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Abstract: While moderate loss of coverage can be tolerated by WSN applications, loss of 

connectivity can be fatal. Moreover, since sensors are subject to unanticipated failures after 

deployment, it is not sufficient for a wireless sensor network to just be connected, it should be 

Clifford 3-connected . In this dissertation, we propose optimal deployment patterns to achieve both 

full coverage and Cliford 3-connectivity, and analyses their optimality for all values of 

( ) ( )e1̂ e2 / e1̂ e2
c s
r r , where ( )e1^e2cr  is the communication radius and ( )e1^e2sr  is the sensing 

radius.  

1. Introduction  

Mechanisms that optimize sensor energy utilization have a great impact on extending network 

lifetime. Most existing works concentrate on scheduling sensors between sleep and active modes 

[2-3] or adjusting sensing range [4-5] to maximize network lifetime while maintaining target/area 

coverage and network connectivity. In this paper, we analyze the energy efficiency of Clifford sensor 

network [1] and present an algorithm to extending network lifetime. In this approach, we deploy the 

sensor network globally with the Clifford sensor network connection graph, and optimize each 

connecting coverage path based on the angle information of the work node relative to the central 

node. 

  On the basis of ref [1,6], which proposed a method for analyzing space sensor network coverage 

with Clifford algebra, In this dissertation, we propose optimal deployment patterns to achieve both 

full coverage and 3-connectivity, and analyses their optimality for all values of 

( ) ( )e1^e2 / e1^e2c sr r , where ( )e1^e2cr  is the communication radius and ( )e1^e2sr  is the 

sensing radius.  

 2. The mathematical model of Clifford 3-connected wireless sensor networks 

Using the Clifford 3-connected wireless sensor networks coverage theory,  each sensor node can 

track and monitor the multi-type targets in sensor networks. In this paper,  the Clifford algebra 

defined the mathematical model of hybrid-type target in sensor networks. The definition of entity was 

also introduced in the targets,  and used to the universal description of the targets. 

In 
n
G space,  the range of field A  is constructed by the 2n dimensional nG basis of Clifford algebra: 
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where 1 denotes the unit vector on real axis (0-grade algebra),  
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∧ = ∧  denotes the highest grade blade in 
n
G space (n-grade algebra). 

Because every element in 
n
G space can be considered as an entity,  the entity t in field A  can be 

defined as: 
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In our optimal pattern study, we assume the disc model for sensing and communication. 

Assumption 2.1. [Disc-based sensing] We assume a disc-based sensing model where each active 

sensor has a sensing radius of rs; any object within the disc of radius rs centered at an active 

senso e1,e2 r is reliably detected by it. The sensing disk of a sensor located at location u is denoted by 

( )( ) e1^e2
sr sD u r= . 

Assumption 2.2. [Disk-based communication] We assume a disc-based radio model where each 

active sensor has a communication range of rc; two active sensors at a distance of rc or less can 

communicate reliably. The communication disk of a sensor located at location u is denoted by Drc(u). 

Assumption 2.0.3. [Homogeneous sensing and communication range] We assume that the sensing 

range of all sensors are the same, as are their communication range. 

Assumption 2.0.4. [Bounded value of rs/rc] We also assume that 
( ) ( )

1 2
1 2^ 0

lim / ^
s

s cr e e
r r e e M

→
< , for 

some M > 0. The limit ( )1 2lim ^ 0sr e e →  signifies that we need an increasing number of sensors to 

cover a given region, which is needed for the asymptotic analysis. 
  

Definition 2.1. [Globally Optimal Pattern] A deployment pattern is called globally optimal if it 

needs the minimum number of sensors to achieve a given coverage and connectivity requirement, 

among all patterns. 

To define γ-optimality, we need to provide the following definitions. 

Definition 2.2. [Communication Graph] A communication graph, denoted by Gc = (Vc,Ec), is a 

graph that is subject to the following conditions: 1) the elements of its vertex set 1 1 2 2V v e v e= +  , 

where 1 2,v R v R+ +∈ ∈  are sensors, and 2) the elements of its edge set E=( ^v)/v+ vV τ ( )Rτ ∈  are 

straight line segments connecting all pairs of vertices whose Euclidean distance is no larger than rc. 

Definition 2.3. [Deployment Graph] A deployment graph, denoted by G =(V,E), is a planar 

subgraph of Gc with ,c cV V E E= ⊆ . 

There exists a communication graph, Gc, for any given sensor deployment, from which we can 

obtain multiple deployment graphs. We write Gk = (Vk,Ek) to denote a deployment graph that 

achieves k-connectivity. 

Definition 2.4. [Direct Neighbor] In a deployment graph G = (V,E), if there is an edge between two 

vertices 1 1 2 2 ,x x e x e= + 1 1 2 2 ,y y e y e= +  then x and y are direct neighbors of each other. 

Definition 2.5. [Angular Distance] The angular distance between two vertices x and y as measured 

from a given vertex 1 1 2 2 ,z z e z e= +  is the size of the 

angle
( , ) ^

tan
( , )

z

rej x y x y

proj x y x y
θ = =

•
, ( , ), ( , )rej x y proj x y  is projective and rejective of z., 
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If a vertex x has xk  direct neighbors, then we say that the degree of x in G is xk .We denote its xk  

neighbors by 1 2, , ,
xk

n n n�  in some order. We further denote the angular distance measured from x 

between 1 2,n n  by α1x , 

 that is 1 1 2 1 1 2 2 1 2 2( , ) ( - ( ) / ) (( ^ ) / )
x
rej n n n n n n n n nα = = • =   between 2 3,n n  by 

2 2 3 2 2 3 3 2 3 3( , ) ( - ( ) / ) (( ^ ) / )
x
rej n n n n n n n n nα = = • =  · · · , between 1,

xk
n n  by 

1 1 1 1 1( , ) ( - ( ) / ) (( ^ ) / )
x x x x xk k k k krej n n n n n n n n nα = = • = . Now, we are ready to introduce the 

definition of regular deployment. 

Definition 2.6. [Regular Deployment] A sensor deployment is called regular if it has a deployment 

graph G where for any two vertices x and y in G , kx = ky and α1x = α1y , α2x = α2y , · · · , αkx = αky 

following the same order. 

Definition 2.7. [γ-Optimal Pattern] A regular deployment pattern is called γ-optimal if it needs the 

minimum number of sensors to achieve a given coverage and connectivity requirement, among all 

regular patterns. 

3. Optimal Patterns for Full-coverage and 3-Connectivity 

Figure 1 shows how optimal patterns that achieve full coverage and 3-connectivity evolve as 

( ) ( )e1^e2 / e1^e2c sr r  decreases. The pattern shown in Figure1(a) is globally optimal and patterns 

shown in Figure 1(b)-(h) . We present pattern description for Po  as follows. The distance between 

two connected sensors is denoted by d. 

• ( ) ( ) 1 2 1 2 1 2

1 2 1 2 1 2

^ ^ ^
3 e1^e2 / e1^e2 :{6*(60) .6*(120) .6*(180) }c s

e e e e e e
r r

e e e e e e
≤

⋅ ⋅ ⋅
, shown in Figure 

1(a). ( )3 e1^e2sd r= . 

• ( ) ( ) 1 2 1 2 1 2
1 2

1 2 1 2 1 2

^ ^ ^
2 e1^e2 / e1^e2 3 :{6*( ) .6*( ) .6*(180) }c s

e e e e e e
r r

e e e e e e
θ θ≤ <

⋅ ⋅ ⋅
√2, shown in Figure 

1(b), where 

( ) ( )( ) ( )1 2 12arccos 2 e1^e2 / e1^e2 , 180 , e1^e2c s cr r d rθ θ θ= = − =   

•  ( ) ( ) 1 2 1 2 1 2
1 2 2

1 2 1 2 1 2

^ ^ ^
1.0459 e1^e2 / e1^e2 2 :{6*( ) .6*( ) .6*( ) }c s

e e e e e e
r r

e e e e e e
θ θ θ≤ <

⋅ ⋅ ⋅
 shown in Figure 

1(c), where ( ) ( ) ( ) ( )1 2 14arcsin( e1^e2 / 2 e1^e2 ), 360 / 2, e1^e2s c cr r d rθ θ θ= = − = θ 

• ( ) ( ) 1 2 1 2 1 2

1 2 1 2 1 2

^ ^ ^
0.9462 e1^e2 / e1^e2 1.0459 :{6 .8*(90) .8*(150) }c s

e e e e e e
r r

e e e e e e
≤ <

⋅ ⋅ ⋅
 

 (e.g., the sensor at position A) and{6.4.8*(150)}} (e.g., the sensor at position B), shown in Figure 

1(d). ( )e1^e2cd r=  

•  ( ) ( ) 1 2 1 2 1 2
1 2

1 2 1 2 1 2

^ ^ ^
0.7405 e1^e2 / e1^e2 0.9462 :{4 .8*( ) .8*( ) }c s

e e e e e e
r r

e e e e e e
θ θ≤ <

⋅ ⋅ ⋅
, shown in Figure 

1(e). When ( ) ( )0.7655 e1^e2 / e1^e2 0.9462c sr r≤ < ,  

( ) ( ) ( )1 2 12arcsin( 2 e1^e2 / 2 e1^e2 ), 270 , e1^e2s c cr r d rθ θ θ= = − =  

When ( ) ( )0.7405 e1^e2 / e1^e2 0.7655c sr r≤ < , ( )1 2 135, e1^e2cd rθ θ= = = , 
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• ( ) ( ) 1 2 1 2 1 2

1 2 1 2 1 2

^ ^ ^
0.7254 e1^e2 / e1^e2 0.7405 :{12*(90) .12*(162) .5 }c s

e e e e e e
r r

e e e e e e
≤ <

⋅ ⋅ ⋅
 (e.g., the sensor at 

position A) and 1 2 1 2 1 2

1 2 1 2 1 2

^ ^ ^
{4 .5 .12*(162) }
e e e e e e

e e e e e e⋅ ⋅ ⋅
 (e.g., the sensor at position B), shown in Figure 

1(f). 

When ( ) ( )0.7403 e1^e2 / e1^e2 0.7405c sr r≤ < , ( )e1^e2cd r= . 

When ( ) ( )0.7403 e1^e2 / e1^e2 0.7405c sr r≤ < , ( )0.7403 e1^e2cd r=  

• ( ) ( ) 1 2 1 2 1 2
1 2

1 2 1 2 1 2

^ ^ ^
0.4291 e1^e2 / e1^e2 0.7254 :{12*( ) .12*( ) .3 }c s

e e e e e e
r r

e e e e e e
θ θ≤ <

⋅ ⋅ ⋅
, shown in Figure 

1(g) where θ 1 and θ 2 are denoted by “ ◦ ” and “ × ”, respectively. When 

( ) ( )0.5176 e1^e2 / e1^e2 0.7254c sr r≤ < , ( ) ( )1 2 12arcsin( e1^e2 / 2 e1^e2 ), 300s cr rθ θ θ= = − .  

When ( ) ( )0.4291 e1̂ e2 / e1̂ e2 0.5176
c s
r r≤ < , ( )1 2 150, e1^e2

c
d rθ θ= = = . 

• ( ) ( ) 1 2 1 2 1 2

1 2 1 2 1 2

^ ^ ^
e1^e2 / e1^e2 0.4291:{3 .16*(135) .16*(165) }c s

e e e e e e
r r

e e e e e e
<

⋅ ⋅ ⋅
 

 (e.g., the sensor at position A) and {3.8.16∗(165)} (e.g., the sensor at position B), shown in Figure 

1(h). When ( ) ( )0.4118 e1^e2 / e1^e2 0.4291c sr r≤ < . ( )0.4118 e1^e2sd r=  

 When ( ) ( )e1^e2 / e1^e2 0.4118c sr r < , ( )e1^e2cd r= . 

 

Fig 1: Optimal deployment patterns to achieve full-coverage and 3-connectivity for full range of 

( ) ( )e1^e2 / e1^e2c sr r . 

 4. Conclusion  

We built the Clifford 3-conncected sensor network model on the basis of ref [1]. Then we analyzed 

the metric relation in this model. We farther study  WSN Clifford algebra k-connection graph. At last, 

we verify the rationality of our model and algorithm. 

Clifford sensor network aims at monitoring and tracking moving targets in practice. So, the 

connecting coverage of Clifford sensor network in dynamic is the main objective of further study. 
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