Mathematics and Computers
{UC-3R)

Distribution Category:

AUL~-83-96
DE&4 0054490
Argonne, Jllinois 60439

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

‘josrayl Lauade Aue 10 JUSWUILISAOD) SAEIS PANULN
21 JO 350Y] 1[I JO IS A[UESSIOOL Jou op ularay passaudya sioyine jo suownde pue
SMalA Y] "JodIay) Acuafie Aue 1O 1UAWILISACD) SIEIS Dsui] 9yt Aq Fuuoae] 0 ‘uonEpuNu
-wodal “juswssIopua s11 A[dwl 1o 21MNSUOY A|LIESSII0U JOU S0 ISIAIIYIO 10 “JUNIOBjRUEW
‘yJeWape) ‘SWey IpEN AQ 201A195 1O ‘ssaoord “1onpoid [e1drsunues syxads Aue 0] malay WU
-Iapay SIy3U poumo Apareaurd aFuwjul 10U pMOMm oSN S11 1BYY $109535d2) 10 ‘pasojsip sseocud
10 ‘yonpoid ‘smiesedde ‘uONBULIOJUT AUE JO SSOU[RJast 10 ‘sstudjojdwer *Aoeinooe Yl 10j Ajiq
-1suodsar 1o Kupiqer] [e9s] Aue sswnsse 20 ‘pordunt 10 ss2udxs ‘Aueles Aue sopew ‘saafojdwd
nay1 jo Aue Jou ‘Joaiayy Aoudfe Lue 10U JUSMLIIACH SNEIG PIAIIUM] Y] JAYNIGN TUSUILIZAON
$31BIS pRIUM 241 jo Aouafe ve Ky pasosuods YIos Jo 1wnodoe ue se pasedard sem podas syl

HAWIIDSIA

An Approach to Programming
Multiprocessing Algorithms
on the Denelcor HEP*
E. I. Lusk and R. A. Overbeek
Mathematics and Computer Science Division
December 1983

DISTRIBUTINN CF TitiS COCUMLAT IS UKLIMITED

Contract W-31-108-Eng-38, and also by National Science Foundation grant MCS82-07498.

* This work was parlially supported by Lhe Applied Mathematical Sciences Research Pro-
gram (KC-04-02) of Lhe Office of Enargy Research of the U.S. Department of Energy under

An Approach to Programming
Multiprocessing Algorithms

on the Denelcor HEP

E 1. Lusk
R. A Ouerbeek

ABSTRACT

In the process of learning how to write code for the Denelcor
HEP, we have developed an approach thal others may well find use-
ful. We believe thal the basic synchronization primilives of the
HEP (i.e., asynchronous variables), along with the prototypical pat-
terns for Lheir use given in Lthe HEP FORTRAN 77 Uscr's Guide, form
too low-level a conceptual basis for the formulation of mullipro-
cessing algorithms. We advocate Lhe use of moniltors, which can be
easily implemnented using the HEP primitives. Altempls to solve
substantial problems withoul introducing higher-level constructs
such as monilors can produce code that is unreliable, unintelligi-
ble, and restricted to Lhe specific dialect of FORTRAN currently
supported on the HEP. Our experience leads us to believe that
solutions which are both clear and efficient can be formulated
using monitors.

1. Introduction

Recently, we began to investigale the degree to which parallelism exisls in
many of the fundamental algorithms of automated reasoning. While sludying
(over a number of years) the polential use of multiprocessing in the implemen-
tation of automated reasoning software, we gradually developed the view that,
due to the synchronization overhead, very litlle true benefiL could be obtained
by implementing algorithms in which the ratio of computation te communica-
tion was small (algorithms with “small granularity”). However, after listening to
Burton Smith discuss the architecture of the HEP, we camme to seriously question
our initial view. While a greal deal of parallelism in an automated reasoning sys-
tem can be exploited via processes which must be synchronized only after large
amounts of separate compulation, it is also possible that significant parallelism

-2-

within low-level algorithms might be exploited in a suitable hardware environ-
ment.

In order to investigate whether or not the use of tightly-coupled multipro-
cessing algorithms could enhance performance of automated reasoning sys-
tems, we implemented a version of the unification algorithm[7,8] on the HEP.
The existence of low-overhead synchronization mechanisms adds a new and
potentially very exciting dimension to the creation of automated reasoning
software. It appears to us that the Denelcor HEP is one of the first operational
machines to provide such mechanisms.

Our results concerning the degree of parallelism that can be exploited in
the unification algorithm will be reported elsewhere, and will be of interest to a
fairly limited audience. However, cur experiences with the HEP and our imple-
mentation techniques may be of interest to a large number of other research-
ers. Essentially, we have translated existing tools for the formulation of mul-
tiprocessing algorithms into a form usable in the HEP environment without
sacrificing the low-overhead of the HFP primitives. Furthermore, the code pro-
duced by our approach is essentially portable in that ali of the peculiarities of
the synchronization mechanisms offerec in HEP FORTRAN[1] can be hidden using
a trivial macro processor,

We believe that the basic tools offered by HEP FORTRAN should not be used
to formulate algorithms. A person attempting to conceptualize the solution to
even a moderately complex multiprocessing problem in Lterms of asynchronous
variables will tend to rmake a great many errors. We speak [rom bitter experi-
ence. Impressed by Lhe elegant solutions to several common synchronization
preblems done using asynchronous variables, we decided to approach our prob-
lem at the same level. Because we consider ourselves reasonably familiar with
the intellectual traps of multiprocessing algorithms, we thought that the rela-
tively simple task we were attacking would be easily solvable. In the process of
trying to debug an early attempt at solving the problem we:

1) developed a version using lLwo processes that gave us the correct
answer on exaclly 16 of 17 tesl cases (after giving the correct answer
on all 17 when run with a single process),

2) achieved a deadlock, and

3) developed a version that worked with one process, ran marginally fas-
ter with two processes, and "hung" with Lthree processes.

These errors resulted from attempling to formulate a solution in terms of the
HEP primitives alone. Once we decided to retreat to familiar intellectuat
ground, a straightforward solution utilizing monitors resulted. This solution was
then easily translated into a version based on the HEP primitives. This paper

describes our experience in detail.

2. The Basic Problem
The general problem that we attacked may be described as follows:

1) A sequence of tasks must be solved. We shall refer Lo these as the
“major” tasks T,, Tz, ...

2) Each major task Ti may be decomposed into one or more minor prob-
lems t;;, tiz, ... The solution of a task will take one of two forms, success
and failure. The solution of a major task T; will be success if and only if
the solutions of t;;, tjs, ... are each success. The minor tasks may
interact via shared variables, and they may be solved in any order.

3) A minor task may itself be decomposed. If it is, then ils solution will be
success if and only if the solutions to the tasks inte which it is decom-
posed are each success.

In our specific problem, each major task involved the search for a common
instance of two logical formulas. Such a search freguently decomposes into an
atternpt to show that two subterms have a commeon instance.

The basic approach to solving a major problem is Lo utilize a stack of minor
problems remaining to be solved. Independent processes claim stack entries
resulting directly from the decomposition of the original major task, or from the
decomposition of other minor tasks. 1f any single minor task is solved with
failure, the current major task has been solved with failure. This requires some
careful synchronization to clear thc stack, and wail for the currently operating
processes to finish their (no longer interesting) minor tasks. On the other hand,
a successful solution can be detected only when the stack is emply, and no
processes are currently working on an outstanding minor task.

A natural way to think of solving such problems is to have a master process
which creates a number of slare processes. The master process is responsible
for decomposing the original major task, initiating the activity of the slaves,
waiting for a solution to be computed, and reporting the solution. There is an
objection to this approach: To debug the algorithm requires a minimum of two
processes (the master and one slave). We have found it more convenient if the
whole problem runs correctly with a single process (and, hopefully, faster if
more processes are used). This objection can be overcome if the master joins
the slaves in working on solutions to the minor tasks. This introduces the slight
synchronization question ol reactivating the master when a successful solution
has been detected (since it will quite likely be blocked—probably waiting on the
contents of an asynchronous variable, if a straightforward implementation of the
stack is utilized).

-4 -

Before going on to consider a solution to this class of problems, we should
note that the solutions to the minor tasks may interact, as long as no backtrack-
ing is required. That is, the solution of any minor task may introduce con-
straints on the solutions of other minor tasks (through a shared data structure
peculiar to the specific problem), as long as alternative solutions do not have to
be considered. If alternatives must be considered via backtracking, the whole
situation becomes significantly mere complex. We have restricted our attention
to the class of problems in which the minor tasks can be solved in any order.
That is, if two minor Lasks can be solved, they can be solved in either order, or
simultaneously.

3. The Concept of Monilor

The basic concept of a monitor and how it can be used to impose structure
on the specification of mulliprocessing algorithms is well known by those work-
ing in operating syslems or in language design[2,3,4,5,9]). The concept is quite
simple: the critical sections associated with some data structure are coded as a
set of procedures called a monifor. It must be guaranteed thal only one process
can be active in a single monitor. There must also be some mechanism for
blocking and restarting processes.

The delails of monitor implementation differ among the exisling languages
which include monitors as a basic construct. The outlook that we choese is simi-
lar (but not identical Lo) the one described by Per Brinch Hansen[3]. If a pro-
cess that is currenlly active in a monitor must be blocked, it should issue a
cornmand

delay(<queue>)

where <queue> is a "delay qucue” capable of holding any number of delayed
processes. The effects of issuing a delay(<qucue>) are as follows:

1} The prucess relinquishes control of thie monitor.

2) The process is blocked in <queue> wunlil activated by a
continue{<queue>) command.

A process that is active in a monitor may reactivate one other process that is
blocked on a queue associated with the monitor. 1t achieves this with

conlinue(<queue>)

The execution of a continue causes the currently active process to lose control
of the monilor and return. In addition, il there are blocked processes on
<queue>, one of them will be reactivated. Note that these Lwo mechanisms
retain the feature that only one process can be aclive in a monitor al one point
in time.

-5-

Perhaps a simple example is in order: the following one is adapted from one
in [3]. Suppose we wish to synchronize access to a single buffer, which must not
be written to unless it is empty and must not be read unless it is full. {Note the
similarity to the facilities provided directly by HEP asynchronous variables.) We
will call this monitor BUFFER. The data structures associated with BUFFER con-
sist of the buffer itself {(say, an array of characters), and a boolean variable FULL
to indicate the state of the buffer. The gueues associated with with BUFFER will
be SENDQ, where processes are held while waiting Lo write inlo the buffer, and
RECEIVEQ, where processes are held while waiting to read the buffer The two
procedures of BUFFER are SEND and RECEIVE, which are called by precesses
which want to communicate Lthrough the buffer by writing inlo il and reading
from it, respectively.

The algorithms for SEND and RECEIVE are then:

SEND: procedure(message)
it FULL is Lrue then
delay (SENDQ)
endif
move message Lo Lhe buffer
set FULL to true
continue(RECEIVEQ)

end procedure

RECEIVE: procedure(message)
if FULL is false then

de | ay (RECE]VEQ)

endif

move Lhe contents of the buffer to message
set FULL to false

cont inue (SENDQ)

end procedure

The initialization required for BUFFER is just

set FULL Lo false

It is relatively casy lo see that a process attempting to write to the buffer while
it is non-emply will be delayed in SENDQ unlil restarted by the conlinue issued
by another process which has just emptied the buffer. The precise way in which
the queucs are managed is a separate issue, and may vary from one applicalion
to anolher. ILis nol crilical to the understanding of monitors.

Our delay/continue mechanism differs [rom Brinch Hansen's in that we
allow <queuc> to hold an arbitrary number of processes. llc did implement
FIFO blocking queucs using his basic eonstruclts. In our case, Lhe process reac-
tivated by a continue operation is completely arbitrary. You could, of course,
use our mechanism Lo implement FIFQ queues by following the same approach
that Brinch Hansen used.

The approach we use hides Lhe specific HEP primitives not only from the
mainstream of the algorithm (since it only makes monilor calls), but alse from
the code in the monilors themselves (since they are written using "delay” and
"continue”, together with a mechanism for providing exclusive access Lo the
monitor. Only In the implementation of "delay” and "continue” and the exclusive
access mechanism does the specific syntax of HEP asynchronous variables
appear. Most of the code {including the implementation of the monitors) thus
becomes porlable to any machine thal supporls primitives with which "delay"
and "continue” can be implemented.

-7-

4. Solution of the Basic Problem Using a M snitor

The solution of our problem of computing solutions to "aajor tasks can now
be described. There are four basic operations on the stack:

stack-a-problem{<problem>)
post-failure()
post-no-more-major-tasks()

ask-for-task(<returned-task>, <return-code>)

These four operalions can be coded as subroutines, along with an initiahizalion
subroutine, and grouped as a monitor.

Before considering the logic required by the monitor subroutines, let us
present the overall logic of the solution:

masler:

procedure
initialize the monitor
create the desired number of slave processcs
try to acquire the next rmajor task
do while (there is a current major lask)
decampose the major task ana invoke
stack-a-problem{<dminor task>) for cach
of the resulting minor Llasks
cal! work{master-identlifier return-code)
process the return-code
try to acquire the next major task

enddo

invoke post-no-more-major-tasks{) to signhal carpletion
to the slave processes

end procedure
slave: procedure

call work(slave-identifier,return-code)

end procedure

work: procedure({identifier, return-code)
set done Lo false
do while (nol done)
ask-for-task(next-task, return-code)
do while ((return-code = 'solved with success') or
(return-code = 'solved with failure')) and
{identifier = slave)
ask-for-task({nexl-task,return-code)
enddo
it (return-code = "acquired a task”) Lhen
process Llhe minor Ltask. This may lcad
to decorposing the task {stacking
more minor lLasks), detecting failure
{and, hence, invoking post-failure},
or successlul solulion of the task.
else
set done to true

endif

enddo

end procedure

Now let us consider the routines in the monitor. The monitor will have a single
delay-queue, which is represented by two variables:

<delay-queue> represents the queue of blocked processes

<delay-queue-count> contains a count of the nurnber of processes held in
<delay-queue>

The delay(<delay-queue>) operation automatically increments the count, and
continue(<delay-queue>) will decrement it (if a processes is reactivaled). In
addition to the <delay-quecue> and the <delay-queue-count>, the algorithm
requires two more variables:

no-more-major-tasks is a boolean variable initialized to false It 15 set to
true when the master process has determined that there are no more
major tasks to solve

problem-status is a variable thal can take on Lhree values: "open”, "solved
with success”, and "solved with failure”. It is initialized to "open" and
reflects the status of the current major task. Now we can specify the essen-
tial logic of the procedures in the monitor:
nenitor initializalion procedure:

set the stack to empty

set no-rmore-major-tasks to false

set <delay-queue> Lo cmply

set <delay-gueue-count> to O

end procedure

stack-a-problem: procedure(<problem>)
it (problam-status is "open") then

add <problam> to the stack of minor tasks

10
continue(<delay-queue>)
endif

end precedure

post-failure: procedure
set prcblem-status to "solved with failure”

end procedure

post-no-more-major-lasks: procedure
set no-mpre-major-tasks to Lrue
cont inue{<delay-queur>)

end procedure

ask-for-task: procedure(<rclurned-task>, <rclurn-code>)

it {{not program donc) and (problem done)) then

if (there are other nondelayed processes) then
delay{<delay-quecue>)

endif

else
<return-code> <- "undetermined"
while ((not program done) and (not problem done) and

(<return-code> = "undetermined")) do

-11_
try to claim a problem
if (success) then
continue(<delay-queue>)

else

if (this is the lasl aclive process)

set problem done (set code to “exhausled')

else
delay{<delay-queue>)
endif
endif
endde
endif
if (program done) then
<return-code> <- “program done”
conlinue({<delay-queue>)
else

if (problem done) then

<return-code> <- "problem done (done-code)"

it (no more delayed processes) then

reset variables (for next problem)

endif

- 12 -

cont inue(<delay-queue>)
endif
endi f

end procedure

We would like Lo reemphasize that only one process may be active in the moni-
tor. kven so, Lhe argument that these procedures accornplish the desired objec-
tive is nontrivial.

5. Implementation in HEP FORTRAN

Suppose that you have convinced yourself that an algerithmm based on a
monitor of the sort described above will work. How can such a solution be
translated into HEP FORTRAN? The riles are really quite simple:

1) There must be a desighated asynchronous variable used as a "lock” for
access to the monitor. Call this variable <moniter-lock>. <monilor-
lock> must be set to 0 during the initialization. The first instruction at
the start of a monitor procedure should then be

<local-variable> = <monitor-lock>

where <local-variable> is any local variable.

2) Falling through Lo the end of a procedure causes a return, preceded by

<monitor-lock> = 0

3) The execution of
delay(<delay-queue>)
is achieved with the following code

<delay-queue-count> = <delay-queue-count> + 1
qmon.tor-lock> = 0

- 13 -
<local-variable> = <delay-queue>
4) The execution of
continue(<delay-queue>)

is achieved with the following code

it {<delay-queue-count> = 0) then
<moniteor-lock> = 0

else

<delay-queuc-count> - 1

<delay-queue-count>
<delay-queue> = 0
endif

return

The use of asynchronous variables for <monitor-lnck> and <delay-queue>» make
the implementation essentially trivial.

There might well be some objection to the use of monitors on the grounds of
efficiency. The overhead of the subroutine calls for the monitor procedures may
in some cases be excessive. This can easily be obviated by r_placing the call
with the in-line expansion of the monitor procedure. The elegant way to achieve
this is with a simple macro processor. Using this lechnique achieves an
efficient, comprehensible, and reasonably portable implementation. The imple-
mentation is portable in that the same code can be used on a system with a
similar architecture by replacing the code generated by the "enter a moenitor”,
"exit from a monitor”, "delay{q)", and "continue(q)" operations. These four
operations, which we have implemented via asynchronous variables, represent
the only operations utilizing specific features of the HEP instruction set.

8. Implementation of HEP Synchronization Patterns

Is it possible to implement the synchronization operations presented in the
HEP user’'s manual conveniently with monitors? Obviously, operations requiring
creation/deletion of processes (such as the fork/join example) cannot be han-
dled with the concept of monitor as we have described it. The creation/deleticn
of processes is not achievable with the primitives that we have described for use
with monitors. However, the other types of synchronization are easily achiev-
able. One example, is the implementation of "barrier synchronization” with a
monitor. The code given in the HEP User’'s Guide is as [ollows:

i0

A barrier can be implemented with a monitor that contains a single <delay-
queue> and its associated <delay-queue-count>. The code for such a monitor is

- 14 -

IF (WAITF($INLOCK)) CONTINUE
N=$NP+1

IF (N .NE. IP) GO TO 5

PURGE $1NLOCK

8OUTLOCK=. TRUE.

$NP=N

IF (WAITF(SCUTLOCK)) CONTINUE
N=§NP-1

IF (N .NE. 0) GO TO 10

PURGE. $0UTLOCK

$INLOCK=. TRUE.

8NP=N

simply

barrier: procedure(N)

if (<delay-queue-count> < (N - 1)) then

delay{<delay-queue>)

endif
cont inue(<delay-queue>)

end procedure

- 15 -

This code translates into the following HEP FORTRAN:

10

BARR = $BARR
IF (BC1 .LT. (N-1)) THEN
BC: = BC1 + 1
$BARR = 0
BD1 = $BD1
ENDIF
IF (BC1 .GT. O) THEN
BCl = BC1 - !
$BD1 = 0
GO TO 10
ELSE
$BARR = 0
ENDIF
CONT i NUE,

We certainly do not claim that this FORTRAN is more intelligible than the imple-
mentation in the HEP manual. It is, however, just as eflicient. Furthermeore,

when expressed in the moniter notalion, we feel thal it is noticeably easier Lo

grasp.

A second example given in the manual involves the general pattern for

"selfl-scheduling DO loops"”. The code given in the manual is as follows:

10

PROGRAM XXXX

LOG!CAL. $DONE, DUMMY

COMMON/ /8K.N,3DONE, 81ACTIVE
PURGE $K,8DONE,$IACTIVE

8K = 1

8TACTIVE = NPRCC
DO 10 J=1,NPROC-1
CREATE SUB
CONT I NUE

CALL SUB

DUMMY =

STOP
END

$DONE

- 18 -

SUBROUTINE SUB

COMMON/ /8K,N,SDONE, $1ACTIVE
5 LOCI = 8K

IF (LOCI .GT. N) GO TO 10

8K = LOCI+1

GO TO 5
10 K1 = $IACTIVE-1
IF (Kl .EQ. 0) $DONE = .TRUE.
$1ACTIVE = K1
RETURN
END

(As an aside, it might be noted that the above code contains a bug. The state-
ment following statement & above can Lransfer control to statement 10. When it
does so, the asynchronous variable $K is never filled, and so processes will wait
forever at the statement before statement 5.}

The monitor that would achieve such self-scheduling is composed of a single pro-
cedure: gettask is invoked at the head of 5UB to get the next available subscript.
Initially, the variable J is 1. The parameter | will be set to the next available sub-
seript in the range ! Lo N. NPROC is the number of processes competing for
tasks.
gettask: procedure(1,N,NPROC,J)
if {(J <= N) then
set 1 to)
increnent J by 1
elge
set 1 Lo O

it (<delay-queue-count> < (NPROC - 1)) then

delay(<delay-queue>)

endif

set J to 1

continue(<delay-queue>)
endi!

end procedure

This procedure allocates the next available subscript. If there are no rore, a
barrier is in effect until all of the processes have unsuccessiully attempled to
get a task. Then they are all released (with I = 0). Using this monitor, the code
would be

10

10

PROGRAM X2XXX

COMMON/ /NPROC, J, <variables for the monitor operations>
JF =1

NPROC = <number of processes>
<initialize the rmonitor>

DO 10 I=1,NPROC-1

CREATE SUB

CONT INUE

CALL SUB

STOP

END

SUBROUT INE SUB

COMMON/ /NPROC, J, <variables for the monitor operations>
N = <amaximun subscript>

gettask({LOC1 ,N,NPROC,J)

tt (LOCI .EQ. 0) GO TO 10

GO TO 5
RETURN

- 18 -

IND

The monitor is initialized by setting the asynchrenous variable associated with it
(as the lock to allow only a single process to be in the monitor) to 0. This code
appears at least as clear to us as the code which was not built around the con-
cept of a monitor procedure.

7. Advantages of Using Monitors

Parallelism introduces complexity into algorithms. It is desirable to local-
ize this complexity, lest it interfere with understandability and maintainability
of the code that is not involved with synchronization. Monitors gather the com-
plexity introduced by multiprocessing and hide it from the main, problem-
solving sections of the code.

In the approach described above, the monitors themselves are written in
terms of lower level primitives (delay and continue) which hide from the monitor
code the specifics of HEP FORTRAN. Thus even those sections of code which do
synchronization (the monitor procedures) are portable to any machine for which
delay and continue can be implemented. An interesting special case is that of a
uniprocessing machine. If an algorithm is organized in such a way that it can be
carried out by a single process, then the code can by run and at least partially
debugged on an ordinary single-processor tnachine. {This was why we chose to
have the master in our unification algorithm join the slaves in solving the prob-
lem.) The authors have developed a macro language for specifying monitors
with two sets of macro definitions: one for our VAX and one for th2 HEP. The
source code for a given program is exactly the same whether Lhe program is to
be run on the VAX or the HEP; it is expanded using the appropriate macro
definitions just prior to compilation on either machine. This has allowed us to do
significant Lesling on our local VAX. The macro expansion approach lecads lo
roughly the same number of lines of HEP FORTRAN as hand coding, thus provid-
ing porlability with no cost in efliciency. The details of the this macro package
are provided elsewhere{8].

A third advantage of monitors is that it may be possible Lo develop a useful
library of standard, well-understood monitors which will be used in a wide
variely of algorithms. The monitors for self-scheduling DO loops and barriers
are examples of such patterns; the central example of this paper is another. We
are currently developing others. The macro package described in {6] provides a
ntechanism for a user to customize a version of the "ask-for-task' monitor pro-
cedure for his own task structure, without having to rewrite (or even be aware
of) the synchronization logic. Once a sufficiently large set of standard monitors

-19-

has been developed, algorithms that utilize multiprocessing can be implernented
with a minimum ol errors resulting from synchronization problems, and the
resulting code will be portable from one multiprocessing architecture to
another.

8. Sammary

After experimenting with the HEP primitivez for synchronization, we have
found them to be excellent tools tor implementing moenitors. We do not feel that
most algorithms can be safely formulated using such low-level primitives. We
advise programmers of the HEP to utilize monitors, expanding the monitor pre-
cedures in-line when efliciency is critical. This approach will lead to clearer,
more portable code, and will not impair the efliciency of the code.

There is currently a great deal of discussion concerning which exlensions
should be added to FORTRAN to allow the specification of multiprocessing algo-
rithmse. Since our backgrounds are not in language design, we do not [eel
qualified to give a completely specified set of language enhancements. lowever,
we do believe our experience indicates that the basic notion of monitors is far
preferable to lower-level constructs such as asynchronous variables.

References

1. HEP FORTRAN 77 User's Guide, Denelcor, Inc., Aurora, Coloradoe (1982).

2. Per Brinch Hansen, ''"The programming language Concurrent Pascal,” JFRE
Transaclions on Software Fngineeri..g SE-1 2 pp. 199-207 (June 1975).

3. Per Brinch Hansen, The Architecture of Concurrent Programs, Prentice-
Hall, Inc., Englewoed Cliffs, New Jersey (1977).

4. C. A R Hoare, "Monitors: an operating system structuring concepl,” Cormn-
rnunications of the ACM, pp. 549-557 (October 1974).

5 R. C Holt, G. S. Graham, E. D. Lazowska, and M. A. Scott, Struciured Con-
current Programming with Operating Systems Applications, Addison-Wesl.y
Publishing Co., Menlo Park, California {1978).

8. Ewing L. Lusk and Ross A. Overbeek, /mplementation of Monitors with Muc-
ros: A Programming Aid for the HEP and Other Parallel Processors, (pre-
print)

7. {. Robinson, "'A machine-oriented logic based on the resolution principle,”
Journal of the ACM 12 pp. 23-41 (1965).

B.

-20-

J. A. Robinson, '"Computational logic: the unification computation,’ pp. 83-
72 in Machine Mnfelligence 6, ed. B. Meltzer and D. Michie, American Elsevier.
New York (1971).

N. Wirth, "MODULA: a language for modular programming,’ Software Prac-
tice and Frperience 7 pp. 3-35 (January-February 1977).

Internal:

External:

Distribution :or ANL-83-88

Kliewer
Krisciunas
Lusk (72)
Messina
Overbeek (10)
Pahis

T. M. Woods (2)

G. W. Fieper

ANL Patent Department
ANL Contract File
ANL Libraries

TIS Files (6)

. L.
. B.
. L.
. C
A
. M.

DOE-TIC, for dist-ibuticn per UC-32 (186
Manager, Chicago Operations Office, DOE

Mathematics and Computer Science Division Review Committee:

J. C. Browne, U. Texas, Austin

S. Gerhart, Software Research Associates, Culver City

L. P. Kadanofl, U. of Chicago

W. C. Lynch, Xerox Corp., ’alo Alto
J. M. Ortega, U. Virgiria

D. L. Wallace, U. of Chicago

M. F. Wheeler, Rice U.

D. Austin, Office of Basic Energy Sciences, DOE

G. Michael, LLL

