues. This happens when the
conflicts maintain a particular size or sign over time, as in
prism adaptation. The Bayesian account of this type of fast
adaptation is that the calibration parameters (e.g., the gain
between vergence angle and depth) can change over time
due to a mixture of possible causesVslow drifts over time
and catastrophic, sudden changes due to disease or injury.
Smith, Ghazizadeh, and Shadmehr (2006) have applied
this notion to model visuomotor adaptation and recovery
from adaptation. They have modeled these effects as
resulting from a Bayesian recalibration scheme that
assumes that a mixture of processes could have caused
the system’s calibration parameters (the mapping between
visual location and movement amplitude) to drift over
different timescales. Similar ideas could be applied to
adaptation processes that affect depth perception such as
adaptation of the vergence signal used to calibrate depth-
from-disparity estimates or the vestibular signal used to
calibrate depth-from-motion parallax.

Conclusion

Subjects appeared to spontaneously down-weight the
information about surface slant provided by figure shape
relative to stereoscopic cues as the conflict between the
cues grew. Their behavior was well fit by a Bayesian
model that assumes a mixed prior on figure shapes that
include categories for circles and random ellipses.
Similar models apply to most other monocular depth
cues, which rely on some form of strong prior con-
straints on objects in the world because those constraints
do not apply to all objects. Understanding the particular
patterns of nonlinear cue integration exhibited by differ-
ent combinations of cues will require fully modeling
these priors and how they combine with sensory noise to
constrain the information provided by the cues. The
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Bayesian framework described here provides a powerful
tool for building parametric, predictive models of non-
linear cue integration performance.

Appendix A

We assume that for each trial, an observer estimates
slant from a noisy measurement of the aspect ratio of the
ellipse in the retinal image and noisy measurements of
disparity. Rather than model the slant-from-disparity
explicitly, we simplify it by representing the information
provided by disparities as an estimate of slant corrupted
by Gaussian noise. The Bayesian observer, therefore,
computes a posterior probability density function on
surface slant conditioned on these two measurements.
For a particular combination of noisy measurements, A
and Sstereo, the posterior distribution is given by the
product of likelihood functions associated with the two
measurements and a prior on surface slant,

p SjA; S stereoð Þ ¼ p AjSð Þp S stereojSð Þp Sð Þ: ðA1Þ

Using Equation 10 for p(AªS) and assuming that surfaces
are viewed from a uniform distribution on the view
sphere, Equation A1 becomes

p SjA; S stereoð Þ ¼ 1ffiffiffiffiffiffi
2:

p
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�
:circle exp j AjcosðSÞð Þ2=2A2
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h i
þ
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exp j Aj! cosðSÞð Þ2=2A2
A

h i
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>>:
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>>;

� exp j S stereoj Sþ biasð Þ2
� �

=2A2
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h i
sin Sð Þ; ðA2Þ

where AA is the standard deviation of the noise on
measurements of aspect ratio in the image and Astereo is
the standard deviation of the noise on slant-from-disparity
measurements. The bias term allows us to model relative
biases in subjects’ estimates of slant-from-stereo and
slant-from-figure shape. The first likelihood function in
Equation A2 is a mixture of a likelihood function
computed with the assumption that a figure is a circle
and a likelihood function computed with the assumption
that a figure is a randomly shaped ellipse with an aspect
ratio drawn from the distribution pellipse(!). As described
in the text, we model this as a log-Gaussian distribution,

p !ð Þ ¼ 1

!

1ffiffiffiffiffiffi
2:

p
A!

exp j log !ð Þ2=2A2
!

h i
: ðA3Þ

We assume that on each trial, the observer sees an
aspect ratio A that is a random sample from a Gaussian

distribution with mean, !stimuluscos(Sstimulus), and standard
deviation, AA, and an estimate of slant-from-disparity that
is a random sample from a Gaussian distribution with
mean, Sstimulus + bias, and standard deviation, Astereo. The
bias term allows us to incorporate into the model potential
relative biases in subjects’ estimates of slant-from-figure
shape and slant-from-disparity. The Bayesian observer
computes as its estimate of the slant the expected value of
the posterior distribution,

S ¼ E SjA; S stereo½ �
¼

Z :=2

0

S p SjA; S stereoð ÞdS:
ðA4Þ

This choice of estimator minimizes the squared error of an
observer’s estimates. We have simulated estimators that
use other criteria, for example, a MAP estimator that
selects as its slant estimate the peak of the posterior
density function. Simulation results were very similar
using the different estimators.
The free parameters in the model are AA, Astereo, A!

(which parameterizes the spread of pellipse(!)Vsee Equa-
tion 7), and the relative slant bias. To fit the model to
subjects’ data, for candidate settings of the model’s
parameters, we applied the same analysis used to analyze
subjects’ data to the outputs of the model observer
averaged over many noise samples of aspect ratio and
slant-from-disparity for each stimulus condition. For each
stimulus condition, represented as a combination of figure
aspect ratio in the world !i and slant Si, we computed the
expected slant estimate for the model over many trials as
the integral of p(SªA, Sstereo) over all possible noisy values
of A and Sstereo for that condition,

E S j!i; Si½ � ¼ k

Z :=2

0

Z V

0

Z :=2

0

S p SjA; S stereoð Þ

� exp j Aj !icos Sið Þð Þ2=2A2
A

h i

� exp j Sstereoj Si þ biasð Þð Þ2=2A2
A

h i
dSdAdSstereo;

ðA5Þ
where k is a normalizing constant that guarantees that the
exponential distributions for sensory noise inside the
integral integrate to 1 (because the range of integration
is bounded on at least one side, the noise distributions are
not, strictly speaking, Gaussian, although the bounds are
many standard deviations away form the means).
The goodness of fit of the model to subjects’ data was

computed in two steps. First, we applied the same
quadratic regression on the expected slant estimates for
cue-consistent stimuli as we applied to subjects to remove
the bias caused by the bias term in the model. We then
computed the expected slant estimates for the test
conditions in the experiment, corrected them using the
quadratic fit to remove the bias created by the biased
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slant-from-stereo estimate, and used the corrected slant
estimates to compute compression cue weights for each of
the test conditions (see Equation 4). Second, we computed
a #2 statistic from the difference between the models’
expected compression cue weights and the average of
subjects’ weights in each of the test conditions,

#2 ¼
XN
i ¼ 1

wmodel
i j wsubjects

i

� �2

A2
i

; ðA6Þ

where N is the number of test conditions and Ai is the
standard error on the mean of subjects’ compression cue
weights in condition i. We fit the model parameters by
minimizing Equation A6 using a simplex algorithm.
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