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Abstract 

Speech recognition scenarios (aka tasks) differ from each 

other in acoustic transducers, acoustic environments, and 

speaking style etc. Building one acoustic model per task is one 

common practice in industry. However, this limits training 

data sharing across scenarios thus may not give highest 

possible accuracy. Based on the deep neural network (DNN) 

technique, we propose to build a universal acoustic model for 

all scenarios by utilizing all the data together. Two advantages 

are obtained: 1) leveraging more data sources to improve the 

recognition accuracy, 2) reducing substantially service 

deployment and maintenance costs. We achieve this by 

extending the singular value decomposition (SVD) structure of 

DNNs. The data from all scenarios are used to first train a single 

SVD-DNN model. Then a series of scenario-dependent linear 

square matrices are added on top of each SVD layer and updated 

with only scenario-related data. At the recognition time, a flag 

indicates different scenarios and guides the recognizer to use 

the scenario-dependent matrices together with the scenario-

independent matrices in the universal DNN for acoustic score 

evaluation.  In our experiments on Microsoft 

Winphone/Skype/Xbox data sets, the universal DNN model is 

better than traditional trained isolated models, with up to 15.5% 

relative word error rate reduction.  

Index Terms: speech recognition, singular value 

decomposition (SVD), universal DNN model 

1. Introduction 

Commercial speech recognition services typically support a 

number of products for different application scenarios. For 

example, Microsoft provides voice search and short message 

dictation on Windows phone, speech to speech translation on 

Skype, and marketplace voice search on Xbox. Google has 

voice search on Andriod and speech transcription on 

Youtube. Speech signals from different scenarios may be 

subject to different channels, such as far-field or near field 

recording; different speaking styles, such as reading or 

spontaneous style; different devices, such as mobile phone, 

desktop or Xbox Kinect, and so on. Traditional wisdom to 

deal with different scenarios is to build different acoustic 

models using scenario-dependent data [1][2]. 

The choice of building scenario-dependent acoustic 

model with only scenario-specific data comes from the GMM 

era, in which multi-style training [3] may not be a good 

choice for pooling large amount of training data from lots of 

aforementioned different scenarios together. One reason is 

that the GMM model obtained from multi-style training 

exhibits very broad distribution because it needs to cover all 

the acoustic environments, speaking styles, and recording 

devices, etc. However, this situation changes with the recent 

success of deep neural network (DNN) [4][5][6][7][8]. As 

shown in [9][10], the DNN training provides a layer-by-layer 

feature extraction strategy that automatically derives powerful 

features from heterogeneous data for senone classification. 

Therefore, it is time now to examine whether a universal 

acoustic model can be built by pooling the training data from 

all scenarios.  

In this paper, we propose an approach to build a single 

acoustic model, universal across all scenarios to fully utilize 

the training data from all scenarios. Most of the parameters in 

this universal acoustic model are shared across all scenarios. 

Meanwhile, there are some small scenario-dependent 

parameter sets. The proposed method is based on the DNN 

structure derived from singular value decomposition (SVD) 

[11][12]. First, a DNN model is trained with the training data 

from all scenarios. Then, we do SVD reconstruction on this 

model. After that, scenario-dependent linear square matrices 

are inserted on top of each of the SVD layers. Finally, we fine 

tune the scenario dependent square matrices using the 

scenario-related data while fixing the rest parameters of the 

model. At the recognition time, the decoder will decide which 

square matrices to use given the scenario ID along with the 

input audio data. 

In the remaining of this paper, we will first introduce the 

SVD-based DNN technique briefly in Section 2. The details 

of the universal DNN modeling are described in Section 3. In 

Section 4, several experiments and results are presented. 

Finally, the conclusion and some discussion can be found in 

the Section 5. 

2. SVD-based DNN 

A DNN is a feed-forward artificial neural network with 

multiple hidden layers. Usually the network is fully connected 

between adjacent layers. DNNs provide significant accuracy 

improvements over Gaussian mixture models (GMMs) as 

acoustic models. However, they require much more 

parameters than traditional GMM systems, incurring very large 

computational cost during online evaluation. Utilizing the low-

rank property of DNN matrices [13], SVD-based DNN is 

proposed to reduce the DNN model size as largely as 80% 

while maintaining the accuracy improvements in [11]. In this 

method, an SVD on the weight matrices is applied to the DNN, 

and then the model is restructured based on the inherent low-

rank property of the original matrices. After restructuring, the 

DNN model size is significantly reduced with negligible 

accuracy loss. 

Figure 1 shows how SVD is applied to a standard DNN. 

For a 𝑚 × 𝑚 weight matrix 𝐴, if we apply SVD on it, we get  

𝐴𝑚×𝑚 = 𝑈𝑚×𝑚Σ𝑚×𝑚𝑉𝑚×𝑚
𝑇  ,                        (1) 
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where Σ is a diagonal matrix with 𝐴’s singular values on the 

diagonal in the decreasing order. Since 𝐴 is a low-rank matrix, 

a large part of 𝐴 ’s singular values should be very small. 

Assume we only keep 𝑘 biggest singular values of 𝐴, we can 

rewrite formula (1) as  

𝐴𝑚×𝑚 ≈  𝑈𝑚×𝑘Σ𝑘×𝑘𝑉𝑘×𝑚
𝑇 =  𝑈𝑚×𝑘𝑁𝑘×𝑚 ,              (2) 

where 𝑁𝑘×𝑚 = Σ𝑘×𝑘𝑉𝑘×𝑚
𝑇 . In this way the matrix 𝐴  is 

decomposed into two smaller matrices 𝑈 and 𝑁. Figure 1(a) 

shows a layer in original DNN with weight matrix 𝐴𝑚×𝑚. After 

SVD reconstruction, a bottleneck SVD layer is inserted 

between two large hidden layers, shown in Figure 1(b). The 

weight matrices becomes 𝑈𝑚×𝑘 and 𝑁𝑘×𝑚. Usually, 𝑘 is much 

smaller than 𝑚 . Therefore the number of parameters is 

significantly reduced.  

 
(a) One layer in an original DNN model 

 

 
b) Two corresponding layers in a new DNN model 

 

Figure 1: Model conversion in a restructured DNN by SVD 

 

3. SVD-based Universal DNN Modeling 

To build a universal DNN model for several scenarios, the 

most straightforward way is to do multi-style training with all 

kinds of data. However, given enough training data, the 

accuracy of such a model is usually worse than the isolated-

trained models because the model discriminating ability is 

hurt by the confusion of different channels, different speaking 

styles, etc. A better design to model multiple scenarios is to 

factorize the DNN parameters, such that most parameters in 

this universal model are used to characterize the whole 

training data while some scenario-dependent parameters carry 

the scenario-related information. In this way, both the 

benefits of data sharing and modeling sharpness can be 

achieved.  

To build such a universal DNN model, we leverage the 

SVD bottleneck layer as Figure 2. An additional linear layer 

is added on top of the SVD layer as 

𝑈𝑚×𝑘𝑁𝑘×𝑚 = 𝑈𝑚×𝑘𝑆𝑘×𝑘𝑁𝑘×𝑚 

where 𝑆𝑘×𝑘  is a square matrix which is initialized to be 

identity matrix 𝐼𝑘×𝑘.  

To model the scenario-dependent information, there will 

be a set of linear square matrices, for example, 𝑆𝑤𝑖𝑛𝑝, 𝑆𝑠𝑘𝑦𝑝𝑒, 

𝑆𝑥𝑏𝑜𝑥.  They are put together in parallel on top of the SVD 

layer. During scenario-dependent modeling, 𝑆𝑤𝑖𝑛𝑝 , 𝑆𝑠𝑘𝑦𝑝𝑒 , 

𝑆𝑥𝑏𝑜𝑥 are updated separately by its related data. The number 

of parameters for matrix S is 𝑘2. 𝑘 is usually very small and 

these scenario-dependent matrices are much smaller than the 

scenario-independent matrices (N and U) in the DNN model. 

 

 

Figure 2: One layer with a square matrix on top of SVD 

 

The full network is shown in Figure 3, where scenario-

dependent linear layers are added on top of each SVD layer, 

although we only explicitly plotted one scenario-dependent 

linear layer. These scenario-dependent layers are expected to 

model the scenario-specific information, like acoustic channel, 

speaking style, etc. Besides the scenario-dependent layers, 

other parameters are shared across all scenarios.  
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Figure 3: The full network of a universal DNN model 

 

The training procedure for the universal DNN is as 

follows. 

 Train a full size DNN with the data from all scenarios; 

 Apply SVD model reconstruction and then fine tune the 

SVD-based DNN; 

 Add scenario-dependent layers into the SVD-based DNN. 

All the scenario-dependent matrices are initialized as 

𝐼𝑘×𝑘. 



 Update the scenario-dependent matrices using the 

scenario-related data while fixing the shared layers.  

At the recognition time, according to its scenario ID, the 

input audio will be passed into different scenario-dependent 

matrices as well as into the shared scenario-independent 

matrices. 

There are three advantages of this method compared with 

the traditional one. Firstly, with data and parameter sharing, 

the model benefits from all kinds of data with better triphone 

coverage, resulting in a better accuracy than separately-

trained models. Secondly, the small scenario-dependent 

parameter carries the information of that scenario and makes 

the whole model actually scenario-dependent while only 

increasing the model size by a small percentage. Thirdly, a 

single universal model saves deployment and maintenance 

cost because we would have to maintain different models for 

different scenarios otherwise. 

4. Experimental Evaluation 

The proposed method is evaluated using the data from three 

Microsoft speech recognition services: voice search and short 

message dictation on Windows phone (Winp), speech to 

speech translation on Skype, and market place voice search 

on Xbox. The language is English in United States. Speech 

Signals from the above services are different due to acoustic 

channels, speaking styles, and recording environments. Table 

1 shows a brief description of their major difference.  

 

Table 1. Major difference of Winp, Skype and Xbox audio 

 

 Channel Far field 

talking 

Speaking 

style 

Recording 

environment 

Winp Mobile 

Phone 

No Prepared Various 

Skype Desktop, 

Laptop 

No Spontaneou

s & 

conversatio
nal 

Home/Office 

Xbox Kinect 

sensor 

Yes Prepared Home 

 

As training data, we use around 400 hours for each 

scenario. Therefore, totally we have 1200 hours training 

audio. In GMM model training, the input feature is MFCC 

with up to third-order derivatives. The final feature dimension 

is reduced by heteroscedastic linear discriminant analysis 

(HLDA) [14]. Each GMM consists of 32 Gaussians and the 

senone number is 4500. In DNN model training, the input 

feature is 22-dimension log-filter-bank feature with up to the 

second-order derivatives. We augment the feature vectors 

with previous and next 5 frames (5-1-5).  The full size DNN 

has 5 hidden layers with 2048 units for each. The output layer 

size is 4500.  

4.1. Baseline GMM and DNN modeling 

In this section, we will talk about the baseline models of this 

study and discuss why it is possible to build a universal 

model by DNN. Three types of models were trained in our 

experiments: 

1. Isolated training. Three models are trained for Winp, 

Skype and Xbox respectively with only the 

corresponding scenario-specific data. 

2. Multi-style training. A single model is trained with 

the data from all scenarios and is used to recognize 

utterances from these scenarios. 

3. Model update with scenario-related data. In this 

training, we also get three models which are 

updated from Multi-style trained model with data 

from Winp, Skype, and Xbox, respectively. They 

have exactly the same model structure as the Multi-

style trained model. 

The trainings were conducted both on GMM and DNN 

models.  The results in terms of word error rates (WERs) are 

given in Table 2 and Table 3 respectively.  From Table 2, we 

can see that in GMM modeling, the multi-style trained model 

GB performs much worse on most scenarios than isolated 

trained model GA. The WER degradation is 18.5% relative 

on Winp and 16.1% relative on Skype, respectively. Even 

after model update with scenario-related data, the WRE loss 

cannot be fully recovered. Model GC is still much worse than 

model GA on Winp and Skype data. Model GC is nearly the 

upper bound we can get with the same model structure. This 

indicates that the universal modeling by GMM is in-effective. 

However, the situation is very different on DNN modeling, as 

shown in Table 3. 

 

Table 2. WERs of baseline GMM models for Winp, Skype and 

Xbox 

 
Model Training Winp Skype Xbox 

GA Isolated training 30.36 35.31 26.69 

GB Multi-style training  35.98 40.20 26.75 

GC + update with scenario-
dependent data 

31.93 37.33 25.34 

 

Table 3. WERs of baseline DNN models for Winp, Skype and 

Xbox 

 
Model Training Winp Skype Xbox 

A Isolated training 22.44 27.12 19.84 

B Multi-style training  22.90 29.30 18.48 

C + update with scenario-

dependent data 

20.72 27.04 16.88 

 

From Table 3, we can first see that the DNN model is 

much better than GMM model. Comparing model A with 

model GA, the relative WER reduction ranges from 22% to 

27% on these three scenarios. In DNN modeling, the gap 

between isolated trained model A and multi-style trained 

model B is not as large as in GMM modeling. The significant 

degradation is only observed on Skype data. But it is still only 

8%, much smaller than in GMM. Hence, a DNN really does a 

better job on normalizing different channel, speaking styles, 

etc. than a GMM. Comparing model C and A, we can see that 

after updating with scenario-related data, the gap is totally 

removed and even the accuracy is significantly better than the 

separately trained model on Winp and Xbox data. This 

indicates that universal modeling is effective with DNN 

modeling. In our study, model A is treated as the baseline 

while model C is the upper bound of the proposed universal 

DNN model. Note that although model C gets superior 

accuracy, we are more interested in a model that has same 

senone set and most shared parameters across all scenarios. 



Such a model can significantly reduce the product 

deployment cost and is the initiative of this study.  

By comparing model B and A, we can also see that the 

DNN works better on dealing with channel mismatch than 

speaking style mismatch. Winp and Xbox are from different 

channels but with similar speaking style: prepared speech. In 

contrast, Skype is with spontaneous style.  In DNNs, the input 

features from different channels are normalized very well 

after a series of nonlinear transforms from multiple hidden 

layers. In this way, both Winp and Xbox can benefit from 

each other by data sharing. That’s why model B performs 

much better than model A on Xbox data. However, the major 

difference of prepared speech and spontaneous speech are on 

pronunciation variations. So, Skype cannot benefit from Winp 

and Xbox data. This is why model B performs worse on the 

Skype test set than model A. We expect larger senone set size 

can partially resolve this issue and the experimental results 

will be shown in Section 4.3.  

4.2. SVD-based universal DNN modeling 

In Table 4, model D is generated by applying SVD 

restructuring to model B with the dimension of SVD layer 

around 300. In general, it has very similar accuracy as model 

B. Model E is the proposed universal DNN model. In its 

training, we just fine tune the scenario-dependent linear 

square matrices on top of each SVD layer with individual 

scenario-related data. It outperforms A on both Winp and 

Xbox test sets significantly, and has similar accuracy on 

Skype scenario. Compared with model C, the upper bound, 

the gap is very small. This means that just updating the small 

linear matrices on top of each SVD layer achieves similar 

accuracy improvement as updating the full model. There are 

around 0.5M parameters in scenario-dependent matrices, 

compared to 8M parameters in scenario-independent matrices. 

This is the most critical advantage of the proposed universal 

modeling.  

 

Table 4. WERs of the universal DNN model with 4500 senones 

 
Model Training Winp Skype Xbox 

D SVD reconstruction 

from model B 

22.50 28.47 18.50 

E update model D with 
scenario-dependent data 

21.13 27.23 16.77 

 

These results are consistent with what we expect from the 

universal DNN modeling in two aspects: 

 The universal DNN model benefits from data sharing 

across different scenarios.  

 It's feasible to just use a set of small scenario-dependent 

linear matrices to carry the scenario-dependent 

information. 

In the universal DNN model, a large number of parameters 

are shared across scenarios. This is consistent with our 

intuition. The variability for phonemes in different scenarios 

is actually small and should also be shared across scenarios in 

the DNN modeling. On the other hand, there is some 

scenario-specific phoneme variation in different scenarios. 

The scenario-dependent linear matrices are just designed to 

model this kind of difference in a much lower-dimension 

space. Hence a small number of parameters are good for these 

scenario-dependent matrices. 

4.3. Enlarge the senone set 

When comparing model E and model A, we can see that both 

Winp and Xbox models benefit a lot from data and parameter 

sharing. The only exception is Skype model. As we analyzed 

in Section 4.1, Skype is mostly different from other two 

scenarios on speaking style. It is spontaneous speech which 

has more pronunciation variations. It is difficult to benefit 

from Winp and Xbox data which are prepared speech. As we 

expect, the pronunciation variations can be better modeled if 

we enlarge the senone number.  

Table 5 describes the results of the models with 9000 

senones. The difference between model H and model E is 

only the number of senones.  Model H gets relative 3.7% 

WER reduction on the Skype task from model E. There is no 

benefit on the Winp and Xbox tasks. As expected, 

spontaneous speech can benefit more from the increase of 

senone size than prepared speech.  

 

Table 5. WERs of the universal DNN model with 9000 senones  

 

Model Training Winp Skype Xbox 

F Multi-condition training 22.38 27.89 18.33 

G SVD reconstruction from 

model H 

22.08 27.22 18.32 

H Update model G with 
scenario-dependent data 

20.77 26.23 16.90 

 

5. Conclusions 

In this paper, we present a method to build a universal model 

to host all kinds of scenarios in speech recognition services. 

This is nearly an impossible task in GMM model era. From 

our observation, the GMM model performs very badly on 

dealing with multiple channels or speaking styles. Due to the 

linear-by-linear normalization power in DNNs, it becomes 

possible to build such a universal model with DNN modeling. 

To achieve this, a series of scenario-dependent linear square 

matrices are inserted on top of SVD layers. Other layers are 

all shared across scenarios. In training, only the scenario-

dependent matrices are trained with the scenario-related data 

separately, while other layers are trained with the combined 

data in a multi-style training way. The number of parameters 

of the scenario-dependent matrices is much smaller than that 

of the scenario-independent matrices. The universal model 

performs much better than traditional isolated-trained models. 

The relative WER reduction is 5.8% and 15.5% on Microsoft 

Windows phone and Xbox data sets, respectively. We also 

tried to enlarge the output layer size in the universal modeling. 

After doubling the output layer of the universal DNN, 

significant WER reduction is got on spontaneous style speech 

(Skype speech to speech translation).  

Currently, the scenario-dependent matrices are updated 

after the scenario-independent matrices have been trained. In 

the future, we will jointly train both the scenario-dependent 

matrices and the scenario-dependent matrices together. We 

are also applying this method to the product-scale training 

with tens of thousands of audio data.  
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