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Abstract— When methods of moments are used for identifica-
tion of power spectral densities, a model is matched to estimated
second order statistics such as, e.g., covariance estimates. If the
estimates are good there is an infinite family of power spectra
consistent with such an estimate and in applications, such as
identification, we want to single out the most representative
spectrum. We choose a prior spectral density to represent a
priori information, and the spectrum closest to it in a given
quasi-distance is determined. However, if the estimates are
based on few data, or the model class considered is not
consistent with the process considered, it may be necessary to
use an approximative covariance interpolation. Two different
types of regularizations are considered in this paper that can
be applied on many covariance interpolation based estimation
methods.

I. INTRODUCTION

Most system identification methods are based on an al-
gorithm that is proven to give efficients estimates when
the number of data goes to infinity. One such common
estimate is the maximum likelihood method. However, in
many cases only a small amount of data is available and
the estimation method may give unexpected results. Here
we will consider methods based on covariance interpolation
instead. Depending on which model class is considered
there are a number of different methods around now for
matching AR, MA, ARMA and other models to covariances,
such as the ones derived by Lindquist, Byrnes, Georgiou,
Pavon, Ferrante, et. al. based on minimizing the Kullback-
Leibler [1], Hellinger [2], the Itakura-Saito quasi-distance
[3], [4], [5], and other distance concepts. However, also these
methods depends on the amount of data that is available
and also structural constraints. The covariances have to be
estimated from the data and the errors in the estimates will
increase the smaller the available data set is. Estimating
the covariances from a short data sequence may generate
a covariance matrix that is not non-negative definite, or does
not have a supposed Toeplitz structure or the estimate does
not correspond to a spectra in the supposed model class.
So for short data sequences it is necessary to regularize the
methods to obtain relevant model estimates. In this paper
we compare two different approaches for dealing with these
kinds of problems; the two different kinds of regularizations
are based on quadratic penalties on the covariance estimation
errors and extra entropy regularization of the determined
spectrum. These approaches have been used before for the
maximum entropy method for AR-models, the Kullback-
Leibler method for the ARMA case with fixed MA-part and
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a combined covariance and cepstrum interpolation problem,
but here they will be used and compared in a more general
setting.

The first kind of problem, with non-negative definite
covariance matrices, is often “solved” by using a biased
estimate of the covariance matrix. This bias is usually small
and goes to zero as the number of data grows, but for small
data sets it can be relevant. Another approach is to use
a regularization of the first kind mentioned above, i.e., to
find a spectrum within the model class which has a small
quadratic distance to the estimated covariance matrix. By
combining the covariance interpolation methods based on
entropy maximization with a quadratic distance penalty the
structure of the spectrum is taken into account when the best
covariance sequence close to the estimates is determined.

The second kind of problem, with the estimate of the
covariance matrix not having the supposed structure, is often
solved using a projection onto the class of matrices with
the desired structure. This problem is most obvious when a
state-covariance interpolation approach is used; Then there
is an imposed structure determined by the (A, b) matrices in
the state-covariance definition. Again, another approach is to
use the regularization of the first kind mentioned above. A
small distance to a matrix with the desired structure is then
obtained.

The third kind of problem, with a covariance estimate
that can not be interpolated by a spectrum in the model
class (but has the desired structure and is non-negative) as
in MA-model covariance interpolation for some covariance
estimates. Probably the most common approach to resolve
this problem is to project the covariance estimates onto the
set of covariances feasible for the desired model class. For
the MA case, this would be the projection onto a positive
cone, but to avoid having zeros on the unit circle a projection
to a slightly smaller cone should be performed. Another
approach is to use a regularization of either the first or second
kind mentioned above. The amount of quadratic penalty
regularization for the first method has to be determined
recursively, and might fail for some cases as will be shown by
some examples. The extra entropy regularization treats this
case in an easier way and finds both the best approximating
valid covariance and the interpolant with one optimization
problem.

If we want to determine a MA-model estimate for a state-
covariance estimated from a short data sequence, all of the
three kinds of problems described above may occur. Then it
would be necessary to use a combination of the two types
of regularizations.

Here, a general approach to the covariance matching
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problem is taken that holds for a large set of different quasi-
distances and is inspired by the work in [6].

II. BACKGROUND

Let (. . . , y−1, y0, y1, . . .) be a scalar stationary stochas-
tic real valued mean-zero process with covariances rk =
E{y`+ky`} and PSD Φ. The power spectral density Φ rep-
resents the energy content of the process across frequencies
and has the covariances as Fourier coefficients,

Φ(eiθ)
4
=

∞∑
k=−∞

rke
ikθ.

Consider the Hilbert space L2(−π, π] with the inner
product

〈a, b〉 =
1

2π

∫ π

−π
a(eiθ)b(e−iθ)dθ.

Then the covariances are given by rk =
〈
Φ, zk

〉
.Given a

finite window of covariances r =
(
r0 r1 . . . rn

)
, let

Fr denote the set of PSD consistent with r, i.e.,

Fr =
{

Φ ≥ 0 |
〈
Φ, zk

〉
= rk, k = 0, 1, · · · , n

}
.

In this paper, Φ ≥ 0 means that this inequality should hold
on the unit circle, i.e., Φ(eiθ) ≥ 0 for θ ∈ (−π, π].

Furthermore, we assume initially that the symmetric
Toeplitz matrix of the covariances r,

T (r) =


r0 r1 · · · rn

r1 r0
. . .

...
...

. . . . . . r1

rn · · · r1 r0

 (1)

is positive definite, hence the set Fr contains an infinite
number of PSDs [7, Sec.6.5]. Let R = {r |T (r) > 0}.

III. MOMENT MATCHING

In many situations it is desired to fit a spectral density
to data by finding one of a particular structure by matching
moments. The most common PSD used to model stationary
stochastic processes are the ones that correspond to Moving-
Average (MA) and Auto-Regressive (AR) processes. Assume
that Q(z) is a pseudo-polynomial of degree n, i.e.,

Q(z) = q0 +
1

2
q1(z + z−1) + · · ·+ 1

2
qn(zn + z−n). (2)

Then, Φ = Q is the PSD of a MA-process and Φ = 1/Q is
the PSD of an AR-process. It is well known that for an AR-
process the coefficients {qk}nk=0 of Q can always be tuned so
that a window of covariances r ∈ R is matched. On the other
hand, it is also well known that for an MA-process there are
some r ∈ R (actually open subsets of such covariances) that
are not matched for any choice of coefficients {qk}nk=0. In
both cases there are n + 1 parameters that should be tuned
to match n + 1 constraints, but it is clearly the structure of
the PSD that determines if solutions exists or not.

To evaluate the properties of different PSD structures, we
let Φ depend on Q, and it will also be allowed to depend
on some “prior estimate” PSD Ψ. Assuming now that Φ =

F (Q,Ψ), the moment matching constraint Φ ∈ Fr, can be
expressed as〈

F (Q,Ψ), zk
〉

= rk =
〈
R, zk

〉
, k = 0, 1, · · · , n, (3)

where R is an arbitrary function in Fr.

IV. EXACT AND APPROXIMATIVE INTERPOLATION

A. Exact interpolation

The distance measure will be assumed to be differentiable
in the first argument, and it will be assumed to be a
quasi-distance, i.e., it is assumed that D(Φ||Ψ) ≥ 0 and
D(Ψ||Ψ) = 0 for any pair of PSD Φ and Ψ. Furthermore,
we assume that

D(Φ||Ψ) =

∫
d(Φ||Ψ).

Note that D is not assumed to be symmetric, convex, to
satisfy the triangle inequality or be zero if and only if Φ = Ψ.
However, these are certainly desired properties. Consider the
optimization problem, to minimize the distance to Ψ for all
Φ ∈ Fr, i.e.:

(P=)

[
inf
Φ≥0

D(Φ||Ψ)

s.t.
〈
Φ, zk

〉
− rk = 0, k = 0, 1, · · · , n.

]
(4)

Note that here that the PSD Φ is not constrained to be of a
certain form, this form will be determined by the optimality
conditions of the Lagrange relaxed functional, which in turn
is determined by the geometry imposed by the distance
measure.

The optimization problem (P=) has no finite dimensional
parametrization, but by considering the dual, an optimization
problem with a finite number of variables is obtained. To this
end, formal calculations are performed to determine the dual.

Form the Lagrangian function

L0(Φ;q)
4
= D(Φ||Ψ) +

n∑
k=0

qk
(
rk −

〈
Φ, zk

〉)
and since Φ is symmetric 〈Φ,

∑n
k=0 qkzk〉 = 〈Φ, Q(z)〉,

where Q is defined in (2). Let R ∈ Fr arbitrary. Then the
Lagrangian function can be written as

L0(Φ;Q) = D(Φ||Ψ) + 〈R,Q〉 − 〈Φ, Q〉 .

Assuming that a minimizer exists let

Φ̂ := arg min
Φ≥0

L0(Φ, Q), (5)

this defines the optimal PSD as a function of Q, i.e.,

Φ̂ = F (Q; Ψ) (6)

and determines the dual objective function

Ω0(Q; Ψ)
4
= L0(Φ̂, Q) = L0(F (Q; Ψ), Q). (7)

To ensure that the spectral densities F (Q; Ψ) are non-
negative the domain Q of feasible Q has to be specified,
i.e.,

Q = {Q |F (Q; Ψ) ≥ 0}.
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This leads to the dual problem to determine the maximizer
of Ω0 over all Q ∈ Q, i.e.,

(D=)

[
sup
Q

Ω0(Q; Ψ, R)

s.t. F (Q; Ψ) ≥ 0.

]
, (8)

The derivative of Ω is (compare the proof of Proposition
4.1 in [6])

∂Ω

∂Q
=

∫ (
∂

∂Q
d(F ||Ψ)−Q

)
∂F

∂Q
+

∫
(R− F )

and using that F (Q,Ψ) minimizes L0 it can be shown that
the first integral is zero. The stationarity conditions for (D=)
are then

rk −
〈
F (Q; Ψ), zk

〉
= 0,

for k = 0, 1, · · · , n, which ensures that for an interior point
solution the optimal Φ ∈ Fr.

B. Primal regularization

Consider now the approximative interpolation problem:

(P2
≈)

[
inf
Φ≥0

D(Φ||Ψ) + α‖∆‖2

s.t.
〈
Φ, zk

〉
− rk = ∆k, k = 0, 1, · · · , n.

]
(9)

Once again, the spectral density is not constrained to be of a
certain form, this form will be determined by the optimality
conditions of the Lagrange relaxed functional, which in turn
is determined by the geometry imposed by the distance
measure.

We show that the structure of the optimal Φ will be the
same as for (P=). Form the Lagrangian function

L(Φ,∆;q)
4
= D(Φ||Ψ)+α‖∆‖2+

n∑
k=0

qk
(
∆k + rk −

〈
Φ, zk

〉)
= L0(Φ;q) + α‖∆‖2 +

n∑
k=0

qk∆k

and since Φ is symmetric 〈Φ,
∑n
k=0 qkzk〉 = 〈Φ, Q(z)〉,

where Q is defined in (2).
The optimal ∆̂ = − 1

2αq. So if α goes to infinity the
approximation errors go to zero (if an exact solution exists).

The optimal PSD Φ is again determined by (5), hence the
structure of Φ is preserved and Φ̂ = F (Q; Ψ), see (6).

The dual objective function is then given by

Ω(Q; Ψ) = L(Φ̂, ∆̂, Q) = Ω0(Q; Ψ)− 1

4α
||Q||2. (10)

This leads to a dual problem on the form

(D2
≈)

[
sup
Q

Ω(Q; Ψ)

s.t. F (Q; Ψ) ≥ 0.

]
. (11)

The stationarity conditions for (D2
≈) are

rk −
〈
F (Q; Ψ), zk

〉
=

〈
Q

2α
, zk
〉
,

for k = 0, 1, · · · , n.

C. Dual regularization

Consider the dual regularized optimization problem:

(D1
≈)

[
sup
Q

Ω(Q; Ψ, R)− 〈λg(Ψ), logQ〉 ,

s.t. F (Q; Ψ) ≥ 0.

]
, (12)

where g : R+ → R+ is a function of the prior PSDΨ,
typically a constant or the identity operator.

The stationarity conditions are

rk −
〈
F (Q; Ψ), zk

〉
=

〈
λg(Ψ)

Q
, zk
〉
, k = 0, 1, · · · , n.

The right hand side will be small for small λ. If Q is
close to zero for some frequencies, the integral will still be
bounded but have a derivative that goes to infinity as Q goes
to zero.

D. Comparison of the two regularizations

We note that both the regularizations results in adding
a concave function of Q to the dual objective function. In
(D1
≈) it is a logaritmic term that works as a barrier function

making sure that the optimum is in an interior point of Q.
If the optimum of the primal problem (P=) is in an interior
point, the regularization term is rather small and does not
affect the solution much but tends to pull it slightly towards
a spectrum with PSD g(Ψ). If the optimum of the primal
problem (P=) is on the boundary, the unbounded derivative
of the regularization term will push the solution towards the
interior.

In (D2
≈) the regularization term is a quadratic function of

the matching error. By allowing a slack in the covariance
matching constraint the distance D(Φ||Ψ) can be made
smaller and a PSD closer to the prior is obtained. This means
that more trust is put on the prior information and less is put
on the covariances, which makes sense if the covariances
are estimated from short data sequences. For the Kullback-
Leibler distance it is shown in [8] that even if the covariances
are not in R, i.e. , corresponds to a positive definite Toeplitz
matrix, an approximative solution is obtained if the α is
chosen small enough. Note that the covariances can fail to
correspond to a positive definite matrix and they can also fail
to form a Toeplitz matrix, but an approximation is anyway
guarranteed. But this does not hold for any choice of quasi-
distance, as demonstrated by the following example.

E. Example

Consider now the approximative interpolation problem
(P2
≈) for the special case that d(Φ||Ψ) = 1

2
(Φ−Ψ)2

Ψ :
Form the Lagrangian function

L(Φ,∆;q)
4
=

1

2

(Φ−Ψ)2

Ψ
+ α‖∆‖2

+
n∑
k=0

qk (∆k + rk)− 〈Φ, Q〉

Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems – MTNS 2010 •  5–9 July, 2010 • Budapest, Hungary

269



The optimal ∆̂ = − 1
2αq. The optimal PSD Φ is determined

by ∫ (
log

Φ

Ψ
+ 1− 1−Q

)
δΦ dθ = 0,

for all δΦ, i.e. Φ = Ψ(Q+1). The dual objective function
is then given by

Ω(Q; Ψ) = −1

2

〈
Ψ +

1

4α
, (Q+ 1)2

〉
+

n∑
k=0

qkrk + const.

(13)
Therefore, the regularization term and α only changes the
prior and no matter how small α is chosen it is not always
possible to find an interior point solution satisfying the
stationarity conditions

rk −
〈
Ψ(Q+ 1), zk

〉
=

〈
Q

2α
, zk
〉
,

for k = 0, 1, · · · , n.
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