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ABSTRACT 
 
By explicitly modelling the distortion of speech signals, model 
adaptation based on vector Taylor series (VTS) approaches have 
been shown to significantly improve the robustness of speech 
recognizers to environmental noise. However, the computational 
cost of VTS model adaptation (MVTS) methods hinders them from 
being widely used because they need to adapt all the HMM 
parameters for every utterance at runtime. In contrast, VTS feature 
enhancement (FVTS) methods have more computation advantages 
because they do not need multiple decoding passes and do not 
adapt all the HMM model parameters. In this paper, we propose 
two improvements to VTS feature enhancement: updating all of 
the environment distortion parameters and noise adaptive training 
of the front-end GMM. In addition, we investigate some other 
performance-related issues such as the selection of FVTS 
algorithms and the spectrum domain that MFCC is extracted from. 
As an important result of our investigation, we established the 
FVTS method can achieve comparable accuracy as the MVTS 
method with a smaller runtime cost. This makes FVTS method an 
ideal candidate for real world tasks. 

Index Terms— VTS, feature enhancement, model adaptation, 
robust ASR 
 

1. INTRODUCTION 
Environment robustness in automatic speech recognition (ASR) 
remains a difficult problem despite many years of research. The 
difficulty arises due to many possible types of distortions, 
including additive and convolutive distortions, which are not easy 
to predict accurately when developing the recognizers. In recent 
years, a model-domain approach that jointly compensates for 
additive and convolutive distortions (e.g., [1][2][3][4][5]) has 
yielded promising results. The various methods proposed so far use 
a parsimonious nonlinear physical model to describe the 
environmental distortion and use the vector Taylor series (VTS) 
approximation technique to find closed-form hidden Markov 
model (HMM) adaptation and noise/channel parameter estimation 
formulas. As shown in [5], VTS model adaptation achieves much 
better accuracy than other model adaptation technologies. 

Although VTS model adaptation can achieve high accuracy, 
the computational cost is very high as all the Gaussian parameters 
in the recognizer need to be updated every time the environmental 
parameters (noise and/or channel) change. This time-consuming 
requirement hinders VTS model adaptation from being widely 
used, especially in large vocabulary continuous speech recognition 
(LVCSR) where the number of model parameters is large.  

VTS feature enhancement has been proposed as a lower-cost 
alternative to VTS model adaptation. For example, a number of 
techniques have been proposed that can be categorized as model-
based feature enhancement schemes [6][7]. These methods use a 
small GMM or HMM in the front end and the same methodology 

used in VTS model adaptation to derive a minimum mean squared 
error estimate of the clean speech features given the noisy 
observations. In addition to the advantage of low runtime cost, 
VTS feature enhancement can be easily combined with other 
popular feature-based technologies, such as HLDA, fMPE, etc., 
which are challenging to VTS model adaptation. 

Recently, two improvements to VTS model adaptation have 
been introduced. First, a maximum likelihood updating of all of the 
environmental distortion parameters was proposed [4][5]. 
Significant improvements were obtained by updating the static and 
dynamic means and variances of noise and channel parameters 
rather than just their static means as was typically done previously. 
Second, a noise-adaptive training method was proposed that 
enabled models suitable for VTS adaptation to be trained from 
noisy training data [8]. This is a significant improvement as it 
removes the requirement that the model be trained from clean 
speech and enables VTS adaptation to be used in situations where 
systems are trained from noisy data typically captured from real-
world deployed applications.  

In this paper, we examine how these improvements to VTS 
model adaptation can be incorporated into VTS feature 
enhancement and whether they provide similar gains in accuracy.  
In addition, we highlight other algorithmic considerations that 
impact the performance of VTS feature enhancement including the 
order of the Taylor series expansion and the use of features derived 
from the magnitude spectrum versus the power spectrum.  

The paper is organized as follows. Section 2 presents the VTS 
model adaptation (MVTS) method. Section 3 presents VTS feature 
enhancement (FVTS). Advanced technologies for improving FVTS 
are presented in Section 4. In Section 5, a number of experiments 
are performed to evaluate the performance of techniques proposed 
in this paper. Finally, we summarize our study and draw 
conclusions in Section 6. 
 

2. VTS MODEL ADAPTATION 
 
The nonlinear distortion model of speech signal in cepstral domain 
is [1]: 

  (1) 

where , , , and  are the clean speech, noise, channel, and 
distorted speech, respectively, in the cepstral domain. By taking 
the expectation on both sides of Eq. (1) and use vector Taylor 
series (VTS) expansion, the static mean of the distorted speech 
signal  is  

  
  

(2) 

where 
  (3) 
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 are the static mean of clean speech, noise, channel, 
and  is the DCT matrix. By noting,  

 (4) 

 (5) 

we can derive the MVTS adaption formulations for the static 
HMM parameters for  the k-th Gaussian in the j-th state as 
(following [5]): 

 (6) 

  
(7) 

The dynamic HMM parameters can be adapted using the 
continuous time approximation [5]. We have proposed re-
estimation formulas for the static noise and channel mean, and the 
static and dynamic noise variances in [5]. 

The implementation steps of the MVTS HMM adaptation 
algorithm described so far in this section and used in our 
experiments are summarized in the following: 
1. Read in a distorted speech utterance; 
2. Set the channel mean vector to all zeros; 
3. Initialize the noise mean vector and diagonal covariance 

matrix using the first and last N frames from the utterance; 
4. Compute the Gaussian-dependent G(.) with Eq.(4), and adapt 

the HMM parameters; 
5. Decode the utterance with the adapted HMM parameters; 
6. Re-estimate the noise and channel distortions using the above-

decoded transcription;  
7. Adapt the HMM parameters again; 
8. Use the final adapted HMM model obtained in step 7 to 

decode the distorted speech feature and get output 
transcription. 

 
3. VTS FEATURE ENHANCEMENT 

In this section, we summarize how to enhance distorted speech 
features using FVTS. In contrast to MVTS, we use a GMM to 
represent the underlying speech space. The GMM is trained using 
all the training data. 
1. Read in a distorted speech utterance; 
2. Set the channel mean vector to all zeros; 
3. Initialize the noise mean vector and diagonal covariance 

matrix using the first and last N frames from the utterance; 
4. Compute the Gaussian-dependent G(.) with Eq.(4), and adapt 

the GMM parameters (Note that there is no state in GMM, 
therefore the  element in MVTS should now be denoted 
as the  element in FVTS); 

5. Re-estimate the noise and channel distortions;  
6. Adapt the GMM parameters again; 
7. Use the adapted GMM model to create an MMSE estimate of 

the clean speech given the observed noisy speech Eq. (11) or 
Eq. (14); 

8. Use the HMM model to decode the cleaned speech feature 
obtained in step 7 and get output transcription. 
There is no more HMM adaptation step in this FVTS 

algorithm. Given that the number of model parameters in a GMM 
usually is smaller than that in an HMM, FVTS has significantly 
lower runtime cost. In the following, we present two FVTS 
algorithms that can be used in step 7.  

In general, we can use the minimum mean square error 
(MMSE) method to get the estimate of clean speech  

  (8) 

Suppose the clean-trained GMM is denoted as 

 

together with Eq. (1), we have  

 

  

  
(9) 

 

Here, the Gaussian occupancy probability is calculated as 

 (10) 

 are the adapted distorted speech static mean and 
variance of the kth component of the GMM. If we use the 0th-order 
VTS approximation for the nonlinear term in Eq. (9), we can get 
the MMSE estimation of cleaned speech  as 

  
(11) 

This formulation was first proposed in [1], and we denote it as 
FVTS-0. 

In [6], another solution was proposed when expanding Eq. (1) 
with the 1st-order VTS. For the kth component of GMM, the joint 
distribution of  and  is modeled as 

 (12) 

With some Bayesian formulation, we have 
 

With the 1st-order VTS expansion of Eq. (1) and the property 
that speech and noise are independent, it is easy to get  

 (13) 

Then we can get the MMSE estimate of clean speech as 

 . 
(14) 

We denote the solution of Eq. (14) as FVTS-1. 
The key of FVTS is to get a reliable estimation of noise and 

channel distortion parameters, and accurately calculate the 
Gaussian occupancy probability. In contrast to Eq. (10), which 
only uses static feature to calculate the Gaussian occupancy 
probability, the static and dynamic features are used to get a more 
reliable Gaussian occupancy probability [9] 

 
(15) 

which is plugged into Eqs. (11) and (14).  
Regarding the runtime cost, MVTS needs to adapt HMM 

parameters twice (in Step 4 and 7), while FVTS needs to adapt 
GMM parameter twice (in Step 4 and 6). Usually, the number of 
parameters in the GMM is much smaller than that in the HMM. 
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Furthermore, two rounds of decoding (in Step 5 and 8) are needed 
in MVTS while only one round decoding (in Step 8) is performed 
in FVTS. As consequence, FVTS has much lower computational 
cost than MVTS. 
 

4. IMPROVEMENTS TO FVTS  
In this section, we show how recent improvements in MVTS can 
be incorporated into FVTS.  
 
4.1 Updating all distortion parameters 
In [1] and [6], only static noise and channel mean vectors are re-
estimated: 

  
  

  
  

In contrast, we propose to update all the distortion parameters. 
Here, we re-estimate the static noise variance by using a second-
order approach  

 

where  is the EM auxiliary function of the current utterance [5]. 
The dynamic noise variances  and  are updated in a 
similar way. Note that the dynamic means of the channel and noise 
are assumed to be zero. This follows from the assumption that the 
channel is deterministic and the noise is stochastic but stationary. 
Please refer [5] for the detailed formulation.  

After updating both the static and dynamic model parameters 
with the online distortion re-estimation, we can have a more 
accurate estimation of the Gaussian posterior probabilities.  
 
4.2 Noise adaptive training of GMM 
In FVTS, it is assumed that a GMM trained from clean speech is 
available. However, in real world tasks, sometimes it is hard to get 
clean training data that is otherwise matched to the speech 
expected to be seen in deployment. Therefore, the underlying 
GMM is trained from observed noisy speech, i.e. multi-condition 
training data. In this case, the physical model in Eq. (1) is no 
longer valid and FVTS should not be directly applied in theory. 
Noise adaptive training (NAT) [8] was proposed as a solution to 
this problem. NAT estimates a pseudo-clean canonical speech 
model from noisy training data by incorporating VTS model 
adaptation into the model training procedure. As an analogy, 
speaker adaptive training (SAT) starts from a speaker-independent 
model and iteratively updates the of the speaker transforms and the 
HMM parameters to estimate a canonical model with less speaker 
variability. In much the same way, NAT starts with a multi-
condition model and iteratively updates the distortion parameters 
and the HMM parameters to estimate a canonical model with less 
environmental variability. For example, given an estimate of the 
distortion parameters of each utterance in the training set, the 
updated pseudo-clean mean vector can be expressed as  

  
  

where, i is the utterance index,  is current value for the static 
mean of the kth Gaussian component and is the posterior 
probability.  The update expressions for the dynamic means and 
static and dynamic variances can be similarly derived. The detailed 

process and formulas are described in [8]. While NAT was 
originally proposed for HMM training, it can be easily used for 
training a GMM from multi-condition training data that is suitable 
for use with FVTS.  

 
5. EXPERIMENTS 

The VTS algorithms presented in this paper are first evaluated on 
the standard Aurora 2 task [10]. The clean training set is used to 
train the standard “complex backend” HMM model [10], which 
has 3628 Gaussians. We also train a GMM with 552 Gaussians for 
FVTS. The test material consists of three sets of distorted 
utterances. Set-A and set-B contain eight different types of additive 
noise while set-C contains two different types of noise and 
additional channel distortion. Following the standard evaluation of 
Aurora 2, we report average accuracy which is the average of 
accuracy of all three test sets. 

The acoustic features are 13-dimensional MFCCs, appended 
by their first- and second-order time derivatives.  The cepstral 
coefficient of order 0 is used instead of the log energy in the 
original script.  

The VTS algorithms presented in this paper are then used to 
adapt the above MLE HMMs or to enhance the distorted features 
utterance-by-utterance for the entire test set (Sets-A, B, and C). We 
use the first and last N=20 frames from each utterance for initial 
estimation of the noise means and variances. 

 
5.1 Impact of online distortion estimation 
In most literature [1][6], only static distortion parameter is re-
estimated. In contrast, we updated all the distortion parameters so 
that a more reliable Gaussian occupancy probability (Eq. (15)) can 
be obtained. We evaluated the impact of online distortion 
estimation in Table 1. The MFCCs are computed from the power 
spectrum. The baseline accuracy (Acc.) on Aurora2 is 61.51%. It is 
clear that updating all of the distortion parameters is significantly 
better than updating only mean noise and channel parameters for 
both FVTS-0 (Eq. (11)) and FVTS-1 (Eq. (14)). 
 
Table 1: Impact of re-estimation of the distortion parameters on 
Aurora2. The baseline model is trained with clean data. 
Acc. FVTS-0 FVTS-1 
update static noise and channel 
mean parameters only [1][6] 

86.72 84.69 

update all mean and variance 
distortion parameters 

88.61 86.08 

 
5.2 Impact of spectrum domain for MFCC extraction 
Table 2 summarizes the recognition accuracy of the baseline and 
two different FVTS methods with the MFCC features extracted 
from power spectrum and magnitude spectrum. For both features, 
FVTS-0 is better than FVTS-1, especially when the features are 
extracted from power spectrum. Also, it is clear that FVTS works 
better on MFCCs extracted from the magnitude spectrum rather 
than from the power spectrum. This is consistent with what has 
been observed in MVTS [5].  

 
Table 2: Comparison of different FVTS methods and MFCC 
derived from different spectrum on Aurora2. The baseline model is 
trained with clean speech. 
Acc. Baseline FVTS-0 FVTS-1 
Power spectrum 61.51 88.61 86.08 
Magnitude spectrum 50.64 89.71 89.60 
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5.3 Comparison of Different FVTS methods 
 
From Table 1 and 2, we can see that FVTS-0 outperforms FVTS-1 
in all setups. In the remaining experiments, we will only discuss 
FVTS-0 with MFCC features extracted from magnitude spectrum, 
which is the best option in Table 2.  
 
5.4 Working with noisy training data 
 
In this section, we study the performance of FVTS in the absence 
of clean training data.  Two tasks are used for evaluation. One is 
Aurora2 with multi-condition training data. The HMM (containing 
3628 Gaussians) and GMM (containing 552 Gaussians) models are 
trained with the same method as with the clean training data.  

The second task is Aurora3 [11], which consists of noisy digit 
recognition under realistic car environments and contains three 
testing conditions: well matched, medium matched, and highly 
mismatched. The MFCC features are extracted using the same 
process as in Aurora2. The HMM model is trained using the 
standard “simple backend” script. All the Gaussians from this 
HMM model are collapsed to form the GMM used for FVTS.  

Table 3 compares FVTS-0 with NAT-FVTS-0, which uses 
NAT to generate a pseudo-clean model to enhance the training and 
testing features with FVTS-0. Although breaking the assumption in 
Eq. (1), the accuracy of FVTS-0 is still better than the baseline. 
However, on both Aurora2 and Aurora3 tasks, FVTS-0 is much 
worse than NAT+FVTS-0, which is consistent with the assumption 
in Eq. (1) and should be the right way to work with noisy training 
data. Comparing Tables 2 and 3, it is evident that using multi-
condition training data and NAT results in higher accuracy for 
FVTS (92.92%) that the traditional approach where the GMM and 
HMM are trained from clean speech (89.71%).  
 
Table 3: Comparison of FVTS-0 and NAT + FVTS-0 with multi-
condition training data 
Acc. Aurora2 Aurora3 
Baseline 83.17 77.94 
FVTS-0 87.35 84.05 
NAT + FVTS-0 92.92 89.11 
 
5.5 Accuracy gap between FVTS and MVTS 
 
In Table 4, we compare the accuracy between FVTS and MVTS. 
With much better accuracy achieved than literature (e.g., [6]), 
FVTS presented in this paper has a comparable accuracy as 
MVTS. The tradeoff between accuracy and computation cost will 
determine which technology is more suitable to be used in the real 
world deployment scenario.  
 
Table 4: Comparison of FVTS and MVTS on Aurora 2 and Aurora 
3 when multi-condition training data and NAT are used. 
Acc. Aurora 2 Aurora 3 
NAT + FVTS-0 92.92 89.11 
NAT + MVTS 93.75 90.66 

 
6. CONCLUSIONS 

 
In this paper, we gave a comprehensive study on issues related 
with the VTS feature enhancement (FVTS) technologies. To 
improve FVTS, we incorporated recent advancements developed in 
VTS model adaptation (MVTS). In contrast to previous works, we 

re-estimate both static and dynamic distortion parameters and get 
more reliable Gaussian occupancy probability estimates. This 
enabled our FVTS methods to obtain much higher accuracy than 
the previous works (e.g., [6]). We also showed that additional 
gains in FVTS can be obtained by using multi-condition training 
data in conjunction with noise adaptive training to obtain a pseudo-
clean canonical GMM. We also showed that the FVTS method 
with Eq. (11) is more effective than the method with Eq. (14) in 
dealing with noise. It was demonstrated that MFCC extracted from 
magnitude spectrum gives higher accuracy for FVTS, which is 
consistent with our discovery in MVTS. Finally, we highlighted 
the remaining accuracy gap between FVTS and MVTS on Aurora2 
and Aurora3 tasks.  

Several issues should be addressed in the future. First, the 
experiments reported in this paper were limited to digit recognition 
tasks. The computational advantage of FVTS over MVTS is 
significant when the number of GMM parameters is much smaller 
than that of HMM parameters, which is true in the LVCSR 
scenario. We will work on noisy LVCSR tasks to verify the 
effectiveness of FVTS. Second, in current study, we only use the 
standard VTS technology to update GMMs while it has been 
shown that VTS with phase-sensitive distortion [5] and unscented 
transform [12] technologies can help to improve the modeling 
quality.  We will apply these technologies to FVTS in the future.  
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