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The coalescence of a Hopf bifurcation with a codimension-two cusp bifurcation of equilibrium
points yields a codimension-three bifurcation with rich dynamic behavior. This paper presents
a comprehensive study of this cusp-Hopf bifurcation on the three-dimensional center manifold.
It is based on truncated normal form equations, which have a phase-shift symmetry yielding a
further reduction to a planar system. Bifurcation varieties and phase portraits are presented. The
phenomena include all four cases that occur in the codimension-two fold–Hopf bifurcation, in
addition to bistability involving equilibria, limit cycles or invariant tori, and a fold–heteroclinic
bifurcation that leads to bursting oscillations. Uniqueness of the torus family is established
locally. Numerical simulations confirm the prediction from the bifurcation analysis of bursting
oscillations that are similar in appearance to those that occur in the electrical behavior of neurons
and other physical systems.
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1. Introduction

More than a quarter-century ago, it was found that
the interaction of a steady-state bifurcation (corre-
sponding to a simple zero eigenvalue) with a Hopf
bifurcation (corresponding to a conjugate pair of
simple imaginary eigenvalues) can lead to much
richer dynamics than just the expected equilibrium
and periodic solutions, including the possibility
of an invariant two-torus on which the flow may
be periodic or quasi-periodic, see [Gavrilov, 1978;
Langford, 1979; Guckenheimer, 1980; Iooss & Lang-
ford, 1980]. As this two-torus grows fatter, generic
perturbations lead to chaotic dynamics [Holmes,
1980; Langford, 1982, 1983, 1984b]. The simplest
case is the codimension-two fold–Hopf bifurcation,

for which the zero eigenvalue corresponds to a
generic fold (or saddlenode) bifurcation in which
two equilibria coalesce and disappear. That case is
described in textbooks such as [Guckenheimer &
Holmes, 1986; Wiggins, 1990; Chow et al., 1994;
Kuznetsov, 2004]. This paper presents a study of
a more degenerate case, which we call the cusp–
Hopf bifurcation, in which the fold bifurcation is
replaced by a codimension-two cusp bifurcation;
that is, the zero eigenvalue remains simple, but
the leading quadratic term that normally deter-
mines the fold bifurcation is now assumed to be
zero while a critical cubic term is nonzero. This
case is said to have codimension three and has
also been called a hysteresis–Hopf bifurcation.
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It was first studied in [Gavrilov & Roschin, 1983;
Langford, 1983, 1984a, 1984b; Gavrilov, 1987].

Specifically, we consider a parameterized family
of ordinary differential equations

ẋ = f(x, µ), x ∈ R
n, µ ∈ R

p, (1)

where f is smooth with respect to x and µ, ẋ ≡
dx/dt, and µ represents parameters in the equation.
Let x = x0 be an equilibrium point of the system
for µ = µ0, i.e. f(x0, µ0) = 0. For each µ the solu-
tions of (1) define a flow of a dynamical system, at
least locally in t.

The ultimate goal of this research is a com-
plete description of the dynamics of system (1) near
a cusp–Hopf bifurcation, analogous to what has
been achieved for the fold–Hopf case. This paper
presents significant new understanding of the cusp–
Hopf bifurcation, which has richer possibilities than
the fold–Hopf case, and also brings together previ-
ous results that were incomplete and scattered in
the literature. The main results are summarized in
Figs. 2–4, 9, 10, 12 and 13.

1.1. The cusp manifold of
equilibrium points

The simplest degenerate case of the fold bifurca-
tion is the cusp bifurcation (related to the “cusp
catastrophe” of Catastrophe Theory, see [Thom,
1975]). This is also called a hysteresis bifurcation
in [Langford, 1984a, 1984b; Golubitsky & Scha-
effer, 1985]. It may occur in its simplest form
with a one-dimensional state space (n = 1) and
a two-dimensional parameter space (p = 2) in (1).
A simple model differential equation for the cusp
bifurcation is

ż = β + αz − z3, (2)

where z ∈ R is the state variable and α and β
are two bifurcation parameters (or “control” or
“unfolding” parameters). This differential equation
has equilibrium points lying on a two-dimensional
manifold M in R × R

2 given by

M = {(z, α, β)|β + αz − z3 = 0}, (3)

see Fig. 1. We call this manifold M the cusp
manifold.

The projection of the cusp manifold onto the
(α, β) plane yields the cusp bifurcation variety, con-
sisting of two algebraic curves in the parameter
plane, meeting tangentially at the cusp point (0, 0),

Fig. 1. The cusp manifold M = {β + αz − z3 = 0} and a
hysteresis loop.

as shown in Fig. 1. The equation of this cusp bifur-
cation variety is(

β

2

)2

=
(α

3

)3
, (4)

obtained by eliminating z from Eq. (3) and the
equation for double roots of (3), namely α−3z2 = 0.
For (α, β) in the interior of the wedge bounded by
the cusp bifurcation variety, there exist three dis-
tinct equilibrium points z, while exterior to this
wedge there is a unique equilibrium point z. On
crossing the bifurcation variety, from the interior
to the exterior at any point other than the cusp
point (0, 0), two equilibrium points z coalesce and
disappear in a fold bifurcation. Inside the wedge,
the upper and lower equilibrium points z of Eq. (2)
are stable, while the third equilibrium point lying
between them is unstable. This coexistence of two
distinct attractors at the same parameter value is
called bistability. If β is varied with fixed α > 0,
the system jumps from one stable equilibrium to
the other stable equilibrium at the two endpoints
of an interval, thus tracing a hysteresis loop as in
Fig. 1. As we increase or decrease α, the length of
this hysteresis interval increases or decreases respec-
tively, and it vanishes at the cusp point (0, 0);
see Fig. 1.

It may appear that Eq. (2) is a very special
choice; however, it is in fact a normal form for a
large class of differential equations which exhibit
the cusp bifurcation. Suppose that the vector dif-
ferential Eq. (1) has an equilibrium point with a
simple zero eigenvalue and no others with zero real
part; then we can perform a center manifold reduc-
tion and replace (1) with a one-dimensional equa-
tion on the center manifold (n = 1). This equation
has an equilibrium point (which we translate to
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the origin in x and µ) where f(0, 0) = 0, and at
this equilibrium point it has a zero eigenvalue, thus
fx(0, 0) = 0. Assume that the quadratic term in the
Taylor series is also zero, i.e. fxx(0, 0) = 0; but the
cubic term is nonzero, i.e. fxxx(0, 0) �= 0. Then, for
generic smooth dependence on the parameters µ ∈
R

2 near 0, there are two possibilities: the equation
on the center manifold is topologically equivalent, in
a neighborhood of (x, µ) = (0, 0), either to Eq. (2)
or to the equation with −z3 replaced by +z3 in (2).
A proof is given for example in [Kuznetsov, 2004,
Chap. 8].

1.2. The cusp–Hopf bifurcation

The focus of this paper is the determination of the
typical dynamical behavior when a Hopf bifurcation
occurs at an equilibrium point near the cusp point,
on a cusp manifold such as in Fig. 1. The limiting
case of a Hopf bifurcation precisely at the cusp point
is a degenerate case, which we refer to as the cusp–
Hopf bifurcation. It is known that the existence of a
Hopf bifurcation does not affect the existence of the
equilibrium states on the cusp manifold (although
the stabilities are affected). However, the presence
of a zero eigenvalue does violate the conditions of
the classical Hopf bifurcation theorem. This fact,
plus the higher codimension and the fact that the
state space on the center manifold has dimension
three, open up possibilities for new dynamic behav-
ior, much richer that is possible for the cusp or Hopf
bifurcations separately.

Also, compared to the fold–Hopf bifurcation (as
described in [Chow et al., 1994; Guckenheimer &
Holmes, 1986; Kuznetsov, 2004; Wiggins, 1990]),
the cusp–Hopf bifurcation has richer behavior.
There is the possibility of bistability, which is
the coexistence of two different stable attractors.
The two attractors may be both equilibria (as for
the cusp in Fig. 1), or one may be an equilibrium
point while the second is a limit cycle, invariant
torus, or a chaotic attractor. Another interesting
phenomenon is the occurrence of bursting oscil-
lations, observed by Langford [1983], that resem-
ble those in neurons decribed by Izhikevich [2000];
Rinzel [1987], or in the chemical experiments of
Roux [1985], and the Taylor–Couette experiment,
see [Mullin, 1993].

A further important distinction between the
cusp–Hopf and fold–Hopf bifurcations is that in
the cusp–Hopf case, the singular equilibrium at
the codimension-three point may be asymptotically

(a) k = +1 (b) k = −1

Fig. 2. Singular vector field phase portraits. (l = −1,
m = +1).

stable [see Fig. 2(b)], whereas for the fold–Hopf
bifurcation there is always at least one unstable
direction. This fact has been observed in [Gavrilov
& Roschin, 1983; Gavrilov, 1987; Langford, 1983,
1984a, 1984b]. Therefore in this case, even after
unfolding, there is a basin of attraction for the
local dynamics of the normal form. By contrast,
in the fold–Hopf bifurcation there are always solu-
tions that escape the neighborhood of validity of
the local normal form analysis. For this reason, the
cusp–Hopf bifurcation may be more useful for appli-
cations as an organizing center than is the fold–Hopf
bifurcation.

1.3. Outline of the paper

The paper is organized as follows. The remainder of
Sec. 1 presents the truncated normal form for the
cusp–Hopf bifurcation, which has symmetries that
facilitate a reduction to a two-dimensional system.
Further transformations then simplify the nonlinear
coefficients and reduce the number of cases under
consideration to just two. The section ends with a
discussion of previous and related work.

A detailed analysis of the truncated two-
dimensional system is presented in Secs. 2 and 3.
In Sec. 2 the invariant sets of the two-dimensional
truncated normal form are located, including all
equilibrium points and periodic orbits. The main
result of Sec. 2 is the determination of three
bifurcation varieties in the parameter space, which
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(a) (b)

Fig. 3. Bifurcation varieties C, H and T in the parameter space. (a) k = +1: periodic solution exists below H . (b) k = −1:
periodic solution exists above H .

we call Cusp, Hopf and Torus varieties, shown
in Fig. 3. This figure is the “organizing cen-
ter” for the entire paper. In Sec. 3 the study of
these bifurcation varieties in the three-dimensional
parameter space is reduced to three two-parameter
cross-sections, containing codimension-one bifurca-
tion curves and codimension-two bifurcation points.
Analysis of neighborhoods of these codimension-
two points reveals that all four basic cases of the
classical fold–Hopf bifurcation exist in the unfold-
ings of the cusp–Hopf case. Additional “global” and
“trivial” codimension-two bifurcations occur. Phase
plane methods are used to obtain the full dynam-
ics of the truncated two-dimensional system, for
parameter values near the cusp–Hopf bifurcation
point. An interesting fold-heteroclinic loop bifurca-
tion in the two-dimensional system leads to a burst-
ing oscillation in the three-dimensional system.

Reconstruction of the dynamics for the three-
dimensional vector field, from the results for the
two-dimensional (r, z) system, is presented in Sec. 4.
Numerical calculations for the three-dimensional
system based on the results of Sec. 2 confirm that
there is bistability involving an equilibrium point
and an invariant torus. On some parameter sets,
bursting oscillations can be observed numerically, as
predicted by the two-dimensional analysis in Sec. 3.
Further aspects of the three-dimensional dynamics
as well as suggestions for further work and conclu-
sions are discussed in Sec. 5.

1.4. The normal form

This paper uses the detailed information available
for the case of fold–Hopf bifurcation, see [Gavrilov,
1978; Guckenheimer, 1980; Kuznetsov, 2004; Wig-
gins, 1990], and generalizes it to the cusp–Hopf case.
Returning to Eq. (1), henceforth assume that at
µ = 0 there exists an equilibrium x = 0 satisfying
the Hopf eigenvalue condition λ1,2 = ±iω, ω > 0,
and the fold condition λ3 = 0, where λ1,2,3 are sim-
ple eigenvalues of the linearization (∂f/∂x)(0, 0)
(Jacobian matrix), and no other eigenvalues have
zero real part. If the dimension of the state-space
of Eq. (1) is greater than three, then there exists a
center manifold of dimension three, corresponding
to these three nonhyperbolic eigenvalues. Assum-
ing that a center manifold reduction has been per-
formed, for the rest of this paper we consider system
(1) with a three-dimensional state space (n = 3)
and we write x = (x1, x2, x3)T . The next step is
to transform this three-dimensional system to its
Poincaré normal form, consisting of the “Poincaré
resonant terms”, which lie in a complement of the
range of the homological operator of the lineariza-
tion (∂f/∂x)(0, 0) of (1). Since the cusp–Hopf and
fold–Hopf bifurcations have the same linearizations,
this is just the standard fold–Hopf normal form,
given for example in [Chow et al., 1994; Gucken-
heimer & Holmes, 1986; Iooss & Adelmeyer, 1992;
Kuznetsov, 2004; Wiggins, 1990]. The notation of
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[Guckenheimer & Holmes, 1986] is followed here,

ẋ1 = γx1 − ωx2 + a1x1x3 − c1x2x3

+ a2x1(x2
1 + x2

2) − c2x2(x2
1 + x2

2) + a3x1x
2
3

− c3x2x
2
3 + O(‖(x1, x2, x3)‖4)

ẋ2 = γx2 + ωx1 + a1x2x3 + c1x1x3

+ a2x2(x2
1 + x2

2) + c2x2(x2
1 + x2

2) + a3x2x
2
3

+ c3x1x
2
3 + O(‖(x1, x2, x3)‖4)

ẋ3 = β + b1(x2
1 + x2

2) + b2x
2
3 + b3x

3
3

+ b4(x2
1 + x2

2)x3 + O(‖(x1, x2, x3)‖4), (5)

where γ, β are the classical fold–Hopf bifurcation
(or unfolding) parameters near zero and a1,2,3,
b1,2,3,4, c1,2,3 are the resonant nonlinear coeffi-
cients, depending on µ. It is assumed that the rela-
tionship of γ, β to the original parameters µ is such
that the Jacobian matrix ∂(γ, β)/∂µ has rank 2.
The remainder terms here are all O(‖(x1, x2, x3)‖4),
provided that the vector field f(x, µ) is C4 in a
neighborhood of (0, 0), by the Taylor remainder the-
orem. The analysis is simplified by transforming to
cylindrical coordinates (r, θ, z), with x1 = r cos θ,
x2 = r sin θ, x3 = z, and the fold–Hopf normal form
becomes

ṙ = γr + a1rz + a2r
3 + a3rz

2 + O(‖r, z‖4)
ż = β + b1r

2 + b2z
2 + b3z

3 + b4r
2z + O(‖r, z‖4)

θ̇ = ω + c1z + c2r
2 + c3z

2 + O(‖r, z‖3).
(6)

The standard nondegeneracy condition in the anal-
ysis of the fold–Hopf normal form is, at µ = 0,

a1b1b2 �= 0. (7)

In particular, the nondegeneracy of the fold bifur-
cation corresponds to b2 �= 0, and then, whenever
βb2 < 0, there are two equilibrium points of (6) near
zero given to leading order by

r = 0 , z = ±
√

− β

b2
+ · · ·. (8)

These two equilibria coalesce and vanish as β passes
through zero; this is the classical fold (saddlenode)
bifurcation.

In this paper it is assumed that the fold bifur-
cation theorem fails and is replaced by a cusp
bifurcation; that is, in (5) and (6) condition (7) is
replaced by

b2 = 0, a1b1b3 �= 0. (9)

Then the expression (8) for fold equilibrium points
is undefined. The singularity is more degenerate

when (9) holds, requiring a minimum of three
parameters for its unfolding. Let us formally define
the cusp–Hopf normal form as

ṙ = γr + a1rz + a2r
3 + a3rz

2 + O(‖r, z‖4)
ż = β + αz + b1r

2 + b3z
3 + b4r

2z + O(‖r, z‖4)
θ̇ = ω + c1z + c2r

2 + c3z
2 + O(‖r, z‖3),

(10)

where α, β, γ are unfolding parameters and the
Jacobian matrix ∂(α, β, γ)/∂µ is assumed to have
rank 3. Justification for this choice is given in the
next section. Other choices are possible; for exam-
ple, [Gavrilov & Roschin, 1983; Gavrilov, 1987]
chose a different but equivalent normal form, see
Sec. 1.7.

The only θ dependence in Eqs. (10) is in the
higher order remainder terms, which are O(‖r, z‖k)
with k as indicated, uniformly in θ for 0 ≤ θ ≤ 2π.
To begin the analysis, truncate these higher order
terms in (10) and observe that the truncated (ṙ, ż)
equations are then decoupled from the θ̇ equation
in (10). This is due to the S1 phase-shift symmetry
that is a standard consequence of the Hopf bifur-
cation. Therefore, investigate the following planar
truncated system (independent of θ)

ṙ = r(γ + a1z + a2r
2 + a3z

2)
ż = β + αz + b1r

2 + b3z
3 + b4r

2z.
(11)

The planar system (11) inherits a Z2 (pitchfork)
symmetry from the S1 phase-shift symmetry; it
is invariant under (r, z) → (−r, z). Any solution
(r(t), z(t)) with r > 0 of this system may be sub-
stituted into the truncated θ̇ equation in (10) and
integrated to give

θ(t) = θ(0) + ωt +
∫ t

0
(c1z(s)

+ c2r(s)2 + c3z(s)2)ds. (12)

Thus, the solutions of the truncation of the three-
dimensional normal form (10) are completely deter-
mined by the solutions of the planar system (11).
The effects of the higher order terms can be under-
stood more easily after the behavior of solutions of
(11) is known. It is clear from (11), (12) that, in
a neighborhood of (r, z) = (0, 0), θ(t) is monotone
increasing in t (for ω > 0).

1.5. Determinacy and universal
unfoldings

Two concepts which play an important role in
understanding normal forms are determinacy and
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versality. In our context, determinacy means that
the higher order terms truncated in going from
Eq. (10) to (11), (12) can be transformed away by
an invertible change of variables, in such a way that
the dynamics of the solutions of (10) and (11), (12)
are qualitatively the same (in the sense of topologi-
cal equivalence). Nothing essential has been lost in
the truncation. Similarly, versality means, in our
context, that given any three-dimensional parame-
terized system (1) that has a cusp–Hopf bifurcation
at some point of the parameter space, in a neigh-
borhood of that bifurcation point its phase portraits
can be mapped onto phase portraits of our param-
eterized normal form equations, and that map is
a homeomorphism in the state variables, preserves
the sense of time, and is smooth in the parameters.
In other words, versality says that the parameter-
ized family of normal form equations captures all of
the possible dynamics, sufficiently near the bifur-
cation point. In this setting, codimension may be
defined as the minimum number of parameters that
gives a versal unfolding, and a universal unfolding
is a parameterized family that is versal and also has
the minimum number of parameters.

Determinacy and versality both were estab-
lished for a restricted version of the cusp–Hopf
bifurcation problem in [Langford, 1984a], see also
[Dangelmayr & Armbruster, 1983; Golubitsky &
Schaeffer, 1985]. In [Langford, 1984a] the Liapunov–
Schmidt method was used to reduce Eq. (1) near a
cusp–Hopf bifurcation point to a pair of bifurcation
equations of the form

a(r2, z, µ)r = 0
b(r2, z, µ) = 0.

(13)

Solutions (r, z) of this system with r = 0 correspond
to equilibrium points and solutions with r > 0 cor-
respond to periodic orbits of the original system (1).
Using equivariant singularity theory, it was shown
that if

bzz(0) = 0, az(0) �= 0,
br2(0) �= 0, bzzz(0) �= 0,

holds in (13), then at µ = 0 it is Z2-equivalent to
the normal form

zr = 0
ε1r

2 + ε2z
3 = 0,

(14)

where εj = ±1 (Proposition 4.2 in [Langford,
1984a]). Furthermore, a universal Z2-unfolding of

(14) is given by

(γ + z)r = 0
β + αz + ε1r

2 + ε2z
3 = 0,

(15)

where α, β, γ are universal unfolding parameters
(Proposition 5.2 in [Langford, 1984a]). Thus, in so
far as equilibrium points and periodic orbits are
concerned, the determinacy and unfolding problems
are solved and the codimension is three. Note that
these unfolding parameters are the same as those
assumed in (10).

However, determinacy and versality fail in the
context of more complex dynamic behavior, such
as invariant tori and chaos, which escape the
Liapunov–Schmidt analysis. This is because both
the existence of the invariant torus and the type of
dynamics on the invariant torus are very sensitive
to the effects of higher-order terms that have been
truncated in going to (11), (12). These higher order
terms in general break the S1 symmetry of (11),
(12), which may produce a qualitative change in the
dynamics, no matter how small they are quantita-
tively. These issues are discussed further in Secs. 3
and 4.

The normal form Eqs. (10) may be further sim-
plified. In the planar truncated system (11) there
are four cubic terms, of which only the z3 term
remains in the Liapunov–Schmidt normal form (15).
In fact, it is possible to eliminate all of the other
three cubic terms also in (11) by a near-identity
transformation used by Guckenheimer and Gavrilov
in the fold–Hopf case, see [Gavrilov, 1987; Gavrilov
& Roschin, 1983; Guckenheimer & Holmes, 1986;
Kuznetsov, 2004]. Define

s = r(1 + gz)
w = z + hr2 + jz2

τ =
t

1 + kz
,

(16)

where g, h, j, k are coefficients to be determined.
Substitution of (16) into (11) leaves the linear
and quadratic terms unchanged, and introduces
new expressions for the four cubic coefficients in
(11), which are linear in g, h, j, k. These expres-
sions have rank three, so values of g, h, j, k can
be found to eliminate three, but not all four, of
the cubic coefficients. It is possible to eliminate
all but the z3 term and leave the coefficient b3

of z3 unchanged. See [Gavrilov & Roschin, 1983;
Guckenheimer & Holmes, 1986; Kuznetsov, 2004;
Wiggins, 1990] for more details. New higher order
terms also appear, which we discard, for consistency
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with our earlier truncation. The result is (with
a1, b1, b3 unchanged)

ṙ = (γ + a1z)r
ż = β + αz + b1r

2 + b3z
3.

(17)

This is consistent with (15). Henceforth assume (11)
has been reduced to (17).

A more systematic use of hypernormal forms is
given in [Algaba et al., 1998] to simplify additional
nonlinear terms in the normal form.

1.6. The normalized 2-D normal
form

Equation (17) depends on six parameters: the three
unfolding parameters and three parameters that
are coefficients of the remaining resonant nonlinear
terms. In (17) assume as in (9) that each of resonant
terms does not vanish,

a1b1b3 �= 0. (18)

Now normalize these three coefficients to ±1 by
rescaling the time and state variables by t̄ = σt,
r̄ = εr and z̄ = δz; with σ > 0, ε > 0 and δ > 0
determined by

σ =
a2

1

|b3| , δ =
∣∣∣∣ b3

a1

∣∣∣∣ , ε = δ

√∣∣∣∣ b1

a1

∣∣∣∣. (19)

Define

µ1 =
γ

σ
, µ2 =

βδ

σ
, µ3 =

α

σ
,

k = sgn(b1) = ±1.
l = sgn(b3) = ±1.
m = sgn(a1) = ±1.

(20)

Substituting and dropping the overbars, we have
replaced (17) by

ṙ = r(µ1 + mz)
ż = µ2 + µ3z + kr2 + lz3.

(21)

The system (21) represents eight cases, depend-
ing on the signs of k = ±1, l = ±1, m = ±1.
However, system (21) is unchanged by the transfor-
mation

{z, t, µ1, µ3, l} → {−z,−t,−µ1,−µ3,−l}. (22)

Thus any case with l = +1 may be transformed
to one with l = −1, under the reflection (22). The
most significant effect of (22) is to reverse stabili-
ties (i.e. t → −t). The phase portrait for any case

with l = +1 may be obtained from the correspond-
ing one under (22) by reflecting z and reversing the
direction of time t. In the case l = −1 the equilibria
on the cusp manifold have stabilities as indicated
in Fig. 1, ignoring the Hopf bifurcation. This is the
case that is most relevant for physical applications.
Therefore in this paper, only the cases with l = −1
are investigated, without loss of generality.

Similarly, one need only consider m = +1 in
(21), since (21) is also invariant under the reflection

{z, µ2, k,m} → {−z,−µ2,−k,−m}. (23)

If m = −1 then one can apply (23) and obtain
m = +1. Combining these transformations reduces
eight cases to two. Therefore, assume without loss
of generality

k = ±1, l = −1, m = +1, (24)

and write the planar truncated normal form (21) as

ṙ = r(µ1 + z)
ż = µ2 + µ3z + kr2 − z3, k = ±1.

(25)

For explicit solutions in all eight cases without
exploiting these reflectional symmetries, see [Har-
lim, 2001]. Equation (25) is the focus of the analysis
in Sec. 2.

1.7. Relationship to previous work

This paper is a contribution to the growing liter-
ature on codimension-three bifurcations of vector
fields. In four dimensions, resonant Hopf bifurca-
tions have been studied by Vanderbauwhede [1986];
van Gils et al. [1990]; LeBlanc and Langford [1996];
Govaerts et al. [1997]; Langford and Zhan [1999].
In three dimensions in addition to the zero-Hopf
case of this paper, bifurcation at a triple zero eigen-
value has been studied widely, for example in [Freire
et al., 2002; Sieber & Krauskopf, 2004]. In two
dimensions, the various cases of codimension-three
Hopf bifurcations were analyzed in [Golubitsky &
Langford, 1981] and degenerate Bogdanov–Takens
bifurcations have been explored by many authors,
see [Kuznetsov, 2005] and further references
therein.

Previous work on the cusp–Hopf bifurca-
tion includes proofs by methods of equivariant
singularity theory of determinacy and versality for
the two-dimensional normal form (21) as described
in Sec. 1.5; see [Dangelmayr & Armbruster, 1983;
Golubitsky & Schaeffer, 1985; Langford, 1984a].
Complementary numerical studies in [Langford,
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1983, 1984b] of the three-dimensional system have
revealed more complex behavior that is beyond the
range of singularity theory methods, such as invari-
ant tori, phase locking, period doubling, bursting
oscillations, strange attractors and transient chaos.

Independently, Gavrilov and Roschin [1983];
Gavrilov [1987] performed a normal form analysis
of the cusp–Hopf bifurcation. The physically inter-
esting stable case corresponding to b2 = 0, b3 <
0, a1b1 < 0 was identified in the context of a more
general stability analysis in [Gavrilov & Roschin,
1983]. Gavrilov [1987] used a choice of unfolding
parameters and a normal form that is equivalent to

ṙ = rz

θ̇ = ω + c1z + c2r
2 + c3z

2 + O(‖r, z‖3)
ż = δ + εz + µz2 + b1r

2 + b3z
3 + b4r

2z

+ O(‖r, z‖4).

(26)

This choice gives a simpler ṙ equation than (17),
and places all three unfolding parameters in the
ż equation. With Gavrilov’s unfolding parameters
δ, ε, µ, the equation of the cusp variety (4) takes
the form

δ +
εµ

3
+

2µ3

27
2




2

=


ε +

µ2

3
3




3

, (27)

which reduces to (4) when µ = 0. However, the
unfolding parameters used in the present paper pre-
serve the form of the cusp in Eqs. (3) and (4), and
Fig. 1, even with the inclusion of the Hopf bifur-
cation. The two-dimensional phase portraits pre-
sented here in Fig. 10 for the case k = −1 are not
equivalent to those in [Gavrilov, 1987], as a conse-
quence of Proposition 2.1. The phase portraits for
k = +1 presented in Fig. 9 have not been published
previously. The singular phase portraits for k = ±1
in Fig. 2 were sketched in [Gavrilov & Roschin,
1983].

Krauskopf and Rousseau [1997] considered a
two-dimensional, codimension-three normal form
very similar to (11). Their case, like ours, may be
obtained from the fold–Hopf normal form (6) but
with a different degeneracy in (6)

b1 = 0, a1b2b3 �= 0, (28)

that is, the r2 term is missing instead of the z2 term
in the ż equation. After some simplifying trans-
formations preserving the Z2 symmetry, they show
that this singularity is determined (for most a, b) by

its four-jet

ṙ = −arz − r3

ż = −z2 + br4 (29)

and they analyze its natural unfolding (analogous
to (21))

ṙ = µ1r − arz − r3

ż = µ2 + µ3r
2 − z2 + br4.

(30)

Algaba et al. [1998] presented a detailed
analysis of the fold–Hopf normal form, using
C∞-equivalence to obtain a hypernormal form.
They provided recursive algorithms for efficient
computation of the coefficients. This work will facil-
itate the study of degenerate fold–Hopf bifurcations
in applications.

2. Equilibria and Periodic Orbits in R
2

This section presents the study of equilibrium
points and periodic orbits and their bifurcations for
the two-dimensional truncated normal form (25). In
Sec. 2.1 we determine the equilibria and their bifur-
cation varieties. Hopf bifurcation analysis in Sec. 2.2
determines the periodic cycles of (25) and their sta-
bility properties.

The analysis begins with the codimension-three
singularity (organizing center) µ1 = µ2 = µ3 = 0,
where the 2D normal form (25) is

r′ = rz

z′ = kr2 − z3.
(31)

The singular phase portraits for k = ±1 are in
Fig. 2. The remaining six of the eight phase por-
traits for k = ±1, l = ±1, m = ±1, are easily
obtained from these two using the symmetries (22)
and (23); that is, by reversing t → −t or z → −z,
or both. The origin is asymptotically stable only
for (k, l,m) = (−1,−1, 1) [as in Fig. 2(b)] and
(1,−1,−1) [obtained from z → −z in Fig. 2(b)].

In both phase portraits of Fig. 2 there exists a
separatrix orbit with the property that as t → −∞,
all orbits above (below) the separatrix satisfy z →
+∞ (−∞). The nullclines z′ = 0 are given by the
two curves z = kr

2
3 , k = ±1. Define region R by

R =
{

(r, z)| − r
2
3 − 2

9
< z < −r

2
3

}
. (32)

Proposition 2.1. In the case k = −1, there exists a
unique separatrix orbit S in R, for which any solu-
tion orbit of (31) with initial point above (below)
S stays above (below) S for all t and as t → ∞
approaches (0, 0) tangent to S.
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Proof. Define V (r, z) = r2 + z3. Then V̇ (r, z) ≡
Vr ·r′ +Vz ·z′ satisfies V̇ < 0 (V̇ > 0) at every point
on the upper (lower) boundary of R. Thus R is posi-
tively invariant. No solution orbit can cross through
R and every orbit with r > 0 eventually enters R.
To show there is a unique orbit that remains in R for
all t ∈ R, suppose there exist two such orbits, S1 �=
S2. Then a vertical line L with fixed r > 0 intersects
orbits S1, S2 at two points with z1 �= z2 in R. But
a calculation shows that the slope dz/dr is strictly
decreasing with z on L. Therefore, the orbits S1, S2

strictly diverge with increasing r at each such L.
Since L in R has finite length 2

9 , one of S1, S2 must
leave R as t → −∞. By contradiction, S1 = S2 and
there exists a unique separatrix orbit S in R. �

The proof for the case k = +1 is similar
except the nullcline is z = +r

2
3 and the separa-

trix approaches (0, 0) as t → −∞. Region R in (32)
is due to A. Willms [private communication]. The
phase portraits of Figs. 2(a) and 2(b) are sketched in
[Gavrilov & Roschin, 1983] but for the case k = −1
the separatrix S and the infinite family of orbits
coming from z = −∞ are missing.

2.1. Equilibria in R
2

Equilibrium points of (25) on the z-axis (r = 0) are
independent of k = ±1, and given by

r = 0
µ2 + µ3z − z3 = 0.

(33)

The second equation of (33) recovers exactly the
cusp manifold M of Eq. (3) and Fig. 1. For (µ2, µ3)
inside the cusp, denote the three equilibria by E1 =
(0, z1), E2 = (0, z2), E3 = (0, z3); outside the cusp
there is exactly one equilibrium E1 = (0, z1). The
coordinates of these equilibria are given explicitly
by the following expressions when they are real.
Define S+ and S− by

S± =

[
µ2

2
±

√(µ2

2

)2 −
(µ3

3

)3
]1/3

, (34)

then E1, E2, E3 are given by

z1 = S+ + S−

z2 = −1
2
(S+ + S−) + i

√
3

2
(S+ − S−) (35)

z3 = −1
2
(S+ + S−) − i

√
3

2
(S+ − S−).

Note that z1 is real for all values of µ2, µ3.

Besides these equilibria with r = 0 there is a
nontrivial equilibrium of (25) with r �= 0, which we
denote E4 = (r4, z4), where

z4 = −µ1, r2
4 = k[−µ2 + µ3µ1 − µ3

1], (36)

whenever the expression on the right is positive.
Restoring θ̇, Eq. (12) yields a periodic orbit in the
three-dimensional space with amplitude r > 0, cor-
responding to the original primary Hopf bifurcation.
Since the normal form is symmetric under r → −r,
this is a pitchfork bifurcation in (25), but because
r is a polar coordinate the solution with r < 0 is
discarded. With µ2 as bifurcation parameter, this
bifurcation is supercritical (subcritical) for k = −1
(k = +1).

Thus there are up to four equilibrium points
of (25). The above expressions (34)–(36) determine
bifurcation varieties, where the expressions for equi-
libria change from real to complex. They are

C =
{

(µ1, µ2, µ3)
∣∣∣∣(µ2

2

)2 −
(µ3

3

)3
= 0

}
, (37)

H = {(µ1, µ2, µ3)|µ2 − µ3µ1 + µ3
1 = 0}. (38)

Note that the algebraic variety C is a trivial exten-
sion to three parameters of the cusp bifurcation
variety in the two-parameter plane given earlier in
(4). We call H the Hopf bifurcation variety because
it corresponds to primary Hopf bifurcation points
for the three-dimensional dynamics. Both C and H
are shown in Fig. 3.

2.2. Secondary Hopf bifurcation in R
2

The nontrivial equilibrium E4 = (r4, z4) in (36)
may undergo a secondary Hopf bifurcation. This sec-
tion gives a proof of the existence of a secondary
Hopf bifurcation for Eq. (25), verifies the cross-
ing condition and determines the Liapunov number.
Numerical verification that this secondary bifurca-
tion corresponds to a torus (Neimark–Sacker) bifur-
cation in the three-dimensional system is presented
in Sec. 4.

Linearization of (25) at E4 gives the Jacobian

A =
(

0 r4

2kr4 µ3 − 3µ2
1

)
, (39)

which has eigenvalues λ(µ) = α(µ)± iβ(µ) given by

α(µ) =
1
2
(
µ3 − 3µ2

1

)
(40)

β(µ) =
1
2

√
−µ2

3+6µ3µ2
1−9µ4

1−8[−µ2 + µ3µ1 − µ3
1].
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The Hopf existence theorem requires α = 0 and
β �= 0 or equivalently

tr(A) = µ3 − 3µ2
1 = 0 and det A = −2kr2

4 > 0.
(41)

Thus, a necessary condition for secondary Hopf
bifurcation is

µ3 = 3µ2
1 and k = −1. (42)

When (41) and (42) hold, A has imaginary eigen-
values ±iβ(µ0) given by

β(µ0) =
√

2r2
4 =

√
2µ2 − 4µ3

1, (43)

and for this to be real, µ2 > 2µ3
1, which leads to the

following proposition.

Proposition 2.2. Consider system (25) with k =
±1, l = −1, m = +1, and with a nontrivial equi-
librium point E4. Then a classical Hopf bifurcation
occurs generically at the equilibrium E4, iff k = −1.
This Hopf bifurcation occurs on crossing the bifur-
cation variety

T = {(µ1, µ2, µ3)|µ3 = 3µ2
1, µ2 > 2µ3

1}, (44)

see Fig. 3. If µ3 is chosen as the bifurca-
tion parameter, then the Hopf bifurcation is
supercritical; that is, a stable periodic orbit appears
on crossing toward the inside of the parabolic semi-
cylinder defined by (44).

(The set (44) is denoted T , as it represents a Torus
bifurcation in 3D.)

Proof. It was shown above that E4 is real and has
purely imaginary eigenvalues, if and only if k = −1
and (44) holds. Let µ3 be the bifurcation parameter
on crossing T . Hopf’s crossing condition from (40) is

∂α(µ)
∂µ3

=
1
2

> 0, (45)

so the crossing condition is always satisfied with µ3

as parameter.
To complete the proof of Hopf bifurcation, it

is necessary to verify that the Liapunov number
L1(0) (the cubic coefficient in the normal form for
Hopf bifurcation) is nonzero. L1(0) may be com-
puted from the following formula given in [Gucken-
heimer & Holmes, 1986]

L1(0) =
1
16

[fxxx + fxyy + gxxy + gyyy]

+
1

16ω
[fxy(fxx + fyy) − gxy(gxx + gyy)

− fxxgxx + fyygyy]. (46)

Here f and g are from the Hopf normal form (µ = 0)
in Cartesian coordinates

ẋ = −β(0)y + f(x, y, 0)
ẏ = β(0)x + g(x, y, 0).

(47)

The calculation of L1(0) may be found in [Harlim,
2001], where it is shown that

L1 =
3
8
l, (48)

which is negative when l = −1 as assumed here.
This with (45) implies that the Hopf bifurca-
tion is supercritical in µ3, that is to the inside
of T in (44). �

One may instead choose µ1 as bifurcation
parameter, with crossing condition

∂α(µ)
∂µ1

= −3µ1 �= 0, (49)

or simply µ1 �= 0. This derivative obviously changes
sign with µ1, which again implies that the direction
of bifurcation is to the inside of the parabolic semi-
cylinder (44). The Hopf bifurcation with parameter
µ1, at µ1 = 0 in the plane µ3 = 0, is a type of degen-
erate Hopf bifurcation that was analyzed in [Golu-
bitsky & Langford, 1981]. The results of [Golubitsky
& Langford, 1981] are applied in a neighborhood of
µ1 = 0 in Sec. 3.2. Parameter µ2 is never a good
choice of Hopf bifurcation parameter.

Note that the closures of C, H and T meet in
the curves I shown in Fig. 3, and I contains the
zero-Hopf bifurcation curve defined by

ZH = {(µ1, µ2, µ3)|µ3 = 3µ2
1, µ2 = 2µ3

1}. (50)

In Sec. 3.3 the interesting behavior in a neighbor-
hood of ZH is explored.

3. Codimension-Two Bifurcations in R
2

This section presents a more detailed study of
the codimension-two bifurcations that exist locally
in Fig. 3, where C, H and T meet. The generic
properties of local codimension-one and two bifur-
cations can be found in standard texts, such as
[Guckenheimer & Holmes, 1986; Kuznetsov, 2004;
Wiggins, 1990].

In all cases, the bifurcation varieties C, H and
T of Fig. 3 intersect transversely any plane µ3 =
constant �= 0. Furthermore, the curves of intersec-
tion in this plane remain topologically equivalent as
µ3 �= 0 varies continuously. Thus, it is sufficient as
well as convenient to study the behavior in Fig. 3
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by taking three two-dimensional slices, correspond-
ing to µ3 = −ε, µ3 = 0 and µ3 = +ε, respec-
tively, for small ε > 0. The following Secs. 3.1–3.3
explore each of these three cases, assuming k = ±1,
l = −1, m = +1.

3.1. Negative µ3

For fixed µ3 < 0, Eq. (25) has a unique equilibrium
on the z-axis, E1 = (0, z1) as in (35), and possibly
an equilibrium with r > 0, E4 = (r4, z4), see (36).
The Jacobian matrix of (25) at general (r, z) is

J =
(

µ1 + z r

2kr µ3 − 3z2

)
, (51)

which becomes at E1 and E4 respectively

J1 =
(

µ1 + z1 0
0 µ3 − 3z2

1

)
,

J4 =
(

0 r4

2kr4 µ3 − 3µ2
1

)
.

(52)

When µ3 < 0, the determinant of J1 or of J4 can
be zero if and only if

µ2 − µ1µ3 + µ3
1 = 0, (53)

which is the Hopf bifurcation variety H in (38). Ele-
mentary calculations show that the 2D phase por-
traits on each side of H, including the equilibria and
their stabilities, are as shown in Fig. 4.

3.2. Zero µ3

The bifurcations and phase portraits for the case
µ3 = 0 are similar to those shown in Fig. 4, except

that H is now tangent to the µ1 axis at (0, 0) and
there is an additional bifurcation variety in the case
k = −1, given by the semi-axis {µ2 > 0, µ1 = 0,
µ3 = 0}, which is tangent to T and on which there
is a degenerate Hopf bifurcation (the Hopf crossing
condition is violated).

In Fig. 3(b), consider the intersection of any
horizontal plane, defined by a constant µ2 > 0, with
a spherical neighborhood of a point on the µ2-axis.
This yields a small disk that intersects the torus
bifurcation variety T of Fig. 3(b) in a U-shaped
curve. (Because the disk should not intersect the
cusp bifurcation variety C, the disk must shrink to
zero as µ2 → 0; see Fig. 3(b).) Now in this disk
consider a line µ3 = constant with µ1 varying as
bifurcation parameter. This line intersects T in two
points if µ3 > 0, one point if µ3 = 0 and no point
if µ3 < 0. This type of degenerate Hopf bifurcation
has been studied in [Golubitsky & Langford, 1981],
see also [Golubitsky & Schaeffer, 1985].

Proposition 3.1. Consider a line with fixed µ2, µ3,
both positive, and with µ1 varying. Then, for each
sufficiently small (µ2, µ3), there exist two Hopf
bifurcation points, one at each intersection of this
line with the U-shaped curve defined by T . The
directions of both bifurcating branches are to the
interior of the region bounded by T and the peri-
odic orbits are stable limit cycles. Moreover, these
two branches are in fact one and the same contin-
uous branch of periodic solutions joining the two
Hopf bifurcations on T, and these periodic solutions
are unique. As µ3 → 0+, this branch of periodic

(a) (b)

Fig. 4. Bifurcation variety H and phase portraits for µ3 < 0. (a) k = +1: E4 exists below H as a saddle. (b) k = −1: E4

exists above H as a sink.
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(a) (b) (c)

Fig. 5. Degenerate Hopf bifurcation for k = −1 and fixed small µ2 > 0. (a) A unique branch of periodic orbits for µ3 > 0,
parameterized by µ1, begins and ends in a classical Hopf bifurcation at T . (b) The branch shrinks to a point for µ3 = 0.
(c) The branch does not exist for µ3 < 0.

solutions shrinks to a point on the positive µ1-axis,
and then disappears for µ3 < 0; see Fig. 5.

Proof. The first two statements of this Proposition
follow directly from Proposition 2.2. The last two
statements follow from the case of normal form (4.2)
in [Golubitsky & Langford, 1981], based on the cal-
culations (49) and (48) and above. �

This uniqueness result, obtained by application
of the theory in [Golubitsky & Langford, 1981] and
[Golubitsky & Schaeffer, 1985], yields new informa-
tion for sufficiently small {|µ1|, µ2 > 0, µ3 > 0}.
Until now, the uniqueness of periodic orbits in this
region has been an open question. For example,
Gavrilov [1987] assumed uniqueness as an addi-
tional hypothesis in order to complete his classi-
fication of two-dimensional phase portraits.

3.3. Positive µ3

In the case µ3 > 0, much richer dynamics is possible
for Eq. (25), due to the existence of the bifurcation
varieties C and T in addition to H. These are two-
dimensional surfaces in the parameter space that
intersect along the curves I in Fig. 3. It is clear
that I intersects transversely any plane with fixed

small µ3 > 0. Denote these points of intersection by
ZH (zero-Hopf), HC (Hopf-cusp) and TC (torus-
cusp), see Fig. 6(a). The next goal is to understand
the dynamics near these codimension-two points,
given in parametric form by

ZH1 =
{

(µ1, µ2)|µ1 = −
√

µ3

3
,

µ2 = −2
(µ3

3

)3/2
}

(54)

ZH2 =
{

(µ1, µ2)|µ1 = +
√

µ3

3
,

µ2 = +2
(µ3

3

)3/2
}

(55)

HC1 =
{

(µ1, µ2)|µ1 = −2
√

µ3

3
,

µ2 = +2
(µ3

3

)3/2
}

(56)

HC2 =
{

(µ1, µ2)|µ1 = +2
√

µ3

3
,

µ2 = −2
(µ3

3

)3/2
}

(57)

C+

T

HC1
TC ZH2

C-
HC2

ZH1

TH

µ1

µ2 5

HC1 TC
HtC

ZH2

6b

Ht

HC2
ZH1

C1
+

6a J

6c

(a) (b)

Fig. 6. (a) Codimension-two intersections of the bifurcation varieties C, H , T , in the (µ1, µ2) plane for fixed µ3 > 0, k = −1.
(b) Same figure with the varieties Ht and J inherited from the fold–Hopf bifurcation theory of [Guckenheimer & Holmes,
1986].



The Cusp–Hopf Bifurcation 2559

TC =
{

(µ1, µ2)|µ1 = −
√

µ3

3
,

µ2 = +2
(µ3

3

)3/2
}

. (58)

3.3.1. Neighborhoods of ZH1 and ZH2

We begin by analyzing the neighborhoods of the
zero-Hopf points ZH1 and ZH2, which are the most
interesting cases. They appear to be highly degen-
erate in Fig. 6(a). The varieties C and H meet tan-
gentially rather than transversely at ZH1 and ZH2,
and furthermore, in the case k = −1, the variety T
terminates at the same points. These degeneracies
are characteristic of the codimension-two fold–Hopf
bifurcation, see [Guckenheimer & Holmes, 1986;
Wiggins, 1990; Kuznetsov, 2004]. Indeed, we will
show that a generic fold–Hopf bifurcation occurs at
each of ZH1 and ZH2.

First, translate both the coordinates and the
parameters in the cusp–Hopf normal form (25), to
bring ZH1 (or ZH2) to the origin in parameter
space and bring the corresponding fold equilibrium
point to the origin in state space. Then determine
the Poincaré normal form in these new coordinates
and show that it is in fact a nondegenerate fold–
Hopf normal form, for fixed µ3 > 0. Then the clas-
sical results of Gavrilov [1978]; Guckenheimer [1980]
for this case can be invoked to describe the behavior
of system (25), near ZH1 and ZH2.

The parameters at the bifurcation points ZH1

and ZH2 are given by (54), (55), and the coor-
dinates of the corresponding equilibria in state
space are

ZH1 : r = 0, z1 = −2
√

µ3

3
,

z2 = z3 = z4 =
√

µ3

3
,

ZH2 : r = 0, z1 = 2
√

µ3

3
,

z2 = z3 = z4 = −
√

µ3

3
.

(59)

In each case, we have a multiple equilibrium point
with r = 0, z2 = z3 = z4, which is a classical
codimension-two fold–Hopf bifurcation point. The
other equilibrium point (0, z1) is outside the local
neighborhood of the fold–Hopf bifurcation, and thus
does not enter into the present analysis. We deal
with the two cases (59) simultaneously, by defining

σ = ±1, with σ = +1 for the case ZH1 and σ = −1
for the case ZH2. Now translate the multiple equi-
librium point to the origin in each case, by letting
ẑ = z − σ

√
µ3/3 and substituting into (25), to

obtain

ṙ = φ1r + rẑ (60)
˙̂z = φ2 − σ

√
3µ3ẑ

2 + kr2 − ẑ3 ,

where φ1 = µ1 + σ
√

µ3/3 and φ2 = µ2 +
(2σ/3)

√
µ3

3/3. Simplify these equations by rescal-
ing ζ =

√
3µ3ẑ and ρ = 4

√
3µ3r. Then (60) becomes

ρ̇ = λ1ρ + aρζ

ζ̇ = σλ2 − ζ2 + bρ2 − fζ3,
(61)

where λ1 = φ1, λ2 = φ2
√

3µ3, a = σ/
√

3µ3,
b = σk = ±1 and f = 1/3µ3 > 0. Equation
(61) is the normal form of the fold–Hopf bifurca-
tion, in the version given by Guckenheimer and
Holmes [1986]. (An equivalent normal form for the
fold–Hopf bifurcation has been studied by Gavrilov
[1978] and Kuznetsov [2004]. They retain a different
choice of cubic term in their analysis, which is less
convenient for the purposes of this paper.)

The local bifurcation diagrams in neighbor-
hoods of ZH1 and ZH2 may now be obtained from
the fold–Hopf results of Guckenheimer and Holmes
[1986]. There are four main cases in [Guckenheimer
& Holmes, 1986], depending on the signs of a =
σ/

√
3µ3 and b = σk in (61), and there is a one-to-

one correspondence between those four cases and
the four choices of signs here of σ = ±1 and k = ±1;
see Table 1. (Since µ3 is small, we may assume
|a| > 1 so that in cases II and IV of [Guckenheimer
& Holmes, 1986] we fall in subcases IIb and IVb,
respectively.) It is remarkable that each of the four
basic cases of the fold–Hopf bifurcation in [Gucken-
heimer & Holmes, 1986] (see also [Kuznetsov, 2004;
Langford, 1979; Wiggins, 1990]) occurs exactly once
among the points ZH1 and ZH2 for the two cases
k = ±1 in the cusp–Hopf bifurcation as shown in
Table 1.

Figure 6(b) presents the additional informa-
tion inherited from the fold–Hopf bifurcation, in the
neighborhoods of bifurcation points ZH1 and ZH2,
for the more interesting case of k = −1. In this case,
neighborhoods of ZH1 and ZH2 include not only
the torus bifurcation variety T , but also the pos-
sibility of varieties Ht and J , as we now describe.
The nontrivial equilibrium E4 = (r4, z4) exists at
all points above the variety H in Fig. 6(b), and E4

undergoes secondary Hopf bifurcation on T . It is
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Table 1. Correspondence between the four basic cases of fold–Hopf bifurcation in [Guckenheimer &
Holmes, 1986] and the bifurcations at ZH1 and ZH2 in the cusp–Hopf case.

Case in GH [1986] GH Conditions Signs of σ and k Cusp–Hopf Case

I b = +1, a > 0 σ = +1, k = +1 Case: ZH1, T absent
II b = +1, a < 0 σ = −1, k = −1 Case: ZH2, T exists
III b = −1, a > 0 σ = +1, k = −1 Case: ZH1, T exists
IV b = −1, a < 0 σ = −1, k = +1 Case: ZH2, T absent

known that the Hopf bifurcation on T in the fold–
Hopf normal form truncated to quadratic order is
degenerate; that is, the equilibrium corresponding
to E4 = (r4, z4) is a nonlinear center in this case.
The cubic term ζ3 in (61) removes this degeneracy.
According to delicate analysis involving Abelian
integrals by several authors, see [Chow et al., 1994;
van Gils, 1985; Guckenheimer & Holmes, 1986;
Zoladek, 1987], in a neighborhood of ZH1 (case III,
Fig. 7.4.5 in [Guckenheimer & Holmes, 1986]) there
is a unique branch of hyperbolic periodic solutions
of (61) growing monotonically in amplitude to the
right of T and terminating in a heteroclinic loop
bifurcation variety along Ht in Fig. 6(b), tangent
at ZH1 to the line (with µ3 = constant) given by

Ht : µ2 + 2
(µ3

3

)3/2
= 4µ3

[
µ1 +

(µ3

3

)1/2
]

. (62)

If the coefficient of the cubic term ζ3 in (61) is
negative, as is true with l = −1, then the fold–
Hopf analysis implies that these periodic orbits are
asymptotically stable limit cycles existing uniquely
to the right of T , in a wedge between T and Ht,
see Fig. 6(b). These conclusions remain valid in
a neighborhood of ZH1 when higher order terms
are restored for the cusp–Hopf system. Thus in
Fig. 6(b), it remains to determine how far the bifur-
cation variety Ht persists away from ZH1, and if
there exists a point of intersection of Ht and C,
as indicated by HtC in Fig. 6(b). These issues are
addressed in Sec. 3.3.3.

The situation at ZH2 with k = −1 is sim-
ilar. This corresponds to Case II, Fig. 7.4.4 in
[Guckenheimer & Holmes, 1986], with the param-
eter µ2 flipped in sign. The bifurcation varieties
C and H are locally in agreement with those of
the fold–Hopf case. In the quadratic truncation of
the fold–Hopf case in (61), T corresponds to a
degenerate Hopf bifurcation and there is a nonlin-
ear center with periodic orbits of arbitrarily large
amplitude. The cubic term ζ3 in (61) again removes
this degeneracy. In the case l = −1 for the fold–Hopf
case, a unique branch of stable limit cycles grows

monitonically from E4 and “blows up”, in the fol-
lowing sense. As the parameters (µ1, µ2) move away
from T (to the left in Fig. 6(b)) while remaining in
a neighborhood of ZH2, the limit cycle escapes any
small neighborhood of the equilibrium E4. There
is no heteroclinic loop bounding these limit cycles.
(This does not mean that the limit cycle for the orig-
inal system grows to infinite amplitude, since these
results are valid only locally.) The line J in Fig. 6(b)
represents this boundary on which the limit cycle
“locally blows up” in the fold–Hopf analysis; see
Sec. 3.3.3.

The case k = +1 in the cusp–Hopf normal form
is much simpler than the case k = −1 that is shown
in Fig. 6(b). For k = +1, none of T , Ht and J exist.
The bifurcation varietiesC and H remain the same as
shown in Fig. 6. The nontrivial equilibriumE4 exists,
everywhere below H in these figures, and is a saddle
point (thus there can be no secondary Hopf bifurca-
tion from E4). As in Table 1, there is a neighborhood
of ZH1 agreeing with Case I, Fig. 7.4.3 in [Gucken-
heimer & Holmes, 1986], and a neighborhood of ZH2

agreeing with Case IV, Fig. 7.4.6 in [Guckenheimer
& Holmes, 1986], but with the sign of µ2 flipped. All
of these two-dimensional phase portraits for the case
k = +1 are shown in Fig. 9 of Sec. 3.3.5.

3.3.2. Neighborhoods of HC1, HC2 and TC

Now consider the dynamics near points HC1 and
HC2 in Fig. 6, for which the coordinates in param-
eter space are given by Eqs. (56), (57). The corre-
sponding coordinates of the four equilibrium points
in the 2D state space are

HC1 : r = 0, z1 = z4 = 2
√

µ3

3
,

z2 = z3 = −
√

µ3

3
,

HC2 : r = 0, z1 = z4 = −2
√

µ3

3
,

z2 = z3 =
√

µ3

3
.

(63)
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It is clear that HC1 and HC2 represent transverse
intersections of the bifurcation varieties C and H.
From Eq. (63) at each of HC1 and HC2 the equi-
libria E1 and E4 have coalesced, corresponding to
the Hopf bifurcation on H. Simultaneously E2 and
E3 have coalesced, corresponding to a fold bifur-
cation on C. For fixed µ3 > 0, Eq. (63) shows
that in each case these two degenerate equilibria
are well-separated in state space. A local bifur-
cation analysis at each equilibrium involves only
classical codimension-one pitchfork and fold bifur-
cations, respectively, with no interactions between
them. Thus, we say these are trivial codimension-
two bifurcations. The corresponding phase portraits
are easily obtained by classical methods and are
presented in Sec. 3.3.5. For more details of these
calculations, see [Harlim, 2001].

The situation at TC in Fig. 6(b) is similar.
There is a secondary Hopf bifurcation at E4 (with
r > 0) along T . According to Proposition 2.2 this
Hopf bifurcation is supercritical to the right of
TC in Fig. 6(b). Independently, a fold bifurcation
involving E3 and E4 occurs on crossing C. These
two codimension-one bifurcations do not interact
and the equilibrium E1 remains hyperbolic near
TC. This is another trivial codimension-two bifur-
cation. However, HtC in Fig. 6(b) is nontrivial and
is analyzed in the next section.

3.3.3. Phase plane analysis

At the codimension-two points ZH1, ZH2, . . . , HtC
in Fig. 6, we have nonlocal behavior in the phase
plane. In each case, we need to combine the local
results from the codimension-one and two bifurca-
tions, to obtain “global” phase portraits of Eq. (25).
Here by “global” we only mean a description of the
dynamics in a full neighborhood in which the nor-
mal form (25) gives a valid description. Nullclines
and the Poincaré–Bendixson Theorem are useful
tools to achieve this goal. The nullclines of (25) are

ṙ = 0 ⇒ z = −µ1 or r = 0,
ż = 0 ⇒ r2 = k[z3 − µ2 − µ3z] ≥ 0.

(64)

The first two nullclines are straight lines, but the
ż = 0 nullcline is nonlinear (S-shaped) and is
defined only for r2 ≥ 0; see Fig. 7 for the case
k = −1.

The intersections of the S-shaped nullcline with
the z-axis (r = 0) give one to three equilibria: E1,
E2 and E3. Intersection with the horizontal line
z = −µ1 (not shown but easily visualized in Fig. 7)

when r > 0 yields E4. In the r > 0 half-plane, the
direction field points to the left below z = −µ1,
and to the right above z = −µ1. For the S-shaped
nullcline ż = 0, if k = −1, the direction field points
upward in any region on the left side of this nullcline
and downward on the right side. The case k = +1
can be completed by similar arguments. The follow-
ing Proposition is a useful tool.

Proposition 3.2. Consider Eq. (25) with parame-
ters fixed to be in any one of the regions 6a, 6b,
6c of Fig. 6(b). Then there exists a periodic orbit
bounded by the unstable manifold of the saddle-point
equilibrium E1. Moreover, the unstable focus E4 is
in the interior of this periodic orbit.

Proof. The regions 6a, 6b, 6c of Fig. 6(b) corre-
spond to region 2 in Fig. 7 and the nullcline for
ż = 0 is the S-shaped curve in subfigure 2. The
horizontal nullcline z = −µ1, denoted N1 in Fig. 8,
intersects the S-shaped nullcline at E4 (between
the two turning points because it is interior to the
variety T ). Any solution orbit meeting N1 crosses
vertically upward between E4 and the z-axis, and
vertically downward on the other side of E4. Let
W U(E1) be the unstable manifold of E1. The direc-
tion field implies that W U (E1) must cross N1 down-
ward to the right of E4, after which W U(E1) crosses
the S-shaped nullcline below N1 and eventually
meets N1 to the left of E4 at s, see Fig. 8. Let
K2 be the “big snail” closed curve, consisting of the
segment of W U (E1) from E1 to s, then N1 to u on
the z-axis and finally back to E1. Similarly, since
E4 is an unstable spiral point from Sec. 2.2, there
exists a “small snail” closed curve K1. Finally, con-
sider the closed annular region K bounded by K1

and K2 in Fig. 8. Since K is compact, positively
invariant, and has no equilibrium points, by the
Poincaré–Bendixson Theorem there exists a peri-
odic orbit in K. �

Proposition 3.2 guarantees existence of a peri-
odic orbit throughout regions 6a, 6b, 6c of
Fig. 6(b), but does not guarantee uniqueness. How-
ever, with the uniqueness result of Proposition 3.1
of Sec. 3.2, there is a unique and stable limit cycle
locally in the interior of regions 6a, 6b, 6c for
sufficiently small µ3 > 0, and this limit cycle is
“born” in Hopf bifurcations on crossing the bound-
aries T of regions 6a, 6c in Fig. 6. Uniqueness of
the limit cycle also follows in region 4 (see Fig. 10),
sufficiently near ZH1, from the fold-Hopf theory.
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Fig. 7. Dependence of the S-shaped nullcline ż = 0 on the parameters (µ2, µ3), in the case k = −1. Only r2 > 0, here drawn
with a solid line, is relevant.

Fig. 8. Illustration of the proof of Proposition 3.2.
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Uniqueness on C+
3 has not been proven, but it is

reasonable to assume it holds there too.
We now return to the issue of persistence of

the bifurcation varieties Ht and J above C+
1 , see

Fig. 6(b). These were “inherited” from the fold–
Hopf bifurcations at ZH1 and ZH2, respectively.
Recall that Ht is a heteroclinic loop bifurcation
variety, in which the stable and unstable mani-
folds of two saddle points on the z-axis coalesce
to form a closed loop together with the portion of
the z-axis joining them. Note that above C+

1 there
exists only one saddle point; the second one disap-
peared with a node in a fold bifurcation on crossing
C+

1 . Therefore, Ht cannot exist above C+
1 and Ht

globally disappears on crossing C+
1 through HtC.

Below C+, Ht persists to account for the disap-
pearance of the limit cycle from region 4 to region 5;
see Fig. 10.

At HtC, Ht meets C+ tangentially rather than
transversally, as indicated in Fig. 2 of [Gavrilov,
1987]. Let (µc

1, µ
c
2) and (rc

2, z
c
2) be the parameter val-

ues and corresponding coordinates at HtC, where
µc

2 = 2[µ3/3]3/2, rc
2 ≡ 0 and zc

2 = −(µc
2/2). Write

∆z2 = z2 − zc
2, ∆µ1 = µ1 − µc

1 and ∆µ2 = µ2 − µc
2.

In a neighborhood of the saddlenode bifurcation,
generically

∆z2 ∝ [−∆µ2]1/2. (65)

As the parameters move toward HtC along Ht, in
order for the heteroclinic loop always to meet z2

which is moving downward according to (65), the
loop must grow larger. From (25), the loop grows
with increasing µ1 and generically to leading order
this growth will be linear, thus

∆z2 ∝ −∆µ1. (66)

Combining (65) and (66) gives the approach to HtC
along Ht

−∆µ1 ∝ [−∆µ2]1/2 as ∆z2 → 0, (67)

from which follows that Ht is tangent to C+ at
HtC.

At the codimension-two point HtC the hete-
roclinic loop is degenerate, since the lower saddle
point has become a saddlenode. The phase portrait
at HtC has a loop, like the heteroclinic loop of case
Ht in Fig. 10, except that it tends to the saddlen-
ode along the boundary of its stable set. All orbits
inside the loop spiral outward towards the loop. All
orbits outside of the loop are attracted eventually
to the saddlenode from below as in subfigure C+

1 of
Fig. 10.

Similarly at ZH2, J corresponds to the “blow-
up” of the periodic orbit created by a Hopf bifurca-
tion in the fold–Hopf case. The phase plane analysis
of the cusp–Hopf normal form (25) and Proposi-
tions 3.2 and 3.1 show that in this region of param-
eter space, the periodic orbit persists, is unique and
remains finite in a neighborhood of E4. Thus, J
does not exist in the cusp–Hopf case, and regions
6a, 6b, 6c above C+ in Fig. 6 are all topologically
equivalent for sufficiently small µ3 > 0. Hereafter
they are all labeled 6.

3.3.4. Fold–heteroclinic bifurcation

An interesting phenomenon occurs on crossing C+
1

from region 5 to region 6. A bifurcation occurs that
is quite similar to the well known fold–homoclinic
bifurcation, see [Kuznetsov, 2004]. The heteroclinic
case differs from the fold–homoclinic bifurcation in
that there exist two saddle points in the loop. A
limit cycle is created on crossing C+

1 , as has been
noted in [Gavrilov, 1987; Langford, 1983, 1984b].

In region 5 all but one of the trajectories leav-
ing the unstable focus E4 go to the stable node on
the lower z-axis, so there can be no periodic orbit
in region 5 (see subfigure 5 in Fig. 10). The saddle
point and nodal sink that exist on the lower, z-axis
in region 5 come together in a saddlenode point
on C+

1 (as seen in subfigure C+
1 in Fig. 10) and

then vanish on entering region 6. The orbits that
had gone to the sink now continue upward along
the z-axis and around the periodic orbit (the exis-
tence of which is guaranteed by Proposition 3.2)
in region 6 of Fig. 10. In fact, these orbits must
asymptotically approach the periodic orbit, as fol-
lows from the uniqueness result of Proposition 3.1
and the Poincaré–Bendixson Theorem. The same
is true for those orbits inside the periodic orbit.
Thus, an asymptotically stable limit cycle is cre-
ated on crossing C+

1 . This phenomenon is called a
fold–heteroclinic bifurcation. The fold–heteroclinic
bifurcation leads to interesting behavior in the
three-dimensional dynamics that we call bursting
oscillations, see Sec. 4.

3.3.5. 2D bifurcation diagrams and phase
portraits

This section completes the presentation of bifur-
cation diagrams and planar phase portraits. For
the simpler case of µ3 < 0 the results are shown
already in Fig. 4. Here we complete the case µ3 > 0.
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Without loss of generality, fix l = −1, m = +1, and
consider both cases k = ±1.

The case k = +1 is shown in Fig. 9. On cross-
ing either of the two horizontal lines C+ or C− from
the region between them, two equilibrium points on
the z-axis coalesce and vanish via a fold bifurca-
tion. The S-shaped curve H locates the pitchfork
bifurcation in the two-dimensional system and cor-
responds to the primary Hopf bifurcation in the
three-dimensional system. Everywhere to the left
and below H there exists a saddle point E4 with
r > 0, and there are two to four equilibria. Above
H, the equilibrium E4 does not exist and there
are at most three equilibria. There are no limit
cycles.

Now consider the more interesting case k =
−1, see Fig. 10. In addition to the bifurcations
on C and H as above, there is a secondary Hopf
(Torus) bifurcation on crossing T , a heteroclinic
loop bifurcation in which a limit cycle disappears

on crossing Ht from region 4 to region 5, and
a fold-heteroclinic bifurcation that gives rise to a
limit cycle on crossing C+

1 from 5 to 6. Call the
part of region 6 along C+

1 above 5 a bursting
region.

If µ3 decreases continuously to 0 and becomes
negative, then in Fig. 9 or 10 the cusp variety C±
shrinks to the µ1-axis and disappears together with
many of the phase portraits, leaving only the two
portraits 1 and 6 as in Fig. 4(a) (k = +1), or the
two portraits 1 and 9 as in Fig. 4(b) (k = −1),
respectively.

Figures 9 and 10 present all of the structurally
stable two-dimensional phase portraits, and most
of the nonstructurally stable transitional portraits
on the bifurcation varieties, for l = −1, m = +1
and µ3 > 0. All the remaining of the eight cases
k = ±1, l = ±1, m = ±1 may be obtained from the
two presented here on applying the transformations
(22), (23) of Sec. 2.

1 2 3 4 5 6

C3
+ C1

+ C2
+

C1
- C2

-
C3

-

ZH2

HC2
61

4
5

C2
+

C3
-C2

-

HC1

ZH1

61

2

3

C3
+

C1
-

C1
+

H

Fig. 9. 2D bifurcation diagram and phase portraits for k = +1 (with l = −1, m = +1, µ3 > 0).
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1 2 3 4 5 6

7 8 9
C4

+

C5
+

C1
+

C2
+ Ht

C1
- C2

- C3
-

C3
+

7

C1
-

HC1

H

9

C5
+

C3
-

HC2

1

1

2

C2
+

4

C3
+

5

HtCTTC

ZH1

1

3

C4
+

ZH2

8

T

9

6

C1
+

C2
-

Ht

Fig. 10. 2D bifurcation diagram and phase portraits for k = −1 (with l = −1, m = +1, µ3 > 0).

4. Three-Dimensional Phase Portraits

This section presents selected three-dimensional
phase portraits for the cusp–Hopf bifurcation,
emphasizing behavior that is not typical of the fold–
Hopf case, and indicates where the study of the 3D
dynamics is incomplete.

Consider the bifurcation diagrams for the two-
dimensional (r, z) system (25), shown in Figs. 4,
9 and 10. To this (r, z) system, now restore the θ
dependence, but first in the restricted form of the
truncated Eqs. (11), (12). This three-dimensional
system has an S1 symmetry of rotation around the
z-axis. Note this is not a rigid rotation, but rather
rotation with “shear”, that is, the angular velocity
can be different on each circle Or,z through (r, z)
with center at (0, z). Locally, the rate of rotation
about the z-axis is asymptotically close to ω. With
these observations, the phase portrait of the trun-
cated three-dimensional system is obtained easily

by rotation of the two-dimensional phase portraits
in Sec. 3.3.5 about the z-axis, taking into account
the shear.

The trivial equilibria E1,2,3 remain equilib-
rium points on the z-axis for the truncated three-
dimensional system (11), (12) and the surface C
remains a fold bifurcation surface for these equilib-
ria. The nontrivial equilibrium E4 with r �= 0 in
(25) corresponds to a periodic orbit in (11), (12),
with the same stability as E4. This periodic orbit
is created in a Hopf bifurcation on H. The sec-
ondary Hopf bifurcation surface T corresponds to
a Neimark–Sacker bifurcation of the limit cycle in
(11), (12), giving rise to an invariant two-torus. This
torus is the same torus that exists in the fold–Hopf
bifurcations at W1 and W2 if k = −1. The hetero-
clinic loop that exists on Ht in the planar system
is rotated about the z-axis to generate a smooth
two-dimensional invariant surface for (11), (12).
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Next, consider the effects of restoring the higher
order terms to (11), (12), as in (10). These higher
order terms break the S1 symmetry. This may dra-
matically affect the dynamics. Still, much of the
behavior of the S1-symmetric system does per-
sist. The key property is “normal hyperbolicity”.
Orbits or invariant manifolds which are hyper-
bolic in directions normal to the flow direction
(essentially the direction of the S1 symmetric rota-
tion) are structurally stable and therefore preserved
under sufficiently small perturbations; even those
that break the S1 symmetry. Solutions of the two-
dimensional system that are hyperbolic in the (r, z)
phase plane become normally hyperbolic solutions
in the three-dimensional space. Thus hyperbolic
equilibria and limit cycles persist. The asymptot-
ically stable limit cycle in the (r, z) phase plane
becomes a normally hyperbolic invariant torus that
persists, at least locally.

The three-dimensional solutions of the S1-
symmetric normal form Eqs. (11) and (12) are
represented in figures obtained numerically using
Maple. These simulations confirm the above pre-
dictions regarding the system with S1 symmetry.
Combining the planar Eq. (25) with a rigid rotation
θ̇ = ω and transforming back to cartesian coordi-
nates gives

ẋ = (z + µ1)x − ωy

ẏ = ωx + (z + µ1)y (68)
ż = µ2 + µ3z − z3 + k(x2 + y2).

In region 1 of Fig. 10, the flow converges to a limit
cycle about the z-axis, as can be seen in Fig. 11(a)
corresponding to parameters µ3 = 1, k = −1,
µ1 = −0.6, µ2 = 0.4, ω = 3.5 and initial condi-
tion x(0) = 0.1, y(0) = 0.1, z(0) = 0.1. Now cross

T to region 6, choose µ1 = −0.5 but keep the other
values as in Fig. 11(a). Then a torus is observed as
in Fig. 11(b).

In region 4 of Fig. 10, choose parameters µ3 =
1, k = −1, µ1 = −0.55, µ2 = 0 and ω = 3.5, and
solve (68) numerically with two sets of initial condi-
tions, namely x(0) = 0.1, y(0) = 0.1, z(0) = 1, and
x(0) = 0.1, y(0) = 0.1, z(0) = −0.1. In this case
bistability is observed: the first initial point leads
to an invariant torus, while in the second case the
flow converges to the stable node. This is consistent
with the two-dimensional dynamics in region 4 of
Fig. 10. The three-dimensional phase portraits are
in Fig. 12.

The nature of the flow on the invariant torus is
influenced as follows by the higher order remainder
terms. The S1 symmetry of the truncated system
(11), (12) implies that all of the orbits in the invari-
ant torus are S1-conjugates. This means that, given
any orbit γ in the invariant torus and any group
element σ ∈ S1, then σγ is always an orbit in the
invariant torus, and furthermore every orbit on the
torus is obtained in this way. When the S1 symme-
try is broken, the orbits are no longer constrained
in this way and the nature of the flow is determined
by a rotation number ρ, see Sec. 6.2 in [Gucken-
heimer & Holmes, 1986]. The rotation number ρ
in the present case is essentially the ratio of the
two frequencies of the secondary and the primary
Hopf bifurcations, that is

√
µ2 − 2µ3

1/ω; therefore,
ρ is a very small number. If ρ is an irrational num-
ber, then there is a nonperiodic dense orbit in the
invariant torus. If ρ is a rational number, then
generically there are interlaced stable and unsta-
ble periodic orbits on the invariant torus, which
have very long period since ρ is small; one calls
this is “weak resonance”. Because ρ is small, this

(a) (b)

Fig. 11. Example of bifurcation from a stable limit cycle to an invariant torus. (a) Stable limit cycle in region 1. (b) Symmetric
torus attractor in region 6.
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(a) (b)

Fig. 12. Example of bistability in region 4 of Fig. 10. (a) Torus attractor. (b) Equilibrium point attractor. For initial
conditions, see text.

distinction between the irrational case (nonperiodic
orbits) and the rational case (very long periodic
orbits) is only academic; in practice, they cannot be
distinguished without very careful measurements or
computations.

There is another more significant effect that
S1 symmetry-breaking may have on the invari-
ant torus. It may cause the torus to lose smooth-
ness and “wrinkle”, even under fairly small
symmetry-breaking perturbations, sufficiently near
the heteroclinic loop Ht. An early numerical study
of the cusp–Hopf bifurcation, Langford [1984b],
showed that, near the former invariant torus of the
symmetric equations, one can find not only peri-
odic orbits, but also period doubling, coexistence
of attractors and a variety of chaotic attractors,
including a “Cantor band” and a “thickened wrin-
kled torus”. The origin of much of this chaotic
behavior is the heteroclinic loop in the (r, z)
half-plane, that exists on Ht, which generates a
two-dimensional sphere-like invariant manifold for
the S1-symmetric system (11), (12). This sur-
face in general splits into two 2-manifolds, respec-
tively the stable and unstable manifolds of the
two saddle points, and these manifolds generi-
cally intersect transversely but infinitely often, giv-
ing rise to Smale horseshoes and related generic
chaotic phenomena that have been studied by many
people since Poincaré. Another effect of the S1

symmetry-breaking perturbations is the fact that
the z-axis need no longer be invariant, so the three
equilibria E1,2,3 are no longer joined by unique
heteroclinic orbits along the z-axis. Instead, these
one-dimensional stable and unstable manifolds are
freed to escape the z-axis and may find their way
to strange (Silnikov) attractors. These chaotic phe-
nomena are not pursued further in this paper.

4.1. Bursting oscillations

A system is said to have bursting oscillations when
its activity changes periodically between a quiescent
state and a train of rapid spike-like oscillations. Hys-
teresis or bistability of a fast subsystem is a typical
ingredient of systems exhibiting bursting activity.
Such systems are often studied using perturbation
theory with two timescales (fast and slow) with the
convention that the slow system parametrizes the
fast system. Schemes for the classification of bursters
have been proposed by various authors, see for exam-
ple [Rinzel, 1987; Izhikevich, 2000].

Just after the saddle point and node on the
z-axis disappear in a saddlenode bifurcation on
C+

1 in Fig. 10, the vector field remains nearly
zero in a neighborhood that formerly contained the
saddlenode point. This implies that the flow of solu-
tions through this neighborhood is very slow. Thus,
on the newly-created limit cycle the flow is very
slow near this part of the z-axis where the saddle-
node had been, and relatively fast on the portion
away from the z-axis. On restoring the θ depen-
dence, the three-dimensional system (11), (12) has
solutions that oscillate with relatively large ampli-
tude r and fast frequency, then decay to very small
amplitude and appear quiescent near the z-axis for
an interval of time, after which they rebound to
large fast oscillations again. Numerical examples of
such bursting oscillations have been given in Lang-
ford [1983, 1984b].

Numerical simulation for the three-dimensional
system (68), with parameters corresponding to
region 6 of Fig. 10 near the fold-heteroclinic bifurca-
tion, yields a bursting oscillation. See Fig. 13(a) for
a partial phase portrait. Figure 13(b) shows the plot
of x versus time t for the same solution, which con-
firms bursting activity for Eq. (68) in region 6 near
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(a) (b)

Fig. 13. (a) Bursting oscillations in three-dimensional state space, parameter region 6 near 5 in Fig. 10. (b) Graph of x(t)
with respect to time t.

C+
1 . Both plots were calculated with initial condi-

tion x(0) = 0.1, y(0) = 0.1, z(0) = 0.1, and param-
eters k = −1, µ1 = −0.2, µ2 = 0.4, µ3 = 1.

5. Conclusions and Future
Directions

The generalization of the classical codimension-
two fold–Hopf bifurcation, to a codimension-three
cusp–Hopf bifurcation, yields a variety of new
and interesting phenomena. In this paper, analy-
sis of the cusp–Hopf system with three bifurcation
parameters leads to the stratified subvariety of pri-
mary bifurcations presented in Fig. 3. Nonlinear
term coefficients k, l and m contribute eight dif-
ferent cases to the analysis, but these have been
reduced to two cases by rescalings including time
reversal.

The unfoldings of the cusp–Hopf bifurca-
tion incorporate all four generic cases of the
codimension-two fold–Hopf normal form. This,
together with classical nullcline analysis and the
degenerate Hopf bifurcation theorem of [Golubitsky
& Langford, 1981], guides us to understanding all of
the possible behaviors of the truncated cusp–Hopf
system in the two-dimensional (r, z) coordinates, as
displayed in Figs. 4, 9 and 10. An important prop-
erty for applications is that, in the case k = −1,
the cusp–Hopf bifurcation has a basin of attraction.
This is impossible for the fold–Hopf bifurcation.

Also, in the three-dimensional dynamics for
k = −1, a torus may exist in the truncated nor-
mal form arising via a Neimark–Sacker bifurcation
from a limit cycle. It may be expected to persist
for parameter values near this bifurcation. Further

away, near a heteroclinic loop, the symmetry-
breaking remainder terms cause the torus to lose
its smoothness and it may be replaced by a chaotic
attractor. Further investigation of such chaotic
behavior and the occurrence of Melnikov and Sil-
nikov phenomena will be reported elsewhere.

A fold-heteroclinic bifurcation gives rise to a
limit cycle, via a fold bifurcation in a heteroclinic
cycle connecting a saddle point and a saddlenode
point. This bifurcation does not occur in the
fold–Hopf case. It plays an important role in the
occurrence of “bursting oscillations” in the three-
dimensional dynamics. Numerical simulations con-
firm the bursting oscillations.

Finally, we propose that neural network mod-
els as in [Izhikevich, 2000; Rinzel, 1987] and physi-
cal systems as in [Mullin, 1993; Roux, 1985] will be
investigated to determine whether the type of burst-
ing behavior identified here, in a codimension-three
normal form, may be relevant to the understanding
of bursting behavior in such applications.
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