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Two-Dimensional Method for Calculating
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Separated Flow in a Centrifugal Impeller

A method of calculating a two-dvmensional tncompressible and tnviscid flow within o
centrifugal impeller where the flow separates from the suction side has been developed.
Based on experimental observation it has been assumed that mizing of the throughflow

with the separated region is suppressed. After a description of the calculation method,
which 1s rather unusual, some results are presented and the tmplicaiions discussed.
The possibility of extending the method to handle compressible flow is outlined.

1 Introduction

Many papers have been written on the numerical calculation
of the flow patterns in centrifugal impellers. There are the
famous papers of Stanitz (1, 2]! from the fifties and more re-
cently Katsanis [3] and Senoo and Nakase [4] have produced
methods more suitable for digital computers. Despite this work,
the flow in impellers is known to be very often separated; the
first report of this was made by Fischer and Thoma [5] in 1932.
Dean [6) has studied this aspect extensively and found that
the separated region, or wake, may occupy as much as 70 percent
of the passage area at exit. Moreover the interface between the
main flow and the wake tends to behave like a low Reynolds
number shear flow with very little mixing. This effect can be ex-
plained by the stabilizing effect of Coriolis forces on the shear
layer described by Bradshaw [8] and has been beautifully dem-
onstrated in the work at Stanford University (14, 15].

An example of a design calculation method incorporating divi-
sion of the flow into a main throughflow region and a wake
region is the one-dimensional method of Dean (7}, in which the
mean propetties of the flow are treated separately.

The present two-dimensional calculation is an attempt to
allow for this separation by means of a simplified mathematical
model. The steady relative flow in an impeller passage is divided
into two regions. The flow in the main region is regarded as in-
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viscid and irrotational, while in the wake region there is no flow.
The boundary between the two is treated as a free shear layer
without mixing, which behaves rather like an air-water interface.
The position of this boundary is defined by the condition that
there is no change in static pressure across it, and that in the
wake, because there is no flow, the reduced pressure (p — fprQ’dr)
is constant,

In the throughfiow region the equations expressing continuity
and irrotationality must be solved numerically. The wake
region affects the solution by determining the position of one of
the boundaries. During the iterations, the position of the edge
of the wake varies, and this leads to programming complexity.
This problem can be avoided by inverting the equation for ir-
rotationality (the continuity equation has been removed by
using a stream-function ¥). The angular coordinate of the lines
of constant ¢ (streamlines) is then the dependent variable, with
stream-function and meridional distance as the independent
variables. The value of ¢ is fixed at the edge of the wake.

The type of impeller considered is one with axial inlet and radial
outlet, as shown in Fig. 1. Variations in flow properties normal
to a mean flow swrface are not taken into account, this mean
flow surface being generated by rotation of a meridional line
about the axis. Between inlet and outlet the shape of the mean
flow surface, the height of the passage, and the number, thickness
and shape of the blades are all arbitrary.

After describing the method, a few results for radial outlet
and swept-back blades are shown. Irom these it is possible to
draw some conclusions about the existing unseparated methods
of calculation.

2 ldealization of the Flow

For the calculation the flow is regarded as inviscid, incom-

DECEMBER 1975 / 581

Journal of Fluids En Ineerlngn.asme.org og:@mf/ﬁ-tg@{e@@gZJ@ehMpﬁ‘@MEsme.org/about—asme/terms—of—use

Downloaded From: https://fluidsengineering.asmedigitalcollecti


https://core.ac.uk/display/357346519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1

pressible and irrotational in the absolute frame of reference. It is
also considered to be quasi-two-dimensional i.e., not varying
across the passage in a direction normal to the mean flow surface
defined previously. The validity of each of these assumptions
is discussed in the following,

The inviscid approximation may be criticized for two reasons.
Firstly, the flow is known to be turbulent over much of the pas-
sage as a result of boundary layer growth, the small passage
height and the wakes of upstream guide vanes or intake supports;
secondly considerable losses occur in the passage. Unfortunately,
the alternatives are also considerably more complicated without
being much more realistic, while an eddy viscosity with wall slip
still does not fully model the flow and requires many arbitrary
constants.

The incompressible approximation is normally taken to mean
that density changes resulting from velocity changes may be
ignored. However, in this case density changes due to the
centrifugal pressure rise are also being ignored, which is a par-
ticularly bad approximation for compressors, in which pressure
ratios of six or more are commonly achieved. The possibility of
incorporating allowance for compressibility into the calculation
method is diseussed in Section 6.

The assumption that the flow is irrotational in the absolute
frame of reference is in general incompatible with the quasi-
two-dimensional approximation. Only when the blades are
shaped so as to accept free-vortex flow can the two assumptions
be made compatible. In the quasi-two-dimensional approxima-
tion the passage is divided into strips of which PQ in Fig. 3 is
typical, and then the flow is taken to lie in these strips. However,
if there is zero absolute rotation of the fluid then there must be
relative rotation in the sense of the arrows in Fig. 3, which gen-
erally requires a radial component in the flow where the passage
js axial. Radial flow is not. accounted for in this approximation,

Impeller with axial inlet and radial outlet

Further along the impeller passage where the mean flow is nearly
radial the relative rotation of the fluid plays a large part in
determining the distribution of veloeity. Ellis and Stanitz’s
[9] full caleulation of a three-dimensional flow led them to con-
clude that the usual two-by-two dimensional method gave
adequate results, particularly for the distribution of throughflow
velocity over the blades. More recent work by Worster [10]
questions this convenient conclusion. However, for investigating
the changes produced by allowing a wake region to exist it seems
reasonable to retain this approximation.

3 Flow Equations and Boundary Conditions

3.1 Coordinate System and Equations. It is usual to have a
system of coordinates that are orthogonal and fixed either ab-
solutely or relative to a moving impeller. Occasionally stream-
line coordinates are used, in which case they are generally used
together with their normals, which for irrotational flow in a
stationary system are the velocity potentials. In the present
calculation the systems are mixed, with the relative streamlines as
one coordinate and rotating meridional lines as the other coor-
dinate; together these make up a nonorthogonal curvilinear
system.

The equations governing the flow are those of continuity and
absolute irrotational motion.

du u dr u dh 1 dv
om Trim Tham T8 T 0 W
v v dr 1 du dr
am r dm r 00 +20 dm 0 @)

These are made nondimensional in terms of 72 the tip radius,
hs the tip height and w. the mean radial velocity at the tip. In

Nomenclature

locity = v/u.

. Qr Q = dimensionless relative veloci- o = angle between blades in
C = rotation number = o by = g/us radians
h = passage height normal to QR = ratio of velocity at separa- AM, Ay = mesh lengths in M, ¢ direc-
mean flow surface tion to maximum velocity tions
H = dimensionless height h/h. on blade surface § = angular coordinate in radians
7, 7 = mesh counters in finite dif- r radius relative to impeller
ference grid (Iig. 4) R dimensionless radius = r/r, O = scaled angular coordinate =
m = meridional coordinate U meridional velocity 0/a
M = dimensionless meridional co- U dimensionless meridional ve- p = density
ordinate = m/r, locity w/us Y = stream function
p = pressure v relative tangential velocity Q = angular velocity of impeller
g = relative velocity V = dimensionless tangential ve- Suffix 2 value at impeller tip
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Fig.2 Representation of an impeller passage

addition,
c = I
Us
o-2
o

so that © = 0 at the blade tip on the pressure side and © = 1
at the blade tip on the suction side. Capital letters denote the
dimensionless variables.

U UG  UdH 1 v
M R dM H dM Ra 06 @)
9V ViR LU 4R _ )
M RdM  Ra 90 T dM @)

A stream function y is introduced, defined by the relations
_ 1 oy —a oy .
U=wrse . "~ mwom ®)

These relations satisfy equation (3) identically and also the con-
ditions

=10=1
v o } atR =1
v=00=0
Substitution into equation (4) leads to the stream function equa- -
tion
o 1 &Y Ldk 1 dH \dy
oM? Ria? 00? RdM H dM }J oM
2CH dR
T e~ ®

Fig. 3 Relative rotation at inlet to impeller passage
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When equation (6) is solved by finite difference methods there
are irregular mesh points on blade surfaces that are not radial.
More important there must be irregular mesh points on the free
shear layer which change as the calculation iteratively con-
verges on the correct shape of interface. It is to escape from
this difficulty that the equation is changed from the form

Y(M,0) =0
to
oM, ¢¥) =0

In the M, ¥ system all the boundaries of the flow field are along
lines either of constant M (far upstream and downsiream) or of
constant Y (stagnation streamline upstream, blade surfaces,
free shear layer and wake). This makes solution of the equation
by a finite difference method much easier. The resulting equa-

tion is
@ 3 910 _289 a0 90 n 2(2 3
ay amMe Y IM YoM oM

L)@ (1dR 1 dH )96 (96 Y
+ Rro2 | GyA RdM H dM | M \ oy

+ 20Hﬂ(66 )3 0 @

a dM (')—w-
The derivation of equation (7) from equation (6) is given in
Appendix 2.
In the M, ¢ system the stream function relations are
« 00
1 A
T gg[ @
RH —- H —
oy '

3.2 Finite Difference Forms. Equation (7) is nonlinear, but
when centered finite difference expressions for all the © deriva-
tions are inserted into the equation it becomes linear in the value
of O at the center point. As an example the first term of equation
(7) is written out in full with the notation of Fig. 4(a), using
second order differences.

99 3 . 960 _ i — iy |
(5 ) o - (2=

M3
Oipt.s ~ 264, + Bicrg
) Amy
©:.; only appears once and so the expression is linear in G, i
Since 6:.,; only appears in the expressions for the .sec.ond deriva-
tives, and because second derivatives are not mu!tlp}led t(?gether
anywhere in equation (7), the whole equation is linear in ;.5
when put into finite difference form. ) . .
The finite difference form of cquation (7) is solved iteratively
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at every internal mesh point. Instead of the second order finite
difference expressions used in the example above, fourth order
expressions are used for both first and second derivatives at
every point that is not adjacent to a boundary, and third order
expressions at every point that is adjacent to a boundary. For

the cross derivative , which is small, a first order expres-

40
(NA‘)M
sion is used. These expressions are listed in Appendix 2.

When at other times in the calculation gradients are required,
for example for evaluating velocities from equations (8), they
are calculated from third order expressions, also listed in Ap-
pendix 2.

3.3 Boundary Conditions. (Sections of the boundary de-
scribed below are shown on Fig. 2. The representation in Fig, 2

of the flow surface in one passage is described in Appendix 1).
Upstream. Along AB, a few mesh lengths upstreum of the

impeller, the flow is taken to be axisymmetric. Then =1,

3%

R, +

Also the flux of angular momentum across AB, which is equal
to the prewhirl, is specified. The transverse location of the
boundary is then adjusted in every iteration to maintain this
prewhirl.

Stagnation Streamlines. The streamline ¢ = 0, BD, is the
same as the streamline ¥ = 1, AC, when it is regarded as belong-
ing to the next impeller passage. Therefore values of O at points
along either line may be calculated from O and ¥ at points Q!
being found by adding 1 to the values at Q.

Along the Blades. On the blades = Qor ¢ = 1: O isgiven
as a tabulated function of M.

Separation Point G. The flow is taken to separate from the
suction side when the velocity has fallen to a specified fraction
of the maximum velocity reached on that side of the passage.
A more complicated criterion could be used if sufficient data to
justify it were obtained. The flow is assumed to remain attached
to the pressure side at all times,

R,

| Ry =

1.00

Fig.3 WMeridional view of impeller passage
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Along the Free Shear Layer GJ. In the wake there is no flow,
80 there must be radial equilibrium,

g?L = pr(®
,.
For incompressible flow
p = 1/,prP + const.

(p — 1/,pr%2) is therefore constant throughout the wake and
along the shear layer. Along the shear layer, which is also a rela-
tive streamline, Euler’s equation holds

dp + pgdq = prQidr
D — 1/opr 0 = — 1/ypg? + const.

So along the shear layer 1/,p¢? and therefore @ are constant.

From equation (8)

Q2

Us + V3
ol 1 90 \?
YA {z‘a‘; +(5ﬁ) } ®
()

the value of @2 at separation.

I

The finite difference form of equation (9) is solved iteratively at
points along the shear layer to find its position.

Along the Shear Layer FK. From the influence of the Coriolis
acceleration on stability one would expect to find that mixing
was intensified on this shear layer, and that the liquid surface
ahalogy was therefore particularly inappropriate. However, the
assumption made here is the same as that for the shear layer GJ.
This is mainly for simplicity, because an error in the prediction
of the flow in this region is unlikely to have much influence on

{a} Attached Flow (QR = 0)

\

\

(b) QR = 0.70

(c) QR

S

Fig. 6§ Relative streamlines in radiél-tipped impeller at C = 3.0
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the flow in the impeller passage itself. However, the streamline
'K may be so sharply curved that it is in fact stabilized. Such
unexpected stabilization of the shear layer leaving the pressure
surface has been demonstrated experimentally by Senoo and
Ishida (13), but the corresponding region of GJ is then de-
stabilized.

Across the Outlet. At the downstream boundary the flow may
either be still divided into a jet and a wake as in Figs. 2 and 6(c),
or the wake may have closed up as in Fig. 6(b). In the first case
the flow across JK is taken to be uniform and at the same
velocity as on the shear layers. In the second case the flow is

. ..., 00
taken to be axisymmetric with .— = 1.

oy
In either case the transverse location of the downstream
boundary is adjusted in each iteration to insure that the flow
leaves the impeller smoothly in the direction of the trailing edge.

3.4 Torque and Flux of Angular Momentum. The torque on the
impeller is calculated by integration of the pressure difference
across a passage along the length of the passage. Comparison
of this quantity with the change in flux of absolute angular
momentum from inlet to outlet serves as an additional check on
the method.

The flux of absolute angular momentum across an arc is useful
for estimation of the upstream whirl and the slip factor. It is
also useful as a check on the accuracy of the numerical method,
sinee it should not vary with radius downstream of the impeller.

The expression for the flux is

fl~Ra(V + CR)dY

0
1
= RCa + Raf Vdy
0
Integration is by Simpson’s rule.

4 Preliminary Results

4.1 Attached Flow. A test of the calculation method is to
compare its predictions for a fully attached flow with those of
Stanitz [1]. In Stanitz’s example the positions of the streamlines
were calculated for B > 0.675, with the assumption that at that
radius neither the inlet nor the outlet influenced the flow, so
that the flow direction was purely radial while at the same time
the flow was still irrotational. For the comparison, where the
flow in an entire impeller passage is calculated, an impeller was

chosen with an arbitrary but convenient shape for R < 0.675.
In this impeller the blades were thin, straight and radial from
R = 0.60 outwards, and the shape of the passage in the meridional
plane was as shown in Fig. 5, with 2, = 0.35, R; = 0.25, and
H = 1/R throughout the impeller and also in the vaneless dif-
fuser. The blade inlet angle of 45 deg gave approximately zero
incidence at ¢ = 3.0, the value chosen by Stanita.

The streamline patterns obtained with the two calculation
methods are shown superposed in Fig. 7. The differences be-
tween the two are discussed in Section 5.1.

4.2 Separated Flows. The cases calculated with separated
flow fall into two groups, those in which the velocity ratio to
separation was varied and those in which the rotation number
(or throughflow) was varied.

For a radial-tipped impeller the flow pattern was calculated
at six values of QR; 0.0 (attached flow), 0.60, 0.70, 0.80, 0.90 and
0.99. From the solutions at QR = 0.0, 0.70 and 0.90 the stream-
line patterns are reproduced in Fig. 6 and the blade velocities
plotted in ¥ig. 8. The variation of the slip factor with QR is
plotted in Fig. 9.

In both radial tipped and backward curved impellers low pat-
terns were calculated with varying rotation number for both
separated and attached flow. The variations in slip factor are
plotted in Fig. 10. Streamline patterns for separated flow in a
backward curved impeller at three different rotation numbers
are reproduced in Ivig. 11.

The coordinate transformation for plotting the streamlines
is described in Appendix 1.

4.3 Impeller Shapes. Just two impeller shapes were used for
all the calculations except the comparison with Stanitz’s results.
The radial-tipped impeller is shown in the meridional view in
Fig. 5, with Ri = 0.40 and R; = 0.30. The inlet angle was 60
deg, and the blades were straight and radial from B = 0.70
outwards. The blade thickness was 2 percent of the passage
width, tapering to zero at inlet and outlet. The passage height
H varied inversely as the square root of the meridional coordinate
M, where M = 1 at the tip, an arrangement which gave an area
ratio of approximately 1:2.2, There were twenty blades. The
vaneless diffuser was of constant depth.

The backward-curved impeller was identical except that the
blades were curved back from being radial at B = 0.70 to an
angle of 30 deg to the radius at the tip.

5 Discussion of Results

5.1 Comparison With Stanitz, The comparison in Fig. 7 be-

(b)

Fig. 7 Relative streamlines in attached flow
(2) From present calcujation method
(b) From Stanitz (Reference [1])

N
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Attached

Blade Velocity Q

0 | | | ! | | . I
© o1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of Meridional Distance along passage

Fig. 8 Blade velocities in radial-tipped impeller at C = 3.0

tween an attached flow calculated with the present method and  of the streamlines at the impeller tip is that whereas Stanitz
one calculated by Stanitz [1] shows a slight difference in the predicted a slip factor of 0.892 the present method predicts one
streamline patterns. The effect of the difference in the directions  of 0.92. Whether the difference between these figures is due to

1.00 [ f f
0.95 [ —
Slip
Factor
\\
0.90 [— N -
AY
Wiesner N
A
o as | \/—
0.80 | | I | |
0.4 0.5 0.6 0.7 0.8 0.9 1.0

QR
Fig. 9 Variation of slip factor with velocity ratio to separation in
radial-tipped impeller at C = 3.0
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A Radial-tipped,
B Radial-tipped, separated at

C Backward-curved,
D Backward-curved, separated
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QR = 0.80
attached ]

at QR = 0.80
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—
0.90 | ©
Wwiesner
A
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0.85 |— —
0.80 | 1 4 |
¢} 1.0 2.0 3.0 4.0 5.0 C

Fig. 10 Varliation of slip factor with rotation number

coarseness of the finite difference mesh or a more fundamental
cause has not yet been determined. Downstream of the impeller
the flux of absolute angular momentum should not vary; how-
ever, a variation of 1.2 percent is found in the calculation here.

Although the agreement between the streamline patterns pro-
duced by the two methods is fairly good in this example, it
would not be so at a higher rotation number. In the finite dif-
ference form of equation (7) in Section 3.1, © must remain a
single-valued function of ¥, with the result that a recirculation
bubble of the type caleculated by Stanitz at high rotation num-
ber (low flow) would not be predicted. This is a minor drawback
to the calculation method as such recirculation is not found in
real impellers.

5.2 Velocity Ratio to Separation. The choice of the ratio of the
velocity at separation to the highest velocity attained on the
suction side is at this stage arbitrary. Values quoted range from
about 0.4 for turbulent to about 0.95 for laminar boundary
layers in stationary systems, and it is likely that in the present
case of a turbulent layer with suppressed mixing the best value
will be between these two figures.

The velocity distribution over the blade surfaces plotted in
Iig. 8 shows that there is a large reduction in velocity over the
last part of the blade when the flow is attached. If this actually
occurred there would be a corresponding large pressure gradient
in this region which would probably lead to separation. When
there is separation the modification of the rest of the flow field
leads to an adverse pressure gradient in the last part of the flow
before it separates, which means that specification of a maximum
adverse velocity gradient would be an unsuitable criterion for
determining the position of the separation point.

I'rom the streamline patterns of Kig. 6 it can readily be seen
how for a higher ratio the separation is earlier, the width of the
wake is greater and the wake penetrates further downstream into
the diffuser before closing up. In this example the ratio of the
tip velocity to the highest velocity on the suction side is about
0.53 when the Hlow is attached, so specification of a lower ratio
to separation would lead to prediction of attached flow.

5.3 Slip Factor. The slip factor is important since it is pro-
portional to the work input to the impeller. It is therefore useful
to be able to predict it accurately. As the velocity ratio to separa-
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tion is increased Fig. 9 shows how first the slip factor decreases
as the suction surface loses its guiding influence on the flow, and
then increases again as the flow becomes more like a jet following
the pressure surface.

Most correlation methods for predicting slip factor, such as
those discussed by Wiesner [12], take no account of any variation
with flow rate. Indeed Stanitz [2] in his calculations on a radial-
tipped impeller found no significant variation. However, Fischer
and Thoma (5] observed that the flow followed the blades of a
backward-curved impeller more closely, and therefore the slip
factor increased, as the throughflow was reduced. Also Johnston
and Dean (13] in Fig. 11 of their paper showed that for a radial-
tipped impeller the slip factor rose from 0.8 to 1.0 as the rotstion
number (the inverse of a flow coefficient) was raised from 2.0 to
6.5.

Fig. 10 shows the variation of slip factor with rotation number
for four cases, i.e., radial and backward curved impellers, each
with attached flow and flow that separated at a velocity ratio of
0.80. In curve A, for attached flow past radial blades, the small
variation of less than 1 percent agrees with the findings of Stanitz
{2]. In curve B for separated flow there is a reduction of the slip
factor to values nearer those of about 0.87 tabulated by Wiesner
[12] from measurements ou impellers. The increase of slip factor
as the rotation number is raised from 2.0 to 5.0 is in the correct
sense, but still not large.

In curves C and D for backward curved blades the variation
of slip factor with rotation number is in the opposite direction
to that found with radial blades. This can be explained by the
way in which the blades do less work on the fluid as the flow rate
is increased, until at C = 1.0 the fluid is doing work on the blades
over the last part of the impeller passage, leading to a slip factor
greater than 1.0. The streamline pattern for this case is shown
in Fig. 11(c). The situation described by Fischer and Thoma
[5), where the flow becomes a thin jet along the pressure surface,
leading to an increased slip factor, was not reached because the
area ratio of the impeller was not large enough.

TI'or comparison the slip factor of Wiesner's formula is marked
on Figs. 9 and 10. For the type of impeller considered here the
value of Busemann’s slip factor is almost identical, according to
the graphical comparison of the two slip faclors presented by
Wiesner [12].
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Fig. 11 Relative streamlines in backward-curved impeller with
separation at QR = 0.80

5.4 Effect of Varying Throughflow on the Wake. Fig. 11 shows
the streamline patterns in the backward-curved impeller at
three different rotation numbers. As the rotation number is
reduced from 5.0 to 1.0 (the throughflow is increased) the separa-
tion point moves very little and the width of the wake at the tip
is almost unchanged. However, the distance that the wake
penetrates downstream into the diffuser is greatly increased.
Johnston and Dean [13] considering a jet and a wake entering a
diffuser predict a much more rapid closing up of the wake, but
the trend is in the same direction.

6 Extension to Compressible Flow

The system of inversion of the stream function equation de-
scribed in Section 3.1 is applicable to compressible flow just as
to incompressible flow, but the addition of the density as another

Journal of Fluids Engineerin

variable further complicates the equations.

The compressible form of equation (7) contains the density
and density gradients. The equation defining the compressible
stream function relates the relative velocity to the density and
the steam function gradients. A third equation derived from
the steady flow energy equation and the perfect gas laws relates
the same variables, so from these three equations there is enough
information to solve for both the streamline pattern and the
density distribution.

On the free shear layer the boundary condition is more com-
plicated than before. Now the absolute static pressure variation
along the streamline bounding the flow must match the abiabatic
centrifugal pressure rise in the wake. From this condition an
equation for the density distribution along the shear layer may
be obtained, and from this the velocity distribution.

ECEMBER 1975 / 589
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7 Conclusions

7.1 With the jet and wake calculation method described in
this report it has been shown how the streamline pattern and the
overall parameters for the flow in a centrifugal impeller are
changed by altering the flow rate, the ability of the suction side
boundary layer to withstand diffusion, or the impeller shape.
The few results presented here are merely examples of the types
of variations that can be studied.

The magnitude of the slip factor predicted with the separated
flow calculation for a radial-discharge impeller was nearer to
that found in machines than the higher figures predicted with
attached flow, and the variation with flow rate was in the right
direction. In a backward curved impeller the effect of separation
on the slip factor was smaller and in the opposite direction.

7.2 Further Work. The incompressible flow model should now
be applied to some actual impeller designs to see how its predic-
tions compare with observations.

The effects of compressibility should be incorporated into the
calculation method so that it can be used to predict the flow
in a high pressure ratio impeller, for comparison with experi-
mental results,

An experimental program is in progress in which the incom-
pressible flow in a single rotating rectangular channel is being
studied. In this work a criterion for separation of the flow from
the suction side is being sought, either of the velocity ratio type
used in the present calculation method or perhaps a limit of the
velocity gradient along the wall before separation occurs.
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APPENDIX 1
Representation of the Impeller Passage

The mean flow surface in an impeller passage cannot be de-
veloped into a flat surface without distortion. Therefore a
method has been found to present the flow surface in a diagram
such as those of Figs. 2, 6, 7 and 11. The transformation de-
scribed here is acceptable only if the angle between the blades
is not large.

The transformation is

. R [ _ _ag X
1\:51_%{'{1 cosl:(ﬁ 0°)dM:|'

aM

R dR
Eﬁsm[(ﬂ - On)ﬁ{]

~
]

M

where 6 is chosen to keep the distortion small. In the axial inlet
region these reduce to

X=M
Y R — 6,)

I

which represents a true development of the cylindrical flow sur-
face. In the radial outlet region they reduce to

X = Rcos (8 — 6o)
Y = Rsin (8 ~ &)
which represents the radial plane in a true view. In the mixed

flow region there is distortion of the flow surface, which is only
slight for a twenty-bladed impeller.

APPENDIX 2

inversion of Stream Function Equation and List
of Finite Difference Expressions

2a Derivation of Equation (7) from Equation (6). In this section

2 .
the notation 26 is used to mean the rate of change of ¥
M
with O at constant M.

The first necessary relation is

o) _ 1
®1y 3 (A)
oY |
From the identity
oy | 98 oM| _ _
A |n M|y Y le
‘?2‘
i _ My (B)
M o 90
Y M

These relations substituted into equations (3) lead to equations
() for the velocities in terms of the other variables.
Manipulation of the identity

F_
oM

M + 6_11‘_
v di aw

oF oOF
o 2 gy O
W =5 le 90

a0 = dy
o M

(©

where F is any dependent variable leads to
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W Iu
and
0
| 9w :
30 |, = 3_9 3 (E)
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Relations (B), (D) and (F) are substituted into equation (6)
to obtain equation (7).

2b Finite Difference Expressions. For points that are not
adjacent to a boundary such as P in Fig. 4(a), the following
fourth order finite difference expressions for the derivatives are

used.
@ _ — 0405 + 860i41.; — 801 + Oiye.;
M 12AM
aie_ R 6.’+2,; + 169i+l,j - 306;’,,‘ + 169:’-1.;‘ - ei—'z.j
Mz 12(AM )2

. . . d 020
with similar expressions for -~ and -

oy ey

For points that are adjacent to a boundary, such as Q in Fig.
4(b), these third order expressions are used.

90 _ - 201, - 36, + 66y, — 64,
oM 6AM

@ _ 61, — 20:; + 6,;

oM (AM)?

At all points the following first order expression is used for
the cross derivative, which is small everywhere except close to
the leading edge when there is incidence.

920 Oisr i1 — Oicr iy + Bily o — 041,

oYM 4AY « AM

For calculation of a gradient normal to a boundary, such as at
K in Fig. 4(b), which is needed to obtain the velocity on a balde
surface, this third order expression is used.

(99 264,,' - 993,; + 1892,;‘ - 1191.,'.

oM 6AM

All the expressions listed above are derived from polynomial
approximations to the function O(M, ).
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