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Abstract| This paper presents a novel way of evalu-

ating architecture of embedded custom DSPs which helps

designers optimizing the datapath con�guration and the in-

struction set. Given a datapath structure, it evaluates the

performance in terms of an estimated number of steps to

execute the target program on the datapath. A concept

of \parallel constraint" is newly introduced, which enables

evaluation of the impact of instruction format design on

the performance without explicitly specifying the instruc-

tion format. The number of execution steps is estimated by

a combination of static analysis and dynamic analysis. It

enables fast and precise estimation of actual performance in

the early design stage. We show some experimental results

on an actual signal processor to demonstrate the accuracy

of estimation and the usefulness of this method in architec-

ture design.

I. Introduction

Design of datapath con�guration and instruction set in-
volves the most important decisions in custom DSP de-
sign. Namely, (1) the types and the numbers of functional
units, (2) the connection between them, and (3) the way
the functional and transfer resources are controlled, are
the decisive factors that have a great impact on the per-
formance. Although we can not see the �nal performance
�gure until we �nish the detailed design, modi�cation of
the architectural decisions at a later design stage causes a
fatal delay in the whole design process. Thus, evaluation
of the architectural decisions in the early design stage is
of high importance in the custom DSP design.
There have been a lot of researches on performance eval-

uation of architectures because it is a key issue not only in
architecture design, but also in high-level synthesis, hard-
ware/software codesign [1-11], etc.
PEAS [1], COSYMA [2], and ASIA [3] are examples of

architecture evaluation methods in the area of high-level
synthesis and hardware/software codesign. Most of the
methods in this category focus their attention on func-
tional units. They assume simple or �xed ways of data
transfer and do not adequately cover variations of such
methods. Since the con�guration of data transfer re-
sources has as much inuence as the selection of functional
units on the performance of custom embedded processors,
straightforward application of the above methods does not
work well in our application.

COACH [4], POLIS [5], and CHINDERELLA [6] can be
categorized as processor level or instruction level evalua-
tion methods. COACH estimates performance by execut-
ing programs at the instruction level using compiler gener-
ation. POLIS extracts parameters from existing compiler
and benchmark programs, and apply them to its paramet-
ric evaluation model. CHINDERELLA evaluates the up-
per and lower bounds of the number of the execution steps
by program analysis. However, in the custom processor
design, the instruction set is designed after the datapath
design is �nished. Therefore, the use of these methods in
the early stage of datapath design would require the de-
signer to make many decisions about the instruction set
before it is appropriate to do so.
A research by Gong et al. [11] is the closest one to our

requirement. From a given application program and a dat-
apath con�guration, it estimates the number of necessary
steps to execute the program on the datapath using a re-
targetable scheduler. However, it assumes restricted types
of instruction formats and does not deal with the varia-
tion of instruction formats. Since exploitation of instruc-
tion formats is another important factor for better cost-
performance of the processor, we further need a way to
evaluate the impact of the instruction format design.
In this paper, we propose a new architecture evaluation

method which supports both datapath design and instruc-
tion set design. Given an performance of the datapath in
terms of the number of the steps to execute the program.
The distinctive features of this method are as follows:

(1) Precise performance estimation taking the cost of
data transfer into account.

(2) Modeling of controls and instruction sets in terms of
"parallel constraint" on the datapath con�guration,
which enables exible description of the impact of the
instruction format and the control method.

(3) Fast and precise estimation of performance using
static analysis (scheduling of the program onto the
datapath) and dynamic analysis (pro�ling of the pro-
gram with actual data) in combination.

The hardware model in our system includes data trans-
fer resources, such as interconnections, buses, and multi-
plexors, as well as functional resources to execute arith-
metic/logical operations. The number of control steps for



transferring data is also counted. Conicts on buses and
multiplexors are also taken into account.
Unlike COACH, our system does not take an explicit

speci�cation of the instruction set as part of the hardware
model. Instead of specifying the instruction set explicitly,
we introduce a new concept of a \parallel constraint". It
represents, in the form of a Boolean formula, the condition
where a certain combination of operational and transfer re-
sources in the datapath cannot be activated at the same
time. This provides a exible way of specifying the in-
uence of the instruction format on the datapath. In the
early design stage where we are only interested in the data-
path con�guration, we specify no parallel constraint. Later
we gradually add constraints until we form the instruction
format. This approach di�erentiates our system from the
existing architecture evaluation systems [4,11]. Although a
similar concept is used in code generation [12], there have
been no attempts to introduce this idea in architectural
performance evaluation.
We have developed an architecture design support sys-

tem based on the proposed method. We show its e�ec-
tiveness by applying it to an actual LSI design such as an
audio signal processor.
The rest of this paper is organized as follows. In sec-

tion 2, software and hardware models and an overview of
the system are presented. Our evaluation algorithm based
on the models is described in section 3. The evaluation
system is outlined in Section 4. In section 5, some exper-
imental results using an actual design are also shown to
demonstrate the e�ectiveness of our approach. Finally, we
discuss the status and conclude with future directions.

II. Software and Hardware Models

Our system estimates the number of control steps from a
given application program, a run time data, and a dat-
apath structure (Fig. 1). We formulate the underlying
software and hardware models in this section.
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Fig. 1. Outline of the evaluation system.

A. Software Model

We assume that an input application program is written
in a subset of KR type C language.
As for data types, integer, oat and its array types are

assumed. Other types such as string, pointer, enumerate,
and complex types are not allowed. Accordingly, logical

and arithmetic operators are supported. The program may
consist of assign statements, conditional statements (if-
then-else), loop statements (for, while, and do), procedure
calls, and return statements.
Instead of manipulating the C code directly, we work

on an abstract data structure named \BBS (Basic Block
Structure)". BBS consists of a set of basic blocks and a
control relation. Fig. 2 shows an example of an application
program and its BBS.
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Fig. 2. An application program and BBS.

The basic block corresponds to a part of the application
program which includes no branches. Each basic block
is formulated as a data ow graph (henceforth abbrevi-
ated simply to a DFG). A node in the DFG represents a
primitive operation executed by a hardware. The primi-
tive operations include logical and arithmetic operations,
read/write of ROM/RAM, reference to a constant. A di-
rected edge (u, v) represents a data dependency meaning
that the result of operation u is used in operation v.
The control relation between basic blocks is represented

as a directed graph which corresponds to the structure
of C program such as sequencing, conditional branching,
looping, function calling constructs.

B. Hardware Model

In our method, the hardware is modeled by Datapath

Structure, and Parallel Constraint.

B.1. Datapath Structure

A datapath structure consists of resources and intercon-
nections. Formally, a datapath structure DP is a 4-
tuple (R;PI ; PO; I) where R is a set of resources, PI a
set of input ports, PO a set of output ports, and I a
set of interconnections. A resource r 2 R is a 5-tuple
(OP r; INr; OUT r; oer; pir). OP r represents a set of op-
erations which r can execute. IN r � PI is the set of the
input ports of r and OUT r � PO the set of the output
ports of r. We allow multi-cycle and pipelined operations.
oer is the number of execution steps and pir is the interval
of pipelining. The set of interconnections I � PO � PI is
a relation where (p; q) 2 I stands for the existence of a
connection from port p to port q. Fig. 3 shows an example
of the datapath structure and its corresponding instance
of DP .

B.2. Parallel Constraint

A parallel constraint is a constraint posed on the datapath
structure, which limits the simultaneous activities of the
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Fig. 3. A datapath and its DP representation.

resources and interconnections. The limitation is brought
about by the instruction format and control structure.
Let xr (r 2 R) and yi (i 2 I) be Boolean variables where

xr = 1 (yi = 1) i� r (i) is activated. Then the parallel
constraint is expressed in the form of a logical expression
PC consisting from xr and yi. It declares that activities
which makes PC = 1 is inhibited.
For example, xALU ^ xMULT means that ALU and

MULT can not operate at the same time. Similarly,
(xALU^y(RAM:o;BUS:i))_ (y(RAM:o;MULT:x)^y(ALU:c;BUS:i))
indicates that ALU operation and the data transfer from
RAM.o to BUS.i as well as the data transfer from RAM.o
to MULT.x and from ALU.c to BUS.i may not occur si-
multaneously.
The parallel constraint is useful in specifying the limita-

tion of parallelism brought about by instruction formats.
Let us see two instruction formats in Fig. 4. In VLIW type
Instruction Format 1, control of ADD, MULT, MEM1, and
MEM2 are assigned to distinct �elds and hence all the op-
erations may be executed in parallel. On the other hand,
in shorter Instruction Format 2, ADD and MULT, and also
MEM1 and MEM2, share the same instruction �elds, and
parallel activation of ADD and MULT, and MEM1 and
MEM2 are disabled. We can represent this restriction by
a parallel constraint (xALU ^ xMULT)_ (xMEM1 ^ xMEM2).

(Instruction Format 1)

(Instruction Format 2)

ADD control

MULT control

...MEM1 Control

MEM2 Control

0

1 ...

ADD control MULT control ...MEM1 Control MEM2 Control

Fig. 4. Example of instruction formats.

In the earliest design stage, we only have a con�gura-
tion of the datapath where all the resources and the inter-
connections can operate in parallel. As the design of the
instruction set and the control proceeds, however, various
constraints on simultaneous operation will be posed one
after another. We can express them in the form of the
parallel constraint and carry out performance evaluation
at any stage of the design.

III. Evaluation Method

A. Outline of Evaluation Flow

Our evaluation method consists of two major processes:
static analysis and dynamic analysis.

In the static analysis, the number of the control steps is
estimated for each basic block in the given application pro-
gram. This is done by scheduling and mapping the DFG of
the basic block onto the given datapath con�guration and
counting the resultant number of the control steps. In the
dynamic analysis, on the other hand, the execution count
of each basic block is determined by investigating the trace
of the program on the given run data. Let Si and Xi be
the number of control steps and the execution count, re-
spectively, of i-th basic block. Then the total number of
steps is estimated as

P
i(SiXi).

B. Static Analysis

The goal of this step is to �nd a scheduling of the DFG
of a basic block so that we can estimate the number of
necessary control steps of the basic block. The quality
of scheduling, in terms of the resulting number of control
steps, should be as high as possible so that it gives a good
estimation of what will be done by a possible optimizing
compiler or by manual coding in the future. At the same
time, the scheduling should be computed quickly, enabling
designers to consult the evaluator every time they make a
slight change on their architectures.
Our scheduling problem is very similar to ones in the

area of high-level synthesis but lays much more stress on
the cost of data transfers. Since the data transfer paths
are given as a part of datapath speci�cation, the number of
steps consumed by data transfers is one of the most impor-
tant issues in architecture evaluation. We schedule data
transfers and allocate them to data transfer paths as well
as we schedule and allocate operations to computational
resources.
We also support such implementation techniques as

multi-functional units, multi-cycle operations, pipelined
functional units, chaining of operations, so as to make the
estimation as accurate as possible.
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Fig. 5. The result of the �rst scheduling.

The scheduling problem is a type of resource constrained
scheduling and we solve this by a list scheduling method
[13]. In order to deal with data transfer and parallel con-
straint, however, we adopt two phase scheduling.
In the �rst phase, preliminary scheduling is done focus-

ing only on operational resources. Each node in the DFG



is scheduled and allocated to the best possible resource in
an order determined by a priority function calculated from
the ASAP (As Soon As Possible) and ALAP (As Late As
Possible) values of the nodes. If there are multiple re-
source candidates for an operation, the resource with the
minimum transfer cost is selected. If the minimum candi-
date is already allocated to another operation, there are
two choices; take the second minimum resource or delay
the operation until the minimum resource become avail-
able. The decision is made based on a certain evaluation
function. Fig. 5 shows a result of the �rst scheduling for
a fraction of FFT algorithm to the data path shown in
Fig. 3.

In the second phase, complete scheduling of all the oper-
ations and the data transfer is determined. Transfer nodes
which represent the data transfer between operations are
added to the DFG. The transfer nodes are scheduled and
allocated to appropriate data transfer paths, while the re-
sult of the �rst scheduling on the operational nodes are
�xed. If two operational nodes o1 and o2 are allocated
to r1 and r2 in the �rst phase scheduling, then the node
corresponding to transfer (o1; o2) is allocated to one of the
best possible path between r1 and r2. The shortest path
algorithm is used to �nd the path of the minimum transfer
cost. If a conict on buses and multiplexors are unavoid-
able, the data transfer and the subsequent operations are
delayed. The parallel constraint is checked every time a
resource is required in the scheduling. Boolean values in
the constraint are updated whenever a DFG node is sched-
uled.
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Fig. 6. The �nal result of the scheduling.

Fig. 6 shows the result after the second scheduling for
DFGwith transfer nodes (no parallel constraint is assumed
in this example).

We do not pay attention to the exact location and the
capacity of registers; we assume implicit registers are avail-
able at every input/output port of the resources. We make
this assumption because we consider this situation corre-
sponds to the optimized allocation and placement of reg-
isters.

IV. Overview of the Evaluation System

We have developed an architecture design support system
which includes performance evaluation based on the pro-
posal method. It is implemented in C, C++, yacc, and
lex on a Sun Sparc Station 10. The evaluation ow in our
system is shown in Fig. 7.
The evaluation system consists of �ve subprocesses: (1)

hardware modeling, (2) software modeling, (3) static anal-
ysis, (4) dynamic analysis and (5) data collection.

Basic Block(DFG) Evaluation Program
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for each 
Basic Block

The execution count
for each Basic Block
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Fig. 7. Evaluation ow in our system.

In the hardware modeling process, a given datapath con-
�guration and parallel constraint are translated into data
structures DP and PC, respectively. PC is represented
in the form of sum-of-products.
Both BBS and an evaluation program are generated in

the software modeling process from the given application
program by a source code analyzer. Every basic block is
translated to a DFG. The evaluation program is a C pro-
gram which is used in the dynamic analysis. Codes for
counting execution frequency of each basic block and trac-
ing the execution path are put into the original application
program.
The static analysis estimates the number of the control

steps for each basic block in the given application program
according to the method described in the previous section.
The output of the dynamic analysis is the execution count
for each basic block and the trace list. The evaluation
program is compiled and executed with the actual run data
in this section.
The total number of execution steps is calculated by

combining the results of the static and dynamic analy-
ses in the result collection process. Statistical information
such as the working ratio of each resource is computed.
We have also developed a graphical trace viewer which
displays the operation status of each resources, power con-
sumption, etc_, along the execution steps from beginning to
end (upper right window in Fig. 8). From this informa-
tion, we tell the parallelism of active resources, conicts of
data transfers, and possible bottlenecks.
Fig. 8 shows an outlook of our system, where the block

diagram editor to input datapath con�gurations and par-
allel constraint, text editor to input application programs,
and the viewer to show analysis results are displayed.



Fig. 8. The outlook of our evaluation system.

V. Experimental Results

A. Accuracy of the Estimation

In order to evaluate the accuracy of the estimation, we
made an experiment on an audio signal processor which
is embedded in an actual audio player. We gave to our
system the same application programs as used in the audio
player and the same datapath con�guration and compared
the resulting estimation of the instruction count with the
actual instruction count.
We tried major two parts PP and FFT of the audio com-

pression / decompression process: PP is a preprocessing
part containing many branches to handle input data and
FFT is a computationally intensive part containing FFT
processing. A part of DFG representation of FFT is shown
in Fig. 5.
The datapath structure of the audio signal processor is

shown in Fig. 9 (the part in the broken line). The au-
dio processor has adopted VLIW (Very Long Instruction
Word) instruction format, and all the operators are con-
trollable in parallel. Therefore, the parallel constraint is
not set in this experiment.

ROMRAM1 RAM2

ALU

MULT

SHIFT

CODE4/8

Initial Design

Fig. 9. Datapath structure of an audio signal processor.

Table I shows the result. #LINE and #BB show the
number of lines and the number of basic blocks in the
application program, respectively. EVAL is the estimated
number of execution steps by our system. ACTUAL is

the actual number of execution steps obtained by manual
assembler coding. ERROR shows the error ratio of EVAL
to ACTUAL.

TABLE I

Experimental Result of Estimation Precision

Application Program

FFT PP(1) PP(2)

#LINE 559 636 636

#BB 66 129 129

EVAL 4,000 5,693 17,749

ACTUAL 4,750 6,057 20,653

ERROR(%) �11.1 �6.8 �14.1

The precision error of our estimation is at most �14
% to the actual number of steps. We think these �gures
are fully practical as a prediction in the early architecture
design stage.

B. The E�ect of Parallel Constraint

In this experiment, we show how the parallel constraint
can be utilized in instruction set design.
Suppose that we must re-design the instruction set of

the audio signal processor in the previous experiment us-
ing a short instruction word format instead of the VLIW
format. We can foresee the e�ect of various combinations
of instruction �eld sharing using the parallel constraint.

TABLE II

The Effect of Parallel Constraint

Constraint
Application Program

FFT PP(1) PP(2)

NO-PC 4,000(100%) 5,693(100%) 17,749(100%)

PC1 4,936(123%) 5,693(100%) 17,749(100%)

PC2 5,184(129%) 5,843(103%) 18,671(105%)

PC3 4,131(103%) 6,343(111%) 20,407(115%)

Table II shows the numbers of estimated execution steps
under no constraints (NO-PC) and various constraints of
exclusiveness between the following resources:

PC1: MULT{ALU transfer and BUS transfers,
PC2: ALU operations and BUS transfers, and
PC3: RAM1 transfers and BUS transfers.

Each �gure in the parenthesis shows the percentage to
the NO-PC case. For example, PC1 means the MULT{
ALU and BUS transfers can not be executed simultane-
ously because the instruction �elds of them are shared.
We see PC1 and PC2 have a big inuence on FFT,

whereas only PC3 has a big inuence on PP. Moreover,
we also see the constraint PC1 does not a�ect the execu-
tion of PP at all. This means that the independent bus
between MULT{ALU does not increase the performance of
PP execution. Therefore, in case we design a DSP for only
PP, we can share the control �elds between BUS transfer
and MULT{ALU/RAM1 transfer with a very small loss.
In case of DSP for executing FFT and PP subsequently, we
should better choose PC3 than PC2 for the performance.
Because the processor is actual design, we did not ob-

tain actual numbers of execution steps of di�erent instruc-
tion format. However, for example, we con�rmed the



two facts; (a) FFT shown in Fig. 5 includes a continuous
sequences of mult{add/sub{add/sub in which data may
be transferred MULT{ALU{BUS{ALU or ALU operation
and BUS transfer may be activated simultaneously in the
datapath shown in Fig. 9, (b) the percentage of simulta-
neous execution of ALU and BUS at the instruction level
is more than 10%. We can tell the �gures of PC1 and PC2
for FFT are reasonable from these facts.
In this way, the parallel constraint can be utilized in

the architecture and the instruction set design to evalu-
ate their inuences on the performance. The designer can
optimize the architecture and the instruction set with the
evaluation result.

C. Design Improvement by the Evaluation

Next, we show how we can use our system for design or
re-design of datapath con�guration. We consider a case
where we design a video compress/decompress processor
by making necessary modi�cation on the audio signal pro-
cessor in the previous experiments. We take variable-
length code decoding (VLD) as a target application.
At �rst, given the target application program and the

datapath structure of the audio signal processor as the
initial architecture, we evaluate the performance. The �rst
column in Table III shows its result. Suppose that the
estimation does not satisfy the required performance and
we must improve the architecture.
In this experiment, we tried to examine how much per-

formance improvement is obtained by adding functional
unit CODE4 or CODE8 to the original datapath, where
CODE4 and CODE8 are dedicated hardware that decodes
leading 4 bits and 8 bits, respectively, using a table.
The experiment took only slight modi�cation on the

original models. In the application program, we turn the
part of the code corresponding to CODE4 or CODE8 into
a subroutine. We added a functional unit to the hardware
model and speci�ed the relation between the unit and the
subroutine in the model.
The result is summarized in Table III. The number of

execution steps decreased from 634,361 steps to 419,361
steps (66.1%) with CODE4, and to 375,385 steps (59.2%)
with CODE8. We may chose one of the two modi�cations
according to the required performance.

TABLE III

Performance improvement by additional operator.

Architecture Estimated steps Improvement

Initial 634,361 100.0%

with CODE4 419,361 66.1%

with CODE8 375,385 59.2%

We also obtained the actual instruction counts (by hand
assembling) of the modi�ed hardware. They are 439,042
(70.0%) steps with CODE4 and 403,773 (64.4%) with
CODE8. The errors of the �gures in the table are both
within 8% and we may say they are good estimations.

VI. Conclusions

In this paper, we have proposed a novel way of evaluating
architecture of embedded custom DSPs. The presented

method enables fast and precise estimation of actual per-
formance at a higher abstract level. We have demonstrated
the e�ectiveness of the method through some experiments
done on a architecture design support system which we
developed based on our estimation method.
One of the challenges we have to deal with is the im-

provement of estimation accuracy. Although the error ra-
tios in the experiments were low, a variety of factors could
be a source of unacceptable error. We are now trying to
cope with pipelined control, global data ow analysis, de-
tailed register con�guration, global optimization, etc.
We are also examining the possibility of estimating the

power consumption and the cost of the control part based
on the same model.
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