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ABSTRACT

A model to represent the catalyzed esterification of propionic anhydride with 2-butanol

has been developed and simulated. Two modes of operation i.e. batch and semi batch have 

been simulated and compared. The performance of both modes of operation has been 

compared using two performance indicators i.e. amount of conversion and process time. The 

effect of feed rate (semi batch) and temperature (both batch and semi batch) towards time 

required to achieve 97% of conversion has been carried out. Then the time required to 

achieve 97% conversion in semi batch operation has been optimized using Control Vector 

Parameterization (CVP) technique. It was observed that the highest conversion can be 

achieved at the lowest dynamic feed rate. For the effect of temperature, it was found that the 

process time of batch operation was shorter than in the semi batch if temperature is lower 

than 323 K, but at temperature greater than 333K, process time required by semi batch is 

shorter than the batch. For the optimization problem, the optimum temperature and feed rate 

trajectories obtained were led to shorter process time than batch operation i.e. 98 min for

achieving 97% of conversion.  

Keywords: Simulation; Dynamic Model; Batch and Semi Batch Catalyzed Esterification; 

Dynamic Optimization

1. INTRODUCTION

Sec-butyl propionate ester is a fragrance and flavors that widely used in food, cosmetic 

and pharmaceutical industries. The ester is commonly produced either in batch and semi 

batch reactors [Srinivasan et al., 2003, Chang and Chen, 2004]. Usually, the ultimate goals 

of the process considered in batch and semi batch reactors are to improve the production 

quality, i.e. to maximize conversion; and to increase the process productivity, i.e. minimize 

the time required to achieve a required conversion. Since the dynamic nature of the batch or

semi batch process may affect their quality, thus an understanding of the effects of simple 

physico-chemical factors on the kinetics of reaction systems is essential, especially the 

relationship of rate of reaction with concentration, temperature and feed rate (i.e., semi batch 

mode) during the reaction. At the same time, imposing an appropriate concentration and 

temperature profiles might improve the quality of the production. Meanwhile, for semi batch 

reactor, the feed rate may affect on both actual concentration rate and conversion [Vemuri, 

2004, Sauvage, 2007].   
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Due to above reasons, the optimal parameter trajectory should be obtained in order to 

achieve the maximum productivity. A dynamic optimization technique is one of techniques 

available to determine trajectory because it can deal with the ordinary differential equations 

(ODE) which can represent a real behavior of dynamic process [Hirmajer, et al. 2010]. The 

numerical methods used to find a deterministic solution of dynamic optimization problems 

can be grouped into two categories: indirect and direct methods. In both categories, there are 

two strategies of direct method: sequential and simultaneous methods. In the simultaneous 

strategy, both the control and state variables are discretized using polynomials (e.g., Lagrange 

polynomials) of which the coefficients become the decision variables in a much larger 

Nonlinear Programming problem (NLP). In the sequential strategy, often called control 

vector parameterization (CVP), consists in an approximation of the control trajectory by a 

function of only a few parameters and leaving the state equations in the form of the original 

ordinary differential equation (ODE) system[ Biegler et al., 1999].

In this study, dynamic mathematical model of Catalyzed Esterification of Propionic

Anhydride with 2-Butanol is developed to evaluate the concentration profiles of reactants and 

products during the reaction. The esterification process is simulated in both batch and semi-

batch operation. The effect of temperature and feed flowrate (for semi batch) towards 

conversion and process time are evaluated in the simulation environment. The best of the 

mode operation chosen is then implemented for the dynamic optimization studies. 

2. MODELING OF CATALYZED ESTERIFICATION

2.1 Reaction Kinetics

Esterification of propionic anhydride with 2-butanol produce sec-butyl propionate and 

propionic acid. In fact, this esteri

reaction between the side product propionic acid and 2-butanol to form the same ester and 

water. The water then can hydrolyze some of the propionic anhydride. However, the reaction 

rate between propionic acid and 2-butanol is negligible when propionic anhydride is present

[Wilder and Karlsson, 2006)]. This homogeneous  reaction  is moderately exothermic with  

no  danger of decomposition  reactions. The reaction  rate  variable  is  a  function  of catalyst  

(strong  acid,  such as sulphuric acid); exhibits a second-order kinetics when no strong acid  is 

present and exhibits a kind of  autocatalytic  behaviour  when  sulphuric  acid  is introduced

[Ubrich, et al., 1999]. 

In the presence of sulfuric acid, Zaldivar et al. [1993] found that the reaction rate seems to 

be proportional to the acid concentration; the reaction rate increases with propionic acid 

concentration and lead to a kind of autocatalytic behavior. However, after reaching a certain 

concentration, propionic acid has no longer in the reaction rate. Since the various

theoretical reaction pathways are complex, a model was developed by assuming the existence 

of two catalysts (cat1, cat2) [Dhanuka, Malshe, & Chandala, 1977]. Meanwhile, the 

transformation of the initial catalyst was developed by taking into account the acidity 

function [Benaissa et al., 2008)]

The esterification reaction scheme under consideration can be written as:

- Reaction 1: 2-butanol + propionic anhydride propionic acid + sec-butyl propionate

- Reaction 2: catalyst 1 catalyst 2.
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The reaction rate of the main reaction can be written as: 

r1 1 2 1 3 2)cat A B cat Bk k C C C k C C= (
(1)

The reaction rate due to the formation of the second catalyst is also taken into account:

rcat 4 110 H

cat Ak C C = (2)                         

The expression of the acidity function is:

4
1 1 2 3( )cat c

p
H p C p C p

T (3)

Equations (1) – (3) are taken from Zaldivar et al. [1993]

Reaction rate constants follow Arrhenius law:

0 exp ai
i i

E
k k

RT (4)

The kinetic parameters used in this work are tabulated in Table 1.

Table 1: Kinetic parameter equations [ Zalvidar et al, 1993]

Subscript 

i

k E0i ai (J mol
-1

Parameter p) i

1 5.36178x 10
7

L mol
-1

 s-
1 80,478.64 2.002x 10

-1

2 2.8074x 10
10

L
2

mol
-2

s 79,159.5-1 3.205 x 10
-2

3 3.9480x 10
10

L mol
-1

s-
1 69,974.6 -21.3754

4 1.4031x 10
8

L mol
-1

 s-
1 76,6172.2 12706

2.1 Mass balance of batch and semi batch reactors

The mass balances are developed according to the following assumptions: constant 

reacting heat capacity, effective overall heat transfer coefficient, transport properties of 

reaction mixture and density are exist; the heat losses with the ambient surroundings are 

negligible; homogeneous mixing and uniform distribution temperature: no heat accumulation 

in the reactor wall; no secondary heating effects such as power introduced by stirrer; no 

pressure effect.

The mass balance of batch esterification reactor:

(5)

1 2 1 3 2

1 2 1 3 2

1 2 1 3 2

1 2 1 3 2

1
4 1

(( ) )

(( ) )

(( ) )

(( ) )

( 10 )

A
cat A B cat B

B
cat A B cat B

C
cat A B cat B

D
cat A B cat B

Hcat
cat A

dC
k k C C C k C C

dt

dC
k k C C C k C C

dt

dC
k k C C C k C C

dt

dC
k k C C C k C C

dt

dC
k C C

dt
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The mass balance of semi batch esterification reactor:

(6)

Where Fo is the feed rate.

3. SIMULATION STUDY OF ESTERIFICATION REACTOR

In this study, 2 variables i.e. feed rate (only for semi batch) and temperature are varied to 

generate 93- 97% conversion [Andre’ et al., 2002]. There were 8 runs of different feed rate 

were simulated: runs 1-4 used dynamic feed rates; runs 5-8 used constant feed rates. The best 

feed rate obtained would be implemented to study the effect of temperature in the semi batch 

operation. The effect of temperature was conducted by varying its value in the range of 303 K 

to 343 K. This range of temperature was chosen because it can lead the catalyzed 

esterification process react completely [Zalvidar et al., 1993]. The initial concentration for 

reactants used for both modes were same, i.e, 1 M which was the adequate condition for 

comparative performance studies [Ubrich et al, 1999]. Total volume solution applied for both 

operations was 2 L. The runs conducted in this study are tabulated in the Table 2.  

4. DYNAMIC OPTIMIZATION STUDY

In this work, vector parameterization (CVP) was implemented within MATLAB 

environment by using DOTcvp code package created by Hirmajer et al. (2010). The basis of

the CVP method is to parameterize the control trajectories and leave the state trajectories 

continuous. First, the ODE solver calculates the differential equation. Then, the original 

problem of dynamic optimization is transformed into the finite dimensional problem (NLP) 

for execution the static optimizer. Further, a suitable gradient method with a NLP type 

algorithm is needed. This corresponds to a ‘feasible’ path approach since the differential 

equations are satisfied at each step of the optimization. A piecewise-constant or piecewise -

polynomial approximation of the inputs is often utilized. The general problem of the dynamic 

optimization can be expressed by applying the combination of the objective function, the 

equality and the inequality constraints as well as bounds of the model. The basic procedure 

followed is:

1) Parameterize the inputs using a finite number of decision variables (typically piecewise 

polynomials). The vector of decision variables also includes final time.

2) Choose an initial guess for the decision variables. 

1 2 1 3 2 0
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dC F C
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1

o

V
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3) Integrate the system states to the final time and compute the performance index  and 

the constraints.

4) Use an optimization algorithm (such as steepest descent or Quasi-Newton methods to 

update the values of the decision variables. Repeat Steps 3-4 until the objective 

function is minimized.

The reactant and product concentration are considered as states variables. There were two 

optimization problems considered in this study. The objective of both problems (problem 1

and problem 2) is to minimize process time to achieve 97% conversion in semi batch reactor. 

The control variable for problem1 is feed rate, while for problem 2 are feed rate and 

temperature reactor. The inequality constraint associated for both of two problems is a total 

volume solution; whereas the equality constraint is conversion. The fixed time interval used 

is 10 of piece wise constant. The dynamic optimization formulations for both problems are 

shown as:

( )

0

0

-4

Problem 1

min

subject to semi batch dynamic model:Eq.6 

inequality constraint: V 2L

equality constraint: 0.97

bounds: 0 Fo 3x10 /

u t

B B

B

t

C C

C

L s

( )

0

0

-4

0 0

Problem 2

min

subject to semi batch dynamic model:Eq.6 

inequality constraint: V 2L

equality constraint: 0.97

bounds: 

0 Fo 3x10 /

303 K T 343 K

u t

B B

B

t

C C

C

L s

Table 2. Various Types of Runs in the Simulation Study

Run Type of operation Temperature (K) Feed rate (L/s)

1 Semi batch 323 Dynamic 1.43x 10
-8

2 Semi batch 323 Dynamic 1.68x 10
-8

3 Semi batch 323 Dynamic 3.77x 10
-8

4 Semi batch 323 Dynamic 1.47x 10
-7

5 Semi batch 323 Constant 8.46x 10
-5

6 Semi batch 323 Constant 9.26 x10
-5

7 Semi batch 323 Constant 1.38 x10
-4

8 Semi batch 323 Constant 2.78 x10
-4

9 Batch 323 -

10 Semi batch 303 Optimum feed rate

11 Semi batch 313 Optimum feed rate

12 Semi batch 323 Optimum feed rate

13 Semi batch 333 Optimum feed rate

14 Semi batch 343 Optimum feed rate

15 Batch 303 -

16 Batch 313 -

17 Batch 323 -

18 Batch 333 -

19 Batch 343 -
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5. RESULTS AND DISCUSSION

5.1 Effect of feed rate 

The simulation results of 9 runs are tabulated in Table 3. While the conversion for runs 1,

5 and 9 are illustrated in Figure 1.

Here, all the 9 runs were operated for 197 min. The highest conversion obtained for semi 

batch was 97% which was obtained from run 1. In figure 1, the gradient of run 1 was lower 

than run 5. It is indicate that the small amount of concentration that dispersed gradually in the 

solution provide better contact between feed and initial solution (limiting reactant and 

catalyst). Moreover, it is also can provide a good mixing which can lead to uniform mixture 

solution. The good distribution and contact between the reactants and catalyst can enhance 

the reaction rate thus lead to higher amount of conversion [Shin et al., 1999].

In batch reactor mode of operation, the amount of conversion is very close with the 

conversion achieved in the semi batch operation. The conversion profile achieved from both 

operations is also follow the same pattern as can be seen in run 1 and 9 respectively.

However, the effect of dilution which influences the contact and distribution among reactants

and catalyst may improve the performance of semi batch. Therefore, a feed rate trajectory can

be optimized in order to improve the product quality [Zavala et al., 2005, Shin et al., 1999].

Figure 1: Conversion profile for runs 1, 5 and 9 

Table. 3 Final conversion achieved for 9 runs

Runs Conversion%

1 97.00

2 96.70

3 95.44

4 94.18
5 96.04

6 95.78

7 94.78

8 93.92

9 97.08
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5.2 Effect of temperature

The effect temperature in batch and semi batch operation was carried out for 

temperature range 303 K to 343 K. While, the feed rate applied for semi batch was same as 

used in run 1. The process time required in achieving 97% conversion for different values of 

temperatures in batch and semi batch operations is tabulated in Table. 4.  

Table.4: Time required for achieving 97% conversion

Runs Time(min)

10 1154.00

11 463.00

12 197.00

13 87.53
14 40.98

15 1137.00

16 457.65

17 194.98

18 87.43

19 41.06

In Table 4, both modes of operations i.e. batch and semi batch show that the time required 

for obtaining 97% conversion decrease when the temperature increase. It is because the rates 

of chemical reactions for reactant, catalyst and product increase exponentially with increase 

in temperature.

At temperature lower than 323 K, the process time of batch operation is shorter than in 

the semi batch, but at temperature greater than 333K, process time required by semi batch is 

shorter than the batch. Thus, it shows that batch operation is superior if slow reaction (longer 

time operation) is required. Meanwhile if fast reaction is required, then semi batch operation 

should be selected [Bonvin, 1998].  Moreover, the semi batch operation is preferred to be 

implemented because it has a good temperature control [Aziz and Mujtaba, 2001]. The feed in 

semi batch operation is also affected the reaction rate and thus can help to control the

temperature. Moreover, the heat produced during reaction can also be controlled by 

improving the effective heat removing capacity through the feeding reactant.  This, in turn,

increases the productivity of the reactor by allowing higher reaction rate [Bonvin, 1998].  

5.3 Dynamic optimization studies

5.3.1 Optimization of the feed rate (Problem 1)

The optimal feed rate trajectory profile for this problem is shown in Figure 2. To achieve 

minimum process time for 97% degree of separation, the optimum feed rate trajectory 

resulted in seven switching times. The switching times occurred at 38, 58, 76, 95, 130, 146 

and 168 minute. From Figure 2, it can be observed that the time needed to accomplish the 

97% conversion was 186min which shorter than batch process time.
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Figure 2: Optimal feed rate trajectory (Problem 1)

.

5.3.2 Optimization of the feed rate and temperature (Problem 2)

The optimal control trajectories of temperature and feed rate obtained, is shown in Figure 

3a and 3b, respectively. The optimum temperature trajectory obtained was changed nine

times: at 14, 29, 38, 48, 57, 67, 72, 81 and 93min. On the other hand, optimum feed rate 

trajectory was switched seven times at 38, 47, 57, 66, 75, 83 and 91 min. The minimum time 

obtained to achieve 97% conversion is 98 min. The control trajectories obtained are reliable 

and practical where the time duration to switch between the control values is adequate. 

However, the change of temperature from one switch to another is not significant. Therefore, 

only the optimal feed rate trajectory needs to be used for control implementation while the 

temperature can be kept constant at 331K.
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6. CONCLUSION

A mathematical model to represent the catalyzed esterification of propionic anhydride 

with 2-butanol has been developed. A total of 19 runs have been simulated to study effect of 

feed rate (semi batch) and temperature (both batch and semi batch) towards time required to 

achieve 97% of conversion. Then the time required to achieve 97% conversion in semi batch 

operation has been optimized Control Vector Parameterization (CVP) technique. Two 

optimizations problem have been solved. Both problems aimed to minimize process time in 

order to achieve 97% conversion. It was observed that the highest conversion can be achieved 

at the lowest dynamic feed rate. For the effect of temperature, it was found that the process 

time of batch operation was shorter than in the semi batch when temperature is lower than 

323 K, but at temperature greater than 333K, process time required by semi batch is shorter 

than the batch. For the optimization problem, the optimum temperature and feed rate 

trajectories obtained were led to shorter process time than batch operation i.e. 98 min in order 

to achieve 97% conversion. The switching time and the control value obtained in the 

optimization study were feasible and can be practically implemented. However, the change of 

temperature from one switch to another was not significant. Therefore, only the optimal feed 

rate trajectory needs to be used for control implementation.
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