
Distribution Category:
Mathematics and Computers

(U C-32)

DE84 005440

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

An Approach to Programming

Multiprocessing Algorithms

on the Denelcor HEP*

E. L. Lusk and R. A. Overbeek

Mathematics and Computer Science Division

1~0. ltd-E (
2 o

e U

- 8U

8. 2 ''" E 0i. .

o$ '. o 3 E c u

u C e

0 >> «+ >.

to co r 0 . >1

0o

>r'- w" t o o C

U Lc. c

CO~~* cc--~

o o y E

.~ 2 c
o c ~c'.

December 1983

* This work was partially supported by the Applied Mathematical Sciences Research Pro-
gram (KC-04-02) of the Office of Energy Research of the U.S. Department of Energy under
Contract W-31-109-Eng-38, and also by National Science Foundation grant MCS82-07496.

OISTRlBUTInN OF THIS CUCIMLNT S1 UNLIMITED

a

w

,..

A

An Approach to Programming

Multiprocessing Algorithms

on the Denelcor HEP

E. L. Lusk

R. A. Overbeek

ABSTRACT

In the process of learning how to write code for the Denelcor

HEP, we have developed an approach that others may well find use-

ful. We believe that the basic synchronization primitives of the

HEP (i.e., asynchronous variables), along with the prototypical pat-

terns for their use given in the IIEP FORTRAN 77 User's Guide, form

too low-level a conceptual basis for the formulation of multipro-

cessing algorithms. We advocate the use of monitors, which can be

easily implemented using the HEP primitives. Attempts to solve

substantial problems without introducing higher-level constructs

such as monitors can produce code that is unreliable, unintelligi-

ble, and restricted to the specific dialect of FORTRAN currently

supported on the HEP. Our experience leads us to believe that

solutions which are both clear and efficient can be formulated

using monitors.

1. Introduction

Recently, we began to investigate the degree to which parallelism exists in

many of the fundamental algorithms of automated reasoning. While studying

(over a number of years) the potential use of multiprocessing in the implemen-

tation of automated reasoning software, we gradually developed the view that,

due to the synchronization overhead, very little true benefit could be obtained

by implementing algorithms in which the ratio of computation to communica-

tion was small (algorithms with "small granularity"). However, after listening to

Burton Smith discuss the architecture of the HER, we came to seriously question

our initial view. While a great deal of parallelism in an automated reasoning sys-

tem can be exploited via processes which must be synchronized only after large

amounts of separate computation, it is also possible that significant parallelism

-2-

within low-level algorithms might be exploited in a suitable hardware environ-

ment.

In order to investigate whether or not the use of tightly-coupled multipro-

cessing algorithms could enhance performance of automated reasoning sys-

tems, we implemented a version of the unification algorithm[7, 8] on the HEP.

The existence of low-overhead synchronization mechanisms adds a new and

potentially very exciting dimension to the creation of automated reasoning

software. It appears to us that the Denelcor HEP is one of the first operational

machines to provide such mechanisms.

Our results concerning the degree of parallelism that can be exploited in

the unification algorithm will be reported elsewhere, and will be of interest to a

fairly limited audience. However, our experiences with the HEP and our imple-

mentation techniques may be of interest to a large number of other research-

ers. Essentially, we have translated existing tools for the formulation of mul-

tiprocessing algorithms into a form usable in the HEP environment without

sacrificing the low-overhead of the HEP primitives. Furthermore, the code pro-

duced by our approach is essentially portable in that all of the peculiarities of

the synchronization mechanisms offered in HEP FORTRAN[1] can be hidden using

a trivial macro processor.

We believe that the basic tools offered by HEP FORTRAN should not be used

to formulate algorithms. A person attempting to conceptualize the solution to

even a moderately complex multiprocessing problem in terms of asynchronous

variables will tend to make a great many errors. We speak from bitter experi-

ence. Impressed by the elegant solutions to several common synchronization

problems done using asynchronous variables, we decided to approach our prob-

lem at the same level. Because we consider ourselves reasonably familiar with

.he intellectual traps of multiprocessing algorithms, we thought that the rela-

tively simple task we were attacking would be easily solvable. In the process of

trying to debug an early attempt at solving the problem we:

1) developed a version using two processes that gave us the correct

answer on exactly 16 of 17 test cases (after giving the correct answer

on all 17 when run with a single process),

2) achieved a deadlock, and

3) developed a version that worked with one process, ran marginally fas-

ter with two processes, and "hung" with three processes.

These errors resulted from attempting to formulate a solution in terms of the

HEP primitives alone. Once we decided to retreat to familiar intellectual

ground, a straightforward solution utilizing monitors resulted. This solution was

then easily translated into a version based on the HEP primitives. This paper

-3-

describes our experience in detail.

2. The Basic Problem

The general problem that we attacked may be described as follows:

1) A sequence of tasks must be solved. We shall refer to these as the

"major" tasks T1, T2 , ...

2) Each major task Ti may be decomposed into one or more minor prob-

lems t11, t2, ... The solution of a task will take one of two forms, success

and failure. The solution of a major task Ti will be success if and only if

the solutions of t, ti2 , ... are each success. The minor tasks may

interact via shared variables, and they may be solved in any order.

3) A minor task may itself be decomposed. If it is, then its solution will be

success if and only if the solutions to the tasks into which it is decom-

posed are each success.

In our specific problem, each major task involved the search for a common

instance of two logical formulas. Such a search frequently decomposes into an

attempt to show that two subterms have a common instance.

The basic approach to solving a major problem is to utilize a stack of minor

problems remaining to be solved. Independent processes claim stack entries

resulting directly from the decomposition of the original major task, or from the

decomposition of other minor tasks. If any single minor task is solved with

failure, the current major task has been solved with failure. This requires some

careful synchronization to clear the stack, and wait for the currently operating

processes to finish their (no longer interesting) minor tasks. On the other hand,

a successful solution can be detected only when the stack is empty, and no

processes are currently working on an outstanding minor task.

A natural way to think of solving such problems is to have a ma- ter process

which creates a number of slaie processes. The master process is responsible

for decomposing the original major task, initiating the activity of the slaves,

waiting for a solution to be computed, and reporting the solution. There is an

objection to this approach: To debug the algorithm requires a minimum of two

processes (the master and one slave). We have found it more convenient if the

whole problem runs correctly with a single process (and, hopefully, faster if

more processes are used). This objection can be overcome if the master joins

the slaves in working on solutions to the minor tasks. This introduces the slight

synchronization question of reactivating the master when a successful solution

has been detected (since it will quite likely be blocked-probably waiting on the

contents of an asynchronous variable, if a straightforward implementation of the

stack is utilized).

-4-

Before going on to consider a solution to this class of problems, we should

note that the solutions to the minor tasks may interact, as long as no backtrack-

ing is required. That is, the solution of any minor task may introduce con-

straints on the solutions of other minor tasks (through a shared data structure

peculiar to the specific problem), as long as alternative solutions do not have to

be considered. If alternatives must be considered via backtracking, the whole

situation becomes significantly more complex. We have restricted our attention

to the class of problems in which the minor tasks can be solved in any order.

That is, if two minor tasks can he solved, they can be solved in either order, or

simultaneously.

3. The Concept of Monitor

The basic concept of a monitor and how it can be used to impose structure

on the specification of multiprocessing algorithms is well known by those work-

ing in operating systems or in language design[2, 3, 4, 5, 9]. The concept is quite

simple: the critical sections associated with some data structure are coded as a

set of procedures called a monitor. It must be guaranteed that only one process

can be active in a single monitor. There must also be some mechanism for

blocking and restarting processes.

The details of monitor implementation difTer among the existing languages

which include monitors as a basic construct. The outlook that we chose is simi-

lar (but not identical to) the one described by Per Brinch Hansen[3]. If a pro-

cess that is currently active in a monitor must be blocked, it should issue a

command

delay(<queue>)

where <queue> is a "delay queue" capable of holding any number of delayed

processes. The effects of issuing a delay(<queue>) are as follows:

1) The process relinquishes control of tne monitor.

2) The process is blocked in <queue> until activated by a

continue(<queue>) command.

A process that is active in a monitor may reactivate one other process that is

blocked on a queue associated with the monitor. It achieves this with

continue(<queue>)

The execution of a continue causes the currently active process to lose control

of the monitor and return. In addition, if there are blocked processes on

<queue>, one of them will be reactivated. Note that these two mechanisms

retain the feature that only one process can be active in a monitor at one point

in time.

-5-

Perhaps a simple example is in order: the following one is adapted from one

in [3]. Suppose we wish to synchronize access to a single buffer, which must not

be written to unless it is empty and must not be read unless it is full. (Note the

similarity to the facilities provided directly by HEP asynchronous variables.) We

will call this monitor BUFFER. The data structures associated with BUFFER con-

sist of the buffer itself (say, an array of characters), and a boolean variable FULL

to indicate the state of the buffer. The queues associated with with BUFFER will

be SENDQ, where processes are held while waiting to write into the buffer, and

RECEIVEQ, where processes are held while waiting to read the buffer. The two

procedures of BUFFER are SEND and RECEIVE, which are called by processes

which want to communicate through the buffer by writing into it and reading

from it, respectively.

The algorithms for SEND and RECEIVE are then:

SEND: procedure(message)

if FULL is true then

delay(SENDQ)

end i f

rove message to the buffer

set FULL to true

continue(RECEIVEQ)

end procedure

RECEIVE: procedure(message)

if FULL is false then

delay(RECEIVEQ)

-6-

end if

rove the contents of the buffer to message

set FULL to false

cont i nue (SENDX)

end procedure

The initialization required for BUFFER is just

set FULL to false

It is relatively easy to see that a process attempting to write to the buffer while

it is non-empty will be delayed in SENDQ until restarted by the continue issued

by another process which has just emptied the buffer. The precise way in which

the queues are managed is a separate issue, and may vary from one application

to another. It is not critical to the understanding of monitors.

Our delay/continue mechanism differs from Brinch Hansen's in that we

allow <queue> to hold an arbitrary number of processes. Ile did implement

FIF'O blocking queues using his basic constructs. In our case, the process reac-

tivated by a continue operation is completely arbitrary. You could, of course,

use our mechanism to implement FIFO queues by following the same approach

that Brinch I ansen used.

The approach we use hides the specific IEP primitives not only from the

mainstream of the algorithm (since it only makes monitor calls), but also from

the code in the monitors themselves (since they are written using "delay" and

"continue", together with a mechanism for providing exclusive access to the

monitor. Only in the implementation of "delay" and "continue" and the exclusive

access mechanism does the specific syntax of HEP asynchronous variables

appear. Most of the code (including the implementation of the monitors) thus

becomes portable to any machine that supports primitives with which "delay"

and "continue" can be implemented.

-7-

4. Solution of the Basic Problem Using a M nitor

The solution of our problem of computing solutions to aajor tasks can now

be described. There are four basic operations on the stack:

stack-a-problem(<problem>)

post-failure()

post-no-more-major-tasks()

ask-for-task(<returned-task>, <return-code>)

These four operations can be coded as subroutines, along with an initialization

subroutine, and grouped as a monitor.

Before considering the logic required by the monitor subroutines, let us

present the overall logic of the solution:

rmster: procedure

initialize the monitor

create the desired nxnber of slave processes

try to acquire the next major task

do while (there is a current major task)

deccrmpose the major task and invoke

stack-a-problmern(ninor task>) for each

of the resulting minor tasks

call work(master-identifier,return-code)

process the return-code

try to acquire the next major task

enddo

invoke post-no-rmre-rmjor-tasks() to signal capletion

to the slave processes

-8-

end procedure

slave: procedure

call work(slave-identifier,return-code)

end procedure

work: procedure(identifier,return-code)

set done to false

do while (not done)

ask-for-task(next-task, return-code)

do while ((return-code = 'solved with success') or

(return-code = 'solved with failure')) and

(identifier = slave)

ask-for-task(next-task,return-code)

enddo

if (return-code = "acquired a task") then

process the minor task. This may lead

to deconrpos;ing the task (stacking

more minor tasks), detecting failure

(and, hence, invoking post-failure),

or successful solution of the task.

else

set done to true

endi f

enddo

-9 -

end procedure

Now let us consider the routines in the monitor. The monitor will have a single

delay-queue, which is represented by two variables:

<delay-queue> represents the queue of blocked processes

<delay-queue-count> contains a count of the number of processes held in

<delay-queue>

The delay(<delay-queue>) operation automatically increments the count, and

continue(<delay-queue>) will decrement it (if a processes is reactivated). In

addition to the <delay-queue> and the <delay-queue-count>. the algorithm

requires two more variables:

no-more-major-tasks is a boolean variable initialized to false. It is set to

true when the master process has determined that there are no more

major tasks to solve

problem-status is a variable that can take on three values: "open", "solved

with success", and "solved with failure". It is initialized to "open" and

reflects the status of the current major task. Now we can specify the essen-

tial logic of the procedures in the monitor:

monitor initialization procedure:

set the stack to errpty

set no-rmore-major-tasks to false

set <delay-queue> to empty

set <delay-queue-count> to 0

end procedure

utack-a-problen: procedure(<problen>)

it (problern-status is "open") then

add <problen> to the stack of minor tasks

- 10 -

continue(<delay-queue>)

endi f

end procedure

post-failure: procedure

set prcblen-status to "solved with failure"

end procedure

post-no-rn re-rnajor-tasks: procedure

set no-rmore-rajor-tasks to true

continue(<delay-queue>)

end procedure

ask-for-task: procedure(Creturned-task>,<return-code>)

if ((not program done) and (problem done)) then

if (there are other nondelayed processes) then

de lay(<de lay-queue>)

endi f

else

<return-code> <- "undetermined"

while ((not program done) and (not problem done) and

(<return-code> = "undetermined")) do

- 11 -

try to claim a problem

if (success) then

continue(<delay-queue>)

else

if (this is the last active process)

set problem done (set code to "exhausted)

else

del ay(<dcl ay-queue>)

end i f

endif

enddo

endif

if programn done) then

(return-code> <- "program done"

continue(<delay-queue>)

else

if (problen done) then

<return-code> <- problemn done (done-code)"

if (no rmre delayed processes) then

reset variables (for next problem)

endif

12 -

cont inue(<de lay-queue>)

endi f

endi f

end procedure

We would like to reemphasize that only one process may be active in the moni-

tor. Even so, the argument that these procedures accomplish the desired objec-

tive is nontrivial.

5. Implementation in HEP FURTRAN
Suppose that you have convinced yourself that an algorithm based on a

monitor of the sort described above will work. How can such a solution be

translated into HEP FORTRAN? The rules are really quite simple:

1) There must be a designated asynchronous variable used as a "lock" for

access to the monitor. Call this variable <monitor-lock>. <monitor-

lock> must be set to 0 during the initialization. The first instruction at

the start of a monitor procedure should then be

<loc al-variable> = <monitor-lock>

where (local-variable> is any local variable.

2) Falling through to the end of a procedure causes a return, preceded by

<monitor-lock> = 0

3) The execution of

delay(<delay-queue>)

is achieved with the following code

<delay-queue-count> = <delay-queue-count> + 1

eniontor-lock> = 0

- 13 -

<local-variable> =_<delay-queue>

4) The execution of

continue(<delay-queue)

is achieved with the following code

if (<delay-queue-ccunt> = 0) then

Qonitor-lock> = 0

else

<delay-queue-count> = <delay-queue-count> - 1

<delay-queue> = 0

endi f

return

The use of asynchronous variables for <monitor-lock> and <delay-queue> make

the implementation essentially trivial.

There might well be some objection to the use of monitors on the grounds of

efficiency. The overhead of the subroutine calls for the monitor procedures may

in some cases be excessive. This can easily be obviated by replacing the call

with the in-line expansion of the monitor procedure. The elegant way to achieve

this is with a simple macro processor. Using this technique achieves an

efficient, comprehensible, and reasonably portable implementation. The imple-

mentation is portable in that tlbe same code can be used on a system with a

similar architecture by replacing the code generated by the "enter a monitor",

"exit from a monitor", "delay(q)", and "continue(q)" operations. These four

operations, which we have implemented via asynchronous variables, represent

the only operations utilizing specific features of the HEP instruction set.

-14-

6. Implementation of HEP Synchronization Patterns

Is it possible to implement the synchronization operations presented in the

HEP user's manual conveniently with monitors? Obviously, operations requiring

creation/deletion of processes (such as the fork/join example) cannot be han-

dled with the concept of monitor as we have described it. The creation/deletion

of processes is not achievable with the primitives that we have described for use

with monitors. However, the other types of synchronization are easily achiev-

able. One example, is the implementation of "barrier synchronization" with a

monitor. The code given in the HEP User's Guide is as follows:

IF (WAITF(SINLOCK)) CONTINUE

N=SNP+1

IF (N .NE. IP) GO TO 5

PURGE UNLOCKK

SOUTLOCK=. TRUE.

5 SNP=N

IF (WAITF(SOUTLOCK)) CONTINUE

N=SNP-1
IF (N NE. 0) GO TO 10

PURGE SOUTLOCK

S INLOCK=. TRUE.

10 SNP=N

A barrier can be implemented with a monitor that contains a single <delay-

queue> and its associated <delay-queue-count>. The code for such a monitor is

simply

barrier: procedure(N)

if (<delay-queue-count> < (N - 1)) then

delay(<delay-queue>)

endif

cont i gue (<de l ay -queue>)

end procedure

- 15 -

This code translates into the following HEP FORTRAN:

BARR = SBARR

IF (BC1 .LT. (N-1)) THEN

BC1 = BC1 + 1

SBARR = 0

BD1 = SBD1

ENDI F

IF (BC1 .GT. 0) THEN

BC1 = BC1 -

SBDI = 0

GO TO 10

ELSE

SBARR = 0

ENDIF
10 CONT i NUE

We certainly do not claim that this FORTRAN is more intelligible than the imple-

mentation in the HEP manual. It is, however, just as efficient. Furthermore,

when expressed in the monitor notation, we feel that it is noticeably easier to

grasp.

A second example given in the manual involves the general pattern for

"self-scheduling DO loops". The code given in the manual is as follows:

PROGRAM XXXX

LOG I CAL DONE, DUMMY

COMMON/ /SKN,SDONE,SIACTIVE

PURGE SK,SDONESIACTIVE

SK = 1

SIACTIVE = NPROC

DO 10 J=I,NPROC-1

CREATE SUB

10 CONTINUE

CALL SUB

DUMMY = SDONE

STOP

END

- 16 -

SUBROUT I NE SUB

COMMON/ /SK,N,SDONE,SIACTIVE

5 LOCI = SK
IF (LOCI .GT. N) GO TO 10

SK = LOCI+1

GO TO 5

10 K1 = SIACTIVE-1
IF (K1 EQ. 0) DONE = TRUE.

SIACTIVE = K1

RETURN

END

(As an aside, it might be noted that the above code contains a bug. The state-

ment following statement 5 above can transfer control to statement 10. When it

does so, the asynchronous variable 3K is never filled, and so processes will wait

forever at the statement before statement 5.'

The monitor that would achieve such self-scheduling is composed of a single pro-

cedure: gettask is invoked at the head of SUB to get the next available subscript.

Initially, the variable J is 1. The parameter I will be set to the next available sub-

script in the range 1 to N. NPROC is the number of processes competing for

tasks.

gettask: procedure(1 ,N,NPROC,J)

if (J <= N) then

set I to J

increment J by 1

else

set I to 0

if (<delay-queue-count> < (NPROC - 1)) then

delay(<delay-queue>)

endif

set J to 1

continue (<delay-queue>)

endi f

end procedure

This procedure allocates the next available subscript. If there are no more, a

barrier is in effect until all of the processes have unsuccessfully attempted to

get a task. Then they are all released (with I = 0). Using this monitor, the code

would be

PROGRAM XXXX
COMMON/ /NPROC, J, <variables for the monitor operations>

J = 1

NPROC = <nixnber of processes>

<initial ize the rmnitor>

DO 10 1=1,NPROC-1

CREATE SUB

10 CONTINUE

CALL SUB

STOP

END

SUBROUT I NE SUB

COMMON/ /NPROC, J, <variables for the rrxnitor operations>

N = rxiuxn subscript>
5 gettask(LOCIN,NPROCJ)

it (LOCI EQ. 0) GO TO 10

GO TO 5

10 RETURN

- 18 -

END

The monitor is initialized by setting the asynchronous variable associated with it

(as the lock to allow only a single process to be in the monitor) to 0. This code

appears at least as clear to us as the code which was not built around the con-

cept of a monitor procedure.

7. Advantages of Using Monitors

Parallelism introduces complexity into algorithms. It is desirable to local-

ize this complexity, lest it interfere with understandability and maintainability

of the code that is not involved with synchronization. Monitors gather the com-

plexity introduced by multiprocessing and hide it from the main, problem-

solving sections of the code.

In the approach described above, the monitors themselves are written in

terms of 'ower level primitives (delay and continue) which hide from the monitor

code the specifics of HEP FORTRAN. Thus even those sections of code which do

synchronization (the monitor procedures) are portable to any machine for which

delay and continue can be implemented. An interesting special case is that of a

uniprocessing machine. If an algorithm is organized in such a way that it can be

carried out by a single process, then the code can by run and at least partially

debugged on an ordinary single-processor machine. (This was why we chose to

have the master in our unification algorithm join the slaves in solving the prob-

lem.) The authors have developed a macro language for specifying monitors

with two sets of macro definitions: one for our VAX and one for the HEP. The

source code for a given program is exactly the same whether the program is to

be run on the VAX or the HEP; it is expanded using the appropriate macro

definitions just prior to compilation on either machine. This has allowed us to do

significant testing on our local VAX. The macro expansion approach leads to

roughly the same number of lines of HEP FORTRAN as hand coding, thus provid-

ing portability with no cost in efficiency. The details of the this macro package

are provided elsewhere[6].

A third advantage of monitors is that it may be possible to develop a useful

library of standard, well-understood monitors which will be used in a wide

variety of algorithms. The monitors for self-scheduling DO loops and barriers

are examples of such patterns; the central example of this paper is another. We

are currently developing others. The macro package described in [6] provides a

niechanism for a user to customize a version of the "ask-for-task" monitor pro-

cedure for his own task structure, without having to rewrite (or even be aware

of) the synchronization logic. Once a sufficiently large set of standard monitors

-19-

has been developed, algorithms that utilize multiprocessing can be implemented

with a minimum of errors resulting from synchronization problems, and the

resulting code will be portable from one multiprocessing architecture to

another.

8. Summary

After experimenting with the HEP primitives for synchronization, we have

found them to be excellent tools for implementing monitors. We do not feel that

most algorithms can be safely formulated using such low-level primitives. W

advise programmers of the HEP to utilize monitors, expanding the monitor pro-

cedures in-line when efficiency is critical. This approach will lead to clearer,

more portable code, and will not impair the efficiency of the code.

There is currently a great deal of discussion concerning which extensions

should be added to FORTRAN to allow the specification of multiprocessing algo-

rithms. Since our backgrounds are not in language design, we do not feel

qualified to give a completely specified set of language enhancements. However,

we do believe our experience indicates that the basic notion of monitors is far

preferable to lower-level constructs such as asynchronous variables.

References

1. HEP FORTRAN 77 User's Guide, Denelcor, Inc., Aurora, Colorado (1982).

2. Per Brinch Hansen, "The programming language Concurrent Pascal," IEEE

Thrwsactions on Software Engineeri: -.y SE-1 2 pp. 199-207 (June 1975).

3. Per Brinch Hansen, The Architecture of Concurrent Programs, Prentice-

Hall, Inc., Englewood Cliffs, New Jersey (1977).

4. C. A. R. Hoare, "Monitors: an operating system structuring concept," Com-

munications of the ACM, pp. 549-557 (October 1974).

5. R. C. Holt, G. S. Graham, E. D. Lazowska, and M. A. Scott, StruciureLd Con-

current Programming with Operating Systems Applications, Addison-Wesli:y

Publishing Co., Menlo Park, California (1978).

6. Ewing L. Lusk and Ross A. Overbeek, Implementation of Monitors with Muac-

rus: A Programming Aid for the HEP and Other Parallel Processors, (pre-

print)

7. J. Robinson, "A machine-oriented logic based on the resolution principle,"

Journal of the ACM 12 pp. 23-41 (1965).

- 20 -

8. J. A. Robinson, "Computational logic: the unification computation," pp. 63-

72 in Machine Intelligence 6, ed. B. Meltzer and D. MichieAmerican Elsevier,

New York (1971).

9. N. Wirth, 'MODULA: a language for modular programming," Software Prac-

tice and Experience 7 pp. 3-35 (January-February 1977).

Distribution or ANL-8-06

Internal:

K. L. Kliewer
A. B. Krisciunas
E. L. Lusk (72)
P. C. Messina
R. A. Overbeek (10)
D. M. Pahis
T. M. Woods (2)
G. W. Pieper
ANL Patent Department
ANL Contract File
ANL Libraries
TIS Files (6)

External:

DOE-TIC, for distribution per UC-32 (186.'
Manager, Chicago Operations Office, DOE
Mathematics and Computer Science Division Review Committee:

J. C. Browne, U. Texas, Austin
S. Gerhart, Software Research Associates, Culver City
L. P. Kadanoff, U. of Chicago
W. C. Lynch, Xerox Corp., Palo Alto
J. M. Ortega, U. Virginia
D. L. Wallace, U. of Chicago
M. F. Wheeler, Rice U.

D. Austin, Office of Basic Energy Sciences, DOE
G. Michael, LLL

