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1 Introduction

Issues that are central to the modeling and analysis of a human movement
system include (1) musculotendon dynamics, (2) the kinetics and kinemat-
ics of the biomechanical system, and (3) the relationship between neurolog-
ical control and the formulation of the system as an open or closed loop pro-
cess. This paper will address these problems in the context of two particular
movement systems. The first to be addressed is the human ocular system.
Eye movement systems are ideal for studying human control of movement
since they are of relatively low dimension and easier to control than other
neuromuscular systems. By scrutinizing the trajectories of eye movements
it is possible to infer the effects of motoneuronal activity, deduce the central
nervous system’s control strategy, and systematically observe the effects of
perturbations in the controls. An application of the locomotory-control sys-
tem will also be presented in this paper. In particular, a model of human
gait is developed for the purpose of relating neural controls to the state of
stress in a skeletal member. This is achieved by modeling the human body
as an ensemble of articulating rigid-body segments controlled by a minimal
muscle set. Neurological signals act as the input into the musculotendon
dynamics and from the resulting muscular forces, the joint moments and
resulting motion of the segmental model are derived. At fixed moments in
the gait cycle, the joint torques and joint reaction forces are incorporated
into an equilibrium analysis of the segmental elements, modeled as elastic
bodies undergoing biaxial bending. Both movement systems that are dis-
cussed here emphasize a forward or direct dynamic approach that results
in a natural flow of neural-to-muscular-to-movement events while utilizing
physiologically realistic models of the musculotendon actuators that faith-
fully reproduce trajectories and muscle tension.

1.1 Inverse versus Forward Dynamics

If a movement system has n degrees of freedom, then the equations of
motion governing the system can be written in the form

[M(θ)]θ̈ = C(θ, θ̇) +G(θ) + Fm(θ) (1.1.1)
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Advanced Research Program Grant No. 003644-123.



2 C. F. Martin, L. Schovanec

where θ, θ̇, θ̈ are n × 1 vectors of displacement, velocity and acceleration,
[M(θ)] is the n × n inertia matrix, C(θ, θ̇) is an n × 1 vector of coriolis
and centrifugal terms, G(θ) is an n × 1 vector of gravitational terms, and
Fm(θ) is an n× 1 vector of applied moments. There are are essentially two
approaches to analyzing such a movement system.

Inverse dynamics is an approach that proceeds from known kinematic
data and external forces and moments to arrive at expressions for the re-
sultant forces and moments. For this method, motion acts as the input
and torques are the output. This approach requires experimental and kine-
matic data and observed motions. If these variables are assumed to be
known functions of time, (1.1.1) becomes an algebraic equation for Fm(θ).
It is a difficult problem however, to determine the forces of the individual
muscles that result in an applied moment since there are typically more
unknown muscle forces than can be determined from mechanical relations
alone. This is referred to as the redundancy problem. To address this prob-
lem the muscle set that contributes to a specific motion may be reduced by
grouping muscles of similar function or by using EMG activity as a guide in
determining which muscles were used during a specific movement [4, 20, 24].
If the problem is still indeterminate, a static optimization scheme is em-
ployed. For these types of optimization methods the selection of appropriate
optimization criterion is somewhat arbitrary and the schemes do not take
into account musculotendon dynamics [8, 26, 13]. Consequently, the static
optimization approach often results in discontinuous muscle force histories
[29]. Another limitation associated with the inverse method is that it is
not predictive in nature in that one is limited to studying motion which is
produced by monitored subjects.

In contrast, the forward or direct-dynamic approach provides the motion
of the system over a given time period as a consequence of the applied forces
and given initial conditions. Solution of the forward dynamics problem
makes it possible to simulate and predict motion as a result of the forces
that produce it. In a forward analysis the torques or the muscle forces that
generate the moments are the inputs and the body motion is the output.
This relationship is emphasized by writing equation (1.1.1) in the form

θ̈ = [M(θ)]−1(C(θ, θ̇) +G(θ) + Fm(θ)).

Since neural input activates the muscles, i.e., the actuators of the system,
the true input into the system is indeed neural input. Because controls for
each muscle are needed, the redundancy problem reoccurs. In the forward
approach, muscle dynamics are incorporated into the optimization tech-
niques used to determine the controls. For instance, when human gait is
to be simulated, the dynamic optimization methods employ cost functions
that usually involve both a tracking error term and a term influencing the
distribution of muscle force [9]. Once controls are achieved, the system of
differential equations for the body segments and the muscle groups can be
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integrated forward in time to obtain the motion trajectories. In this sense,
a direct-dynamic analysis is self-validating in that the controls specified do
indeed result in the observed motion.

A complete development of a direct dynamic model needs to include
a representation of the musculotendon complex, anatomical geometry, and
kinematic models and inertial characteristics of the underlying movement
system. In the next section we provide an overview of musculotendon dy-
namics. In subsequent sections we utilize these dynamics in developing
movement systems that describe ocular motion and human gait. Within
the context of these specific applications we will present the relevant geo-
metrical, kinematical, and inertial information.

2 Musculotendon Dynamics

2.1 Functional Properties

Muscles are the actuators of the neuro-musculo-skeletal control system that
produce movement. In the analysis of a control system as complex as that
governing movement it is essential to have a clear understanding of the
physical nature of the actuators and a tractable mathematical representa-
tion of their dynamics. The muscle models utilized in this investigation
are referred to as Hill-type models. A phemenological representation of
the musculotendon complex as idealized mechanical objects is presented in
Figure 1. This model has been shown to incorporate enough complexity
while remaining computationally practical.
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Figure 1. Hill Type Model of the musculotendon complex.

The muscle of length lm is in series and off-axis by a pennation angle
α with the tendon of length lt. The total pathlength of the musculotendon
complex is denoted by ltm. The muscle is assumed to consist of two com-
ponents: an active force generator and a parallel passive component. The
passive component includes a parallel elastic element (Fpe) that describes
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the passive muscle elasticity and a damping component which corresponds
to the passive muscle viscosity (Bm). The model for the active contrac-
tile component is based on the generally accepted notion that the active
muscle force is the product of three factors: (1) a length-tension relation
fl(lm), (2) a velocity-tension relation fv(l̇m), and (3) the activation level
a(t). In this paper, the curves utilized in the modeling of these relations
are developed by two methods. In the case that sufficient data is available,
a natural cubic spline will be fit to the data. As an alternative approach,
analytical expressions that capture the qualitative properties of the curves
will be used. The parameters that appear in these expressions will be de-
termined by imposing smoothness conditions in combination with a fit of
experimental data.

For multiple muscle systems, such as that used in the simulation of hu-
man gait, it is advantageous to develop curves describing the attributes
of a generic muscle. This curve can then be scaled with appropriate pa-
rameters to reflect the dynamics of a particular muscle. We will see that
the scale parameters needed for each musculotendon group include: (1)
maximal isometric active muscle force Fo, (2) optimal muscle length, lo,
(3) pennation angle αo when lm = lo, and (4) tendon slack length lts. In
developing nondimensional representations for these curves the approach
of [31] is implemented and all forces and lengths are scaled as F̃ = F/Fo
and l̃m = lm/lo. Another quantity used to specify a muscle specific force-
velocity relation is the maximum speed of shortening defined as vo ≡ lo/τc.
This quantity scales time and varies for fast and slow muscles. In the case
of the lower extremities a standard value of τc = .1s is used for all muscles
types.

Muscle force is easily measured at various lengths under isometric con-
ditions to produce force-length relationships. The curve produced when
muscle is not stimulated is the passive force-length curve, Fpe(lm). When
muscle is activated the curve that results represents both passive and active
contributions. The difference in these two curves is the active force-length
relation, fl(lm). The length at which the maximum active muscle force, Fo,
is developed is called the optimal muscle length, lo. Figure 2 displays the
qualitative nature of these curves.
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Figure 2. Isometric Force-length Relation for Muscle: (A) Full activation.
(B) Active force scales with activation but passive is force is unaffected
(adapted from [31]).
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A theoretical explanation for the active fl relation is based on the mi-
croscopic nature of muscle and is explained by the Sliding Filament Theory
[23]. This theory offers an explanation for the generally accepted notion
that when a muscle is completely tetanized, the active force displays a
parabolic dependence on length in a nominal region, .5 ≤ l̃m ≤ 1.5 with
a maximum value of Fo when lm = lo. At less than full activation, the
force-length dependence is obtained by scaling the fully activated fl curve
[31]. In this paper, the active force length relation for muscles of the lower
extremities are constructed as a natural cubic spline that fits data reported
by [10]. This curve is then scaled to provide a description for specific mus-
cle. For the ocular system, an analytical model of the force length effect is
utilized. Several approaches have been suggested, for example [14], but a
simple normalized form that is utilized here is

fl( ¯lm) = Fo
(
1− (( ¯lm − 1)/0.5)2

)
.

The nonlinear passive dependence of muscle force on length is described
by the function Fpe(lm). Just as in the case of the active force length, the
passive force length curves are constructed as cubic splines or modeled by
analytical expressions. A commonly used form for Fpe and that which is
employed here is given in [15] and is expressed as

Fpe(lm) =


(
kml
kme

)
[exp(kme(lm − lms))− 1] lms ≤ lm < lmc

kpm(lm − lmc) + Fmc lm > lmc

0 otherwise.

(2.1.1)

The passive muscle slack length is lms and corresponds to a length at which
no force is generated. The transition length from the linear to nonlin-
ear regime is lmc corresponding to a force of Fmc. The specific methods
by which these parameters as well as the stiffness and shape parameters
kme, kpm, kml are determined from data relevant to a specific application.

Active muscle force is also dependent on muscle velocity. When a muscle
actively shortens, it produces less force than it would under isometric con-
ditions. A.V. Hill [17] was the first to quantify this result with an empirical
hyperbolic relationship when a muscle is shortening as

fv(vm) = Fo
vo − vm
vo + cvm

where vm = ˙lm and shortening corresponds to vm > 0. In contrast to
a concentric contraction, when a muscle is actively lengthening it is able
to produce forces above the maximal isometric force. Experimental data
reveals that this relationship is not an extension of Hill’s equation and ex-
hibits a threshold which limits the amount of tension muscle can withstand,
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approximately 1.8Fo. The fv curve is also thought to scale with activation
and is displayed in Figure 3. For the muscles involved in the gait model
the force velocity curve is constructed as a natural cubic spline fit to data
collected while the muscle lengthened and shortened [10]. For the ocular
system, an analytical model of fv is utilized. Due to the way the curve is
utilized in the formulation of the dynamics, it is convenient to express this
relation in terms of the inverse f−1

v (F ). The output of the inverse is nor-
malized with respect to vo, the maximum speed of shortening. In particular
if F̃ denotes a normalized active muscle force,

ṽm = vm/vo = f−1
v (F̃ ).

1.8 Fo
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Figure 3. Force-velocity relation for muscles: (A) Full activation when
lm = lmo. (B) The force-velocity scales with activation.

There is evidence to suggest that total active force generation is best
described by a force-length-velocity relationship which is usually quantified
as the product of the force-length and force-velocity curves [31] where the
resulting surface is scaled by muscle activation. Consequently, it is conve-
nient to visualize force generation as a collections of surfaces described in
terms of nondimensionalzed force velocity and force length curve,

Fact = a(t)F0fl( ˜lm)fv(ṽm).

Muscle activation, a(t), is related to the neural neural input, n(t), by a
process known as contraction dynamics. Both quantities, n(t) and a(t), can
be related to experimental data. In particular n(t) is related to rectified
EMG while a(t) is related to filtered, rectified EMG [31]. The process
through which neural input is transformed into activation is known to be
mediated through a calcium diffusion process and is represented by the first
order differential equation

da(t)
dt

+
[

1
τact

(β + (1− β)u(t))
]
a(t) =

1
τact

u(t)
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where 0 < β < 1 and τact is an activation time constant that varies with
fast and slow muscle.

The series elastic element in Figure 1 corresponds to the muscle tendon.
More precisely, the tendon is assumed to behave non-linearly under minimal
extension and then to become linear with stiffness constant ks beyond a
given length ltc associated with a particular level of resisting force, Ftc. A
common approach to tendon dynamics (see, for example [15] ) is to assume
a model of the form

Ḟt = Kt(Ft)l̇t (2.1.2)

where

Kt(Ft) =

{
kteFt + ktl 0 ≤ Ft < Ftc

ks Ft ≥ Ftc
.

By integrating the above equation the tendon force can be alternatively
expressed as a function of tendon length lt as

Ft(lt) =


(
ktl
kte

)
[exp (kte(lt − lts))− 1] lts ≤ lt < ltc

ks(lt − ltc) + Ftc lt > ltc

0 otherwise

(2.1.3)

where lts denotes tendon slack length. By imposing smoothness conditions
on this curve and some notion of fit to experimental data, the shape and
stiffness parameters can be specified. However, for the gait model it is
convenient to use a generic force-length relationship for tendon derived by
a method discussed in [31]. In particular, define tendon strain by εt = (lt−
lts)/lts and normalized tendon force as F̃t = Ft/Fo. We assume a generic
force-strain curve (F̃t vs εt) based on the assumptions that a nominal stress-
strain curve can be formulated that represents all tendon and that the strain
in a tendon when force in the tendon equals the maximal isometric muscle
force is independent of the musculotendon unit. By scaling the generic
force-strain relationship by Fo and lts, a force-length function is found for
a specific tendon. If we adopt the notion that the tendon behaves as an
exponential spring and fit an analytical model as in equation (2.1.3) to data
reported by [10], a generic force-strain relationship may be obtained in the
form

Ft(εt) =


.10377

(
e91εt − 1

)
0 ≤ εt < .01516

37.526εt − .26029 .01516 ≤ εt < .1

. (2.1.4)

If the strain in tendon reach values beyond .1, the tendon is known to
rupture [31]. Since such an extreme value of strain should not occur during
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normal locomotion, this part of the curve need not be included in our
analysis. From (2.1.4) it follows that tendon stiffness defined by Kt(Ft) =
dFt/dlt is given by

Kt(Ft) =
dFt

dF̃t
· dF̃t
dεt
· dε

t

dlt

=
Fo
lts
· dF̃t
dεt

=


(
Fo
lts

)
91(F̃t + .10377) 0 ≤ F̃t ≤ .3086(

Fo
lts

)
37.526 F̃t ≥ .3086

=
(
Fo
lts

)
Kt(F̃t). (2.1.5)

2.2 Contraction Dynamics

From Figure 1 it readily follows that the total force of a muscle is the sum
of the passive and the active forces, Fm = Fpe + Fact + Bm l̇m. Muscle is
known to maintain a constant volume and so lw is constant. With this
observation and since

lmt = lt + lm cosα,

it follows

α̇ = − l̇m
lm

tanα.

and

l̇t = l̇mt −
l̇m

cosα
.

The tendon dynamics may now be expressed as

Ḟt = Kt(Ft)(l̇tm − l̇m/ cosα). (2.2.6)

The equation of motion for the muscle mass is

Mm
d2(lm cosα)

dt2
= Ft − [Fact + Fpe +Bm l̇m] cosα

and with some simple manipulations, the muscle dynamics take the form

Mm l̈m = Ft cosα− cos2 α[Fact + Fpe +Bm l̇m] +
Mm l̇

2
m tan2 α

lm
. (2.2.7)

Two state variables are required to describe the contraction dynamics
of the musculotendon actuator as given by (2.2.6) and (2.2.7). For multiple
muscle systems such as that needed to describe gait, it is desirable to reduce
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the system dimension. This can be achieved by eliminating the muscle mass.
In this case, (2.2.7) becomes a statement of force balance

Ft = Fm cosα =
(
Foa(t)fl(l̃m)fv(ṽm) + Fpe(l̃m) +Bm l̇m

)
cosα.

If it is assumed that the passive muscle viscosity effect is small, then ˙lm
can be computed from

l̇m = vm = vof
−1
v

(
(Ft/ cosα)− Fpe(l̃m)

F0a(t)fl(l̃m)

)
.

It now follows from (2.2.6) and that the differential equation describing the
contraction dynamics of the musculotendon is

dFt
dt

=
F0

lts
Kt(F̃t)

[
l̇mt −

vo
cosα

f−1
v

(
(Ft/ cosα)− F0fp(l̃m)

F0a(t)fl(l̃m)

)]
(2.2.8)

where

vo = (1/τc)l0

l̃m = lm/l0 =
√

(lmt − lt)2 + (lw)2/l0,

lt =


lts

(
1 + ln

(
F̃t/.10377 + 1

)
/91
)

0 ≤ F̃t ≤ .3086

lts

(
1 + (F̃t + .26029)/37.526

)
.3086 ≤ F̃t

,

cosα = (lmt − lt)/lm,

F̃t = Ft/F0.

3 Ocular Dynamics

In human binocular vision the movement of each eye is controlled by a set
of six muscles. When the eyes are fixed on an object two things occur.
First, the eye rotates so that the image of the object formed by the eyes’
lens system is projected onto the fovea of the retina. This is the area of
the retina of greatest ocular acuity. Secondly, the eye lenses adjust to bring
the object into focus. This section is concerned with the first part of this
process: how the rotation develops and how it is controlled. The brain and
central nervous system process information obtained by the retina, and then
transmit signals to the extraocular muscles. These muscles work in three
agonist-antagonist pairs to exert forces on the eye causing it to rotate.

The three muscle pairs consist of the medial and lateral recti, the supe-
rior and inferior recti, and the superior and inferior obliques. The lateral
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and medial recti produce primarily horizontal rotation. The superior and
inferior recti work mainly to control vertical rotation. The superior oblique
controls the intorsional rotation (toward the nose) of the eye while the infe-
rior oblique controls mainly extorsional rotation (toward the temple). The
eye has three degrees of freedom but experimental evidence shows that for
any horizontal rotation (θ) and vertical rotation (φ), the amount of torsional
rotation (ψ) is determined by a phenomena known as Listing’s Law,

ψ = arccos
(

sin θ sinφ
1 + cos θ cosφ

)
.

The motion of the eye is a result of moments produced by the six extraocular
muscles and a passive moment due to the orbit which restrains the rotation
of the globe. If ωx, ωy, ωz denote the components of angular velocity with
respect to a fixed inertial reference frame with coordinates x, y, z, then the
equation of motion for the globe is of the form ω̇x

ω̇y
ω̇z

 =
1
JG

[
( ~rlr × ~Flr) + ( ~rmr × ~Fmr) + ( ~rsr × ~Fsr) (3.0.1)

+ ( ~rir × ~Fir) + ( ~rso × ~Fso) + ( ~rio × ~Fio) + ( ~rp× ~Fp)
]
.

Here ~rlr and ~Flr denote the moment arm and force associated with the
lateral rectus, with the obvious interpretation of the other terms. Three
dimensional simulations carried out in [22] support the claim that horizontal
eye movement may be accurately modeled by including only the medial and
lateral rectus muscles. We will assume that the points of attachment are
such that the moment these muscles generate is in the direction of the z
axis (see Figure 4).

Lateral Rectus

Medial Rectus

X

Y

Z

Figure 4. Left globe with medial and lateral rectus muscles.

More specifically, the model presented here will be restricted to hori-
zontal saccadic eye movements. The purpose of saccadic eye movement is
to position the high-resolution fovea, the central part of the retina, on the
important features of a scene. This is achieved by altering the direction and
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magnitude of the saccade so as to correct for position error. Because sac-
cades are among the fastest muscle movements that are performed, vision is
suppressed during this motion and it is generally accepted that the the ocu-
lomotor system operates in an open-loop mode when performing a saccadic
movement. The model proposed herein builds upon earlier models of the
oculomotor system [2, 6]. However, the model presented here incorporates
more general formulations of the musculotendon dynamics as presented in
the previous section and allows for the inclusion of muscle mass. There are
several reasons that a meaningful model of the horizontal saccadic move-
ment system can be developed. Experimental data has been gathered that
provides values for many of the parameters that arise in the description of
the model. Most importantly in this regard is information regarding the
time course of innervation that is specific to saccadic movement. Experi-
mental data provides fairly conclusive information regarding the nature of
the inputs, or controls, that are appropriate to saccades. More specifically,
the input into the oculomotor plant is derived from experimental records
of raw EMG corresponding to the firing rate of motor units. It is accepted
as ‘sufficiently realistic as to be useful’ [25] that the rate of discharge cor-
responding to a saccadic movement can be described by filtered EMG that
corresponds to a rectangular pulse followed by a step.

Figure 5 provides a mechanical representation of the eye plant model in
which the elements of the plant are displayed as if the muscles and the globe
are undergoing linear motion. One must distinguish between the lateral rec-
tus, (the agonist) and the medial rectus (the antagonist). All model com-
ponents that pertain to the agonist will be denoted as Ft1, ltm1, Bm1,Mm1,
etc, while the corresponding quantities for the agonist are indicated by
Ft2, ltm2, Bm2,Mm2, etc.

Figure 5. The model of the eye plant.
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Because of conventions adopted in the ocular literature, it is convenient
to report rotations of the eye in degrees (◦) and to write the equation of
motion for the globe and the musculotendon dynamics in terms of pure
tendon force in units of grams tension. To this end let JG, BG, and KG

denote the parameters for globe inertia, globe viscosity, and globe elasticity,
respectively, in terms of cgs units and radians. Let r denote the radius of
the globe and define

Jg =
JG

980r(180/π)
, in gt · s2/◦

and similarly for Bg,Kg. If Ft1 and Ft2 are reported in gt, then equation
(3.0.1), when expressed in degrees and units of gt, becomes

JgΘ̈ +BgΘ̇ +KgΘ = Ft1 − Ft2.

If pennation effects are ignored, the equation of motion for the muscle mass
of the agonist and antagonist, previously expressed in (2.2.70, now takes
the form for i = 1, 2

M

980
l̈mi +Bpm

(
180
πr

)
l̇m1 = Fti − Facti − Fpe1(lmi).

In a similar fashion, the tendon dynamics and the description of the passive
muscle elasticity must be amended to account for the change in units. In
particular, the modified forms of (2.1.1),(2.1.2) are

Fpe(lm) =



(
kml
kme

) [
exp(kme

(
180
πr

)
(lm − lms))− 1

]
lms ≤ lm < lmc

kpm
(

180
πr

)
(lm − lmc) + Fmc lm > lmc

0 otherwise

and

Ḟt = Kt(Ft)
(

180
πr

)
l̇t

with the obvious change in (2.1.3). For the agonist, the tendon dynamics
become,

˙Ft1 = Kt(Ft1)
[
−Θ̇−

(
180
πr

)
l̇m1

]
while for the agonist,

˙Ft2 = Kt(Ft2)
[

Θ̇−
(

180
πr

)
l̇m2

]
.

If a state vector is selected as

xT (t) =
[

Θ Θ̇ lm1 l̇m1 lm2 l̇m2 Ft1 Ft2 a1 a2

]
,
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the state equations for the system are given by

ẋ(t) =



x2

1
Jg

(x7 − x8 −Bgx2 −Kgx1)

x4

980
M

(x7 − Fact(x3, x4, x9)− Fpe(x3)−Bpm(
180
πr

)x4)

x6

980
M

(x8 − Fact(x5, x6, x10)− Fpe(x5)−Bpm(
180
πr

)x6)

Kt(x7)
[
−x2 −

(
180
πr

)
x4

]
Kt(x8)

[
x2 −

(
180
πr

)
x6

]
1

τ1(t)
[n1(t)− x9]

1
τ2(t)

[n2(t)− x10]


The simulations illustrated in Figure 6 originate from the primary po-

sition and the initial conditions for muscle length, tendon force, and ac-
tivation are taken from [25]. The vector of initial data is then xT(0) =
[0 0 4 0 4 0 20 20 .17 .17] .
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Figure 6. Model simulation of 10 degree saccade.

The simulated trajectory, velocity, and tendon force are in close agree-
ment with the empiric data of [7, 25]. The results of Figure 7 illustrate the
effects of pulse-width and pulse-height mismatch in glissadic overshoot and
undershoot. The results show that the pulse-height errors are associated
with unusually large peak velocities. In contrast, pulse width mismatches
produce saccades with reasonable predictions of velocities. These results
are in qualitative agreement with experimental results of [3] which suggest
that when glissadic overshoot is associated with low peak velocities, the er-
ror is caused by the erroneous neural input in computing the pulse width,
not the height.
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Figure 7. Glissadic overshoot due to pulse width and height errors.

4 A Forward Dynamic Model of Gait

In order to generate the loading conditions during gait, it is necessary to
develop a model driven by musculotendon actuators that simulates normal
gait. Although many gait models have been built, few include the com-
plexity which is needed for realistic dynamic simulations. The approach
that is adopted here builds on a model developed by [30]. The model con-
strains seven rigid-body segments which represent the feet, shanks, thighs
and trunk to 8 degrees of freedom. All joints are assumed to be revolute
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having one degree of freedom with the exception of the stance hip which
has two degrees of freedom. This allows the hip to ab/adduct, a condition
which reduces the degree of coupling between the trunk and the swing leg.
Figure 8 shows the generalized coordinates used to describe the configu-
ration of the body. Joint angles q1, q2, and q3 are measured with respect
to the horizontal or transverse plane and the rotation of these joints occur
about an axes parallel to ~n2. Movement of the stance leg is confined to the
sagittal plane, but due to the extra degree of freedom granted to the stance
hip, the swing leg and trunk can also move in the frontal or coronal plane
through pelvic list. Joint angle q4 tilts the trunk as well as the swing leg
about an axis parallel to ~n1 = ~d1. Joint angles q5 through q8 are measured
in the tilted plane and these rotations occur about an axis parallel to ~d2.
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Figure 8. 3-D, 8 DOF Model Showing Segment Angle Definitions: (a) The
stance hip has two DOF, while all other joints are revolute. (b) Front view
showing pelvis list. Stance angles are specified with respect to the inertial
frame, ~n, while the swing angles are respect to the titled trunk reference
frame, ~d (Adapted from [30]).

This musculoskeletal model represents a normal male with mass totaling
76 kilograms. Segmental dimensions and inertial parameters used in the
model are presented in [11]. A key element of the model is that only one-
half (14%, approximately left-toe-off, to 62%, approximately left-foot-flat)
of the gait cycle is simulated in this analysis. The complete gait cycle
can be reconstructed under the assumption of bilateral symmetry. This
assumption simplifies the modeling in that the stance leg is always the
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stance leg and the swing leg is always the swing leg. As a result, muscles in
the swing and stance leg can vary according to the function of that leg in
the simulation. With this assumption, it is also valid to have the stance toe
constrained to the ground which eliminates one more degree of freedom.
This simplification requires fewer muscles to be modeled and reduces the
system dimension.

The range of each joint angle is limited to normal ranges through the
use of ligamentous constraints. If the joint angle stays within a nominal
range, then the effects of the passive structure are minimal, but when the
nominal range is exceeded, the passive torques grow exponentially. The
general form of the passive moments is given by

Mpass = k1 e
−k2(θ−θ2) − k3 e

−k4(θ1−θ) − c θ̇.

Here θ is the joint angle measured in radians, θ̇ is the joint velocity measured
in radian per second and Mpass is measured in Newton-meters. Note that
θ2 < θ < θ1 represents a nominal range for that joint. Initial estimates of
the parameters kj , θj , and c were taken from [9] and then modified in the
course of validating the model. The inclusion of the passive term (−c θ̇) is
vital since the passive viscosity was excluded from the the musculotendon
model when mass was eliminated. A list of the passive parameters and
definitions of the joint angles in terms of the generalized coordinates is
given in [11].

Although the stance toe is constrained throughout the simulation, it
is necessary to incorporate additional constraints in order to prevent the
stance heel and swing foot from penetrating the “ground” and to eliminate
excess sliding of the swing foot during double support. These additional
constraints are considered to be soft [16]. The vertical ground reaction
forces which act on the heels of both the stance and swing leg are modeled
as highly-damped, stiff linear springs

Fnormal =
{

0 zheel ≥ 0
−(1.5× 105)zheel − (1× 103) ˙zheel zheel < 0

where zheel is the height of the heel above the ground. On the swing heel an
additional frictional force applied in a direction parallel to the ground in the
sagittal plane is used to prevent excess sliding. This force is proportional
to the normal force applied to the swing heel,

Ffriction =
{

0 zheelswing ≥ 0
−.5|Fnormal(zheelswing)| zheelswing < 0 .

Once flat-foot is achieved by the swing leg, a counterclockwise torque is
applied to prevent the foot from penetrating the ground. The torque is
model as a damped, torsional spring which resists plantarflexion of the
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foot. This torque is given by

T =
{

0 zheelswing > 0 or δ ≥ 0
−5696δ − 38.19δ̇ zheelswing ≤ 0 and δ < 0

where δ is the angle the bottom of the foot makes with the ground. These
soft constraints allow the same model to be used during the single and
double support phases of gait. If the ground had been modeled as a “hard”
constraint, then one would lose a degree of freedom on the swing leg when
the toe touches the ground. This would mean two models would be needed
to simulate this phase of gait and a switch between the two systems would
occur at heel strike.

The model that is developed here incorporates the same muscle sets as
that utilized in [30]. As a result, ten musculotendon units are incorporated
into our model, five on each leg. On the stance leg, the relevant muscle
groups are the soleus, gastrocnemius, vasti, gluteus medius and minimus,
and the iliopsoas. The swing leg utilizes the dorsiflexors, hamstring, vasti,
gluteus medius and minimus and the iliopsoas. Thus seven different muscu-
lotendon groups need to be specified in this model. The constituent muscles
composing each musculotendon group, and the parameters which are used
to distinguish the dynamics of each particular musculotendon unit, that is,
tendon slack length, optimal muscle length, maximal isometric force and
pinnation angle, are listed in [11].

In order to incorporate the musculotendon actuators into the dynamics,
it is necessary to place the muscles geometrically on the body segment so
that the length of the musculotendon, lmt, and the velocity of the mus-
culotendon, vmt, can be derived as a functions of the state variables, i.e.
the generalized coordinates, qi. The attachment of the musculotendon to
bone is specified by the defining an origin or proximal attachment, and an
insertion or distal attachment. Effective origins and effective insertions are
specified when the straight path from the actual origin to actual insertion
passes through bone or out of anatomical range during certain body con-
figurations. Origins and insertions are specified with respect to coordinate
systems which are directed along the bones and are fixed with respect to
the foot, shank, thigh and pelvis. The origin and insertion points for the
7 muscle groups used in this analysis were based on from [5, 18] and are
summarized in [11]

The total length and velocity of the musculotendon complex, which is
needed as input into the musculotendon dynamics, can be derived for most
muscles through vector addition. In this case, the length of the musculo-
tendon is given by

lmt = |−−−→OaOe|+ |−−→OeIe|+ |−−→IeIa|
where O and I refer to origin and insertion, and the subscripts e and a refer
to actual and effective coordinates (Figure 9). The velocity of the musculo-
tendon is then just the time derivative of the length. Musculotendon forces
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were incorporated into the body dynamics as joints torques. When a mus-
culotendon spans a joint a torque is realized across that joint. The joint
torque due to musculotendons which do not span the knee are computed
using standard vector cross product methods. In this case, the moment −→M
acting on the proximal segment is defined as

−→
M = ±F t

(
~p×

−−→
OeIe

|−−→OeIe|

)
. (4.0.1)

Here ~p is a vector from the joint to a point on the line of action of the
musculotendon. The line of action is defined by the unit vector −−→OeIe/|−−→OeIe|,
and the tension in the musculotendon complex, F t, is produced according
to the muscle dynamics (2.2.8). The sign in equation (4.0.1) depends on
whether the musculotendon acts to extend or flex the joint it spans. The
cross product,

−→me = ~p×
−−→
OeIe

|−−→OeIe|
,

represents the effective moment arm associated with the musculotendon at
a certain body configuration.

p
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Figure 9. Muscle pathway and effective moment arm.

Vector addition works well for all muscles which do not span the knee.
The complication which arises for those musculotendons which do span the
knee (vasti, hamstring, and gastrocnemius) occurs because of the complex-
ity of the knee joint. In short, as the knee flexion angle varies, this produces
both a change in the location of the knee joint center and in the location
of the patella. Since this complexity is not accounted for in the simple
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segmental model formulated here, an alternative to the vector method is
implemented for the knee. We define the effective moment arms of the
vasti, hamstring and gastrocnemius according to curves formulated in [29].
The joint moments produced by these musculotendons which span the knee
are given by

~M = ±F t ·me(θf )

where F t is calculated from (2.2.8) and me is the effective moment arm as a
function of the knee flexion angle, θf . The length of these musculotendons is
calculated by integration of the moment arm as in [18]. In this method the
relationship between the length of the musculotendon, the effective moment
arm, and the joint angle is given by

vmt =
dLmt

dt
= me(θf )

d θf
dt

.

Consequently, three more differential equations are added to the system.
When a direct-dynamic analysis of gait is to be simulated, controls for

the musculotendon actuators must be derived. Developing these controls
constitutes one of the more difficult aspects of a forward analysis. Some
form of dynamic optimization is usually utilized in developing the controls.
The controls used in the gait simulations of this paper are derived through
a two-phase process: (1) a coarse formulation based on a dynamic optimiza-
tion scheme, and, (2) a fine-tuning via trial-and error. The coarse controls
are derived as in [30] by employing a cost function that consists of a error
tracking term which penalizes deviations from a desired trajectory and a
term related to muscle fatigue [8],

Ji(k) =
16∑
l=1

wx,l(xl − xl,des)2 +
m∑
l=1

wu,l

(
Ftl
Al

)3

. (4.0.2)

In equation (4.0.2), xl is one of the elements of the state variable, ~X =
(q1, q2, . . . , q̇1, q̇2, q̇3, . . . ) (refer to Figure 8), and Ftl andAl are the force and
physiological cross-sectional area of muscle l. The nominal gait trajectory
is described by xl,des and is specified according to data recorded in [28].
Once crude activation controls are formulated, simulations were run and
these controls were fine-tuned by ad-hoc methods to meet the specific needs
of our model. The final formulation of the control laws derived for the
model varied slightly from those of [30]. The resulting muscle activation is
illustrated in Figure 10.

For this study, the algebraic manipulation program Autolev [19] was
utilized to derive the equations of motion for the gait simulation. This pro-
gram implements Kane’s method as a means of deriving Euler’s equations
of motion. A detailed discussion of the procedure by which the equations
are derived is given in [11]. It suffices here to point out that Autolev
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generates the equations of motion as well as Fortran or C code for inte-
grating these equation forward in time using a fourth-order Runge Kutta
scheme.

Figure 10. Controls utilized in the gait simulation.

Necessary initial data to run a simulations included the initial segmen-
tal orientations (q1, ..., q8), the initial angular speeds (q̇1, ...., q̇8), the initial
force in each musculotendon, and the initial lengths of the musculotendons.
Precise values of this data is not readily available and was approximated
by several methods. For instance, the initial force in each musculoten-
don unit was found by running simulations to find the steady state muscle
force achieved by the initial control when the motion of the model was
constrained. Initial lengths of the musculotendon were estimated so that
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the muscle maintained an appropriate length throughout the gait cycle. A
summary of initial conditions that were utilized in running gait simulations
can be found in [11].

A standard means of comparing and validating gait simulations is achieved
by displaying the joint torques which drive the system and the resulting
joint trajectories. Figure 11 depicts the standard definitions of the joint
angles. Notice that these joint angles are distinct from the generalized
coordinates used in the analysis. Figure 12 displays the resulting joint
trajectories in the simulation. These trajectories provide good qualitative
agreement with the trajectories reported by other researchers (see for ex-
ample [28]). Joint torques and power trajectories, which reflect the rate at
which the muscles and tendons are expending and absorbing energy, were
in general accordance with the data reported by other researchers [13, 9].

θ

θ

θhip

ankle

  knee

Figure 11. Joint angle definitions.
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Figure 12. Joint Trajectories.

Figure 13 reports the normalized force realized in the tendons of all ten
musculotendon actuators. These normalized forces, Ft/F0, were obtained
through the dynamics in 2.2.8 and are utilized in specifying the loading con-
ditions for the stress analysis. Additional boundary conditions needed for
the stress analysis were obtained by appropriately constraining generalize
coordinates so that joint reaction forces could be determined.
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Figure 13. Normalized Force Histories for each musculotendon. Left column
refers to stance muscle while the right column refers to the swing side
muscles.

4.1 The Stress Analysis

The stress distribution in the long bones of the lower extremities is calcu-
lated from equilibrium considerations by ‘freezing’ the gait model at a fixed
instant in time and regarding the segmental elements as linear isotropic
elastic bodies. The method that is implemented here follows the approach
given in [27]. The applied loads for the stress analysis are the joint reaction
forces and the muscle forces as calculated in the gait analysis. The joint
reaction forces and joint moments due to musculature effects are resolved
into forces and moments at each cross section of the tibia. The compo-
nents of the stress tensor are calculated in terms of these internal forces
and moments.



24 C. F. Martin, L. Schovanec

The relevant geometry is indicated in Figure 14. Assign to the ith
cross section a local set of orthogonal axes parallel to the unit vectors
ζi, ηi, ξi with the origin at the center of gravity. The following measures
of anthropometric data for the each segment for each segmental link must
be collected or approximated. Let Ai denote the area of the ith cross
section, (Iξ)i, (Iη)i the statical moments of inertia around the ξi and ηi
axes, and (Iξη)i the statical product of inertia of the cross sectional area.
In the ith section, let wijk denote the width of the cross section at the
point (j, k) parallel to the ξi axis, (Wξ)ijk the moment about the ξ axes
of the area bounded by the segment of length wijk and the perimeter of
the cross section, and (Wη)ijk the moment about the η axis. (see Figure
14). Similarly, let hijk denote the height of the cross section at the point
(j, k) parallel to the ηi axis and (Hξ)ijk the moment about the ξ axis of the
area bounded by the segment of length hijk and the perimeter of the cross
section with the obvious interpretation of (Hη)ijk.
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Figure 14. Local coordinates and cross sections of bone.

From equilibrium considerations, the joint reaction forces must be collinear
and give rise to an internal force vector on each cross section whose com-
ponents in terms of the local coordinates are equal and opposite to those of
Fb. The component of this internal force acting on the ith cross section is
obtained by projection onto the local coordinates. Thus for the ζ direction,

(Pζ)i = −Fb · ζi.

and similarly for (Pη)i and (Pξ)i. If −−→CiC1 denotes the vector from (xi, yi, zi)
to (x1, y1, z1), then the component of the reactive moment due to Fb the ζ
direction is given by

(Mζ)i = −(M)i · ζi
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where
(M)i = −−→CiC1 × Fb

with (Mη)i and (Mξ)i defined in a similar way.
If a muscle force acts on the bone, reactive forces and moments at the

joints must be introduced to maintain the state of equilibrium. These joint
forces and moments will contribute to the internal forces and moments on
the cross sections. In particular, suppose a muscle force Fmk is attached to
the bone a point Ak. Introduce joint reaction forces Rk1 = (−1/2)Fmk at
the points (x1, y1, z1) and (xn, yn, zn). The moment at (xn, yn, zn) due to
Rk1 is

Mk1 = −−−→CnC1 ×Rk1

and the moment due to the muscle force is

Mk2 = −−−→CnAk × Fmk .

To maintain equilibrium in the segment we introduce a reactive moment
given by

Rk2 = −(Mk1 +Mk2).

The internal forces on a cross section due to Rk1 are computed in the same
manner as for the joint reaction force by simply replacing Fb with Rk1. The
corresponding internal moment on a section Ci between C1 and Ak is

(Mk)i = (−−→CiC1 ×Rk1)−Rk2.

If the section is between Ak and Cn, replace −−−→CnAk by −−−→C1Ak. When several
muscles act on the segment, the computations are repeated for each muscle
and the effect of all muscles is then obtained by summing contributions of
each force. The total internal forces due to the combined effect of the joint
reaction force and all muscle attachments is

(Pζ)i = −Fb · ζi −
∑
k

Rk1 · ζi

and similarly for (Pη)i and (Pξ)i. The total internal moments are

(Mζ)i = −Mi · ζi −
∑
k

(Mk)i · ζi

with the obvious expressions for (Mη)i and (Mξ)i.
If the bone is assumed to be in a state of biaxial bending, the stress

tensor has the general form

Sijk =


(σζ)ijk (τζη)ijk (τζξ)ijk

(τζη)ijk 0 0

(τζξ)ijk 0 0

 .
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The normal stresses due to the compressive and bending forces are com-
puted from well-known formulas concerning biaxial bending and are given
by

(σζ)ijk = (σc)ijk + (σb)ijk,

where

(σc)ijk =
(Pζ)i
Ai

,

(σb)ijk =
[(Mη)i(Iξ)i + (Mξ)i(Iηξ)i]ξijk − [(Mη)i(Iηξ)i + (Mξ)i(Iη)i]ηijk

Bi
,

Bi = (Iη)i(Iξ)i − (Iηξ)i,

and ξijk, ηijk are the distances from (j, k) to the ξ and η axes respectively.
The shearing stresses are given by

(τζη)ijk = (τ̃ζη)ijk + (τ̂ζη)ijk, (τζξ)ijk = (τ̃ζξ)ijk + (τ̂ζξ)ijk

where

(τ̂ζη)ijk =
(τζ)ijkξijk√

(ηijk)2 + (ξijk)2
, (τ̂ζξ)ijk = − (τζ)ijkηijk√

(ηijk)2 + (ξijk)2
,

(τζ)ijk =
(Mζ)i

√
(ηijk)2 + (ξijk)2

(Iη)i + (Iξ)i
,

(τ̃ζξ)ijk =
[(Pη)i(Iη)i − (Pξ)i(Iηξ)i](Hξ)ijk + [(Pξ)i(Iξ)i − (Pη)i(Iηξ)i](Hη)ijk

hijkBi
,

and

(τ̃ζη)ijk =
[(Pη)i(Iη)i − (Pξ)i(Iηξ)i](Wξ)ijk + [(Pξ)i(Iξ)i − (Pη)i(Iηξ)i](Wη)ijk

wijkBi
.

In Figures 15-16 the normal stress, (σζ), at heel strike and flat foot is
computed on the medial, lateral, anterior, and posterior cortex of the tibia,
and plotted versus length of the tibia, from the proximal to distal end. The
stress in the absence of muscular effects is indicated by (NM). The results
show that muscular loads have a dramatic effect on the stress distribution.
Computations based on joint reaction forces alone would underestimate
stresses by an order of magnitude. With the inclusion of muscular attach-
ment, the predicted stress is in qualitative agreement with the results of
[21] in that tensile stresses are generally greater at flat foot as compared to
heel strike. The results are not surprising in view of the fact that muscular
forces often exceed body weight and thus dominate the loading on bones
both at the joints and at the point of muscle attachment.
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Figure 15. The normal component of stress in the axial direction of the
tibia at heel strike.
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Figure 16. The normal component of stress in the axial direction of the
tibia at flat foot.
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