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Abstract

For the unbiased Maker-Breaker game, played on the hypergraph H, let τM (H) be
the smallest integer t such that Maker can win the game within t moves (if the game
is a Breaker’s win then set τM (H) = ∞). Similarly, for the unbiased Avoider-Enforcer
game played on H, let τE(H) be the smallest integer t such that Enforcer can win
the game within t moves (if the game is an Avoider’s win then set τE(H) = ∞). In
this paper, we investigate τM and τE and determine their value for various positional
games.

1 Introduction

Let p and q be positive integers and let H be a hypergraph. In a (p, q,H) Maker-Breaker
game, two players, called Maker and Breaker, take turns selecting previously unclaimed
vertices of H. Maker selects p vertices per move and Breaker selects q vertices per move.
Maker wins if he claims all the vertices of some hyperedge of H; otherwise Breaker wins.
(Sometimes, when there is no risk of confusion, we will omit H in the notation above,
calling a (p, q,H)-game simply a (p, q)-game.) For a (1, 1,H) Maker-Breaker game, let
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τM(H) be the smallest integer t such that Maker can win the game within t moves (if the
game is a Breaker’s win, then set τM(H) = ∞).

Similarly, in a (p, q,H) Avoider-Enforcer game two players, called Avoider and Enforcer,
take turns selecting previously unclaimed vertices of H. Avoider selects p vertices per move
and Enforcer selects q vertices per move. Avoider loses if he claims all the vertices of some
hyperedge of H; otherwise Enforcer loses. For a (1, 1,H) Avoider-Enforcer game, let τE(H)
be the smallest integer t such that Enforcer can win the game within t rounds (if the game
is an Avoider’s win, then set τE(H) = ∞).

In this paper, our attention is restricted to games which are played on the edges of the
complete graph on n vertices, that is, the vertex set of H will always be E(Kn). For quite a
few Maker-Breaker and Avoider-Enforcer games it is rather easy to determine the winner.
For example, in the connectivity game played on the edges of the complete graph Kn on n
vertices, Maker can easily construct a spanning tree by the end of the game. The Avoider-
Enforcer planarity game, played on the edges of Kn for n sufficiently large, is an even more
convincing example – Avoider creates a non-planar graph and thus loses the game in the
end, irregardless of his strategy, the prosaic reason being that every graph on n vertices
with more than 3n−6 edges is non-planar. Thus, for games of this type, a more interesting
question to ask is not who wins but rather how long it should take the winner to reach a
winning position. This is the type of question we address in this paper.

We start with providing a brief overview of known and relevant results about fast wins in
Maker-Breaker and Avoider-Enforcer games. As an immediate consequence of the result
of Lehman [12], Maker has a fast winning strategy in the connectivity game. That is,
τM(Tn) = n − 1, where Tn, n ≥ 4 is the hypergraph whose hyperedges are the (edge sets
of the) spanning trees of Kn. This approach can be easily generalized to a fast winning
strategy for Maker in the k-edge-connectivity game. Indeed, if Kn contains 2k pairwise
edge disjoint spanning trees, then by partitioning them into k pairs and applying Lehman’s
strategy to each pair we get 1

2
kn ≤ τM(T k

n ) ≤ k(n−1), where T k
n , n ≥ 4k is the hypergraph

whose hyperedges are the spanning k-edge-connected subgraphs of Kn. The lower bound
follows immediately since the minimum degree of a k-connected graph is at least k. In this
paper we substantially reduce the gap between these two bounds. As another immediate
consequence of Lehman’s result, we get that Enforcer cannot win the Avoider-Enforcer cycle
game faster than the trivial bound suggests, that is, τE(Cn) = n, where the hyperedges of
Cn are all the cycles of Kn. A result of Bednarska [4] entails τM(T Bk

n) = k − 1, where
the hyperedges of T Bk

n are all the copies of complete binary trees on k vertices in Kn, and
k = o(n). In [6], Chvátal and Erdős provide Maker with a fast winning strategy for the
(1, 1,Hn) Hamilton cycle game, showing that τM(Hn) ≤ 2n, where Hn is the hypergraph
whose hyperedges are the Hamilton cycles of Kn. In this paper, we almost completely close
the gap between this upper bound and the trivial lower bound of n+ 1. Maker can win the
(1, 1,Kq

n) clique game in a constant (depending on q but not on n) number of moves, that
is, τM(Kq

n) = f(q), where the hyperedges of Kq
n are the q-cliques of Kn. The best upper

bound, f(q) = O((q − 3)2q−1) is due to Pekeč (see [13]); Beck proved that the exponential
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dependency on q cannot be avoided, namely f(q) = Ω(
√

2
q
) (see [3]). Note that Maker’s

strategy for the clique game provides him with a fast win in the non-planarity game and the
non-r-colorability game by building a copy of K5 and Kr+1, respectively (for background
on these games, see [10]).

Some general sufficient conditions for winning Maker-Breaker games and Avoider-Enforcer
games were proved in [2] and [9], respectively. Both are based on the “potential” method
of Erdős and Selfridge [8]. These criteria, however, seem not to be very useful for winning
quickly, as it is assumed that the game is played until every element of the board is claimed
by some player. Nonetheless, using some ”fake moves” trick (see [3]), they can be used to
get certain, usually rather weak, results.

If Maker wins a (1, q,H) Maker-Breaker game for some positive integer q, then τM(H) ≤
v(H)/(q+1), where v(H) is the number of vertices in H. Indeed, when playing the (1, 1,H)
game, Maker can use his winning strategy in the (1, q,H) game. In every round, he imagines
that additional q − 1 arbitrary unclaimed vertices were claimed by Breaker. Whenever
Breaker claims a vertex which is already his in Maker’s imagination, Maker imagines that
another (arbitrary still unclaimed) vertex was claimed by Breaker. Clearly, after all vertices
have been claimed (including the ones in Maker’s imagination), Maker has already won,
and the number of rounds played is v(H)/(q + 1). Equivalently, this shows that if Breaker

can keep from losing the (1, 1,H) game within t rounds, then he can win the (1, v(H)
t

−1,H)
game. It was proved by Beck in [1] that Breaker, playing the (1, 1,H) game on an almost
disjoint n-uniform hypergraph H, can keep from losing for at least (2− ε)n moves, for any

ε > 0. Hence, we can immediately deduce that Breaker can win the (1, v(H)
(2−ε)n − 1) game,

on any almost disjoint n-uniform hypergraph H and for every ε > 0. Similarly, if Avoider
wins the (1, q,H) game for some positive integer q, then τE(H) > v(H)/(q + 1). Indeed,
when playing the (1, 1,H) game, Avoider can use his winning strategy from the (1, q,H)
game. Equivalently, this shows that if Enforcer can win the game on H within t rounds,
then he can also win the (1, v(H)

t
− 1,H) game.

To conclude, in order to say something non-trivial about the games we analyze, we will
have to find winning strategies for Maker and Enforcer that are faster than the known
strategies mentioned above (in case they exist).

1.1 Fast strategies for Maker and slow strategies for Breaker

We now turn back to the analysis of some concrete games. All games we consider here are
played on the edges of the complete graph Kn.

Let Mn be the hypergraph whose hyperedges are all perfect matchings of Kn (or matchings
that cover every vertex but one, if n is odd). Let Dn be the hypergraph whose hyperedges
are all spanning subgraphs of Kn of positive minimum degree. We find the exact number
of moves that Maker needs, in order to win the (1, 1,Mn) game and the (1, 1,Dn) game.
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Obviously, Maker needs to make at least bn
2
c moves, as this is the size of a member of Mn.

We show that if n is odd, then he does not need more moves, whereas if n is even, then
he needs just one more move. A similar result, showing the tightness of the obvious lower
bound for the minimum degree game Dn, easily follows.

Theorem 1.1 (i)

τM(Mn) =

{

bn
2
c if n is odd

n
2

+ 1 if n is even

(ii)

τM(Dn) =
⌊n

2

⌋

+ 1.

As mentioned earlier, Chvátal and Erdős [6] proved that Maker can win the (1, 1) Hamilton
cycle game on Kn within 2n rounds. Here we show that for sufficiently large n, Maker can
win the (1, 1) Hamilton cycle game within n + 2 rounds. This bound is now only 1 away
from the obvious lower bound.

Theorem 1.2 For sufficiently large n,

n + 1 ≤ τM(Hn) ≤ n + 2.

A corollary of the proof of the previous theorem is that Maker can win the ”Hamilton
path” game within n − 1 moves, which is clearly best possible.

Theorem 1.3 For sufficiently large n,

τM(HPn) = n − 1,

where HPn is the hypergraph whose hyperedges are all Hamilton paths of Kn.

Let Vk
n be the hypergraph whose hyperedges are all spanning k-vertex-connected subgraphs

of Kn. The classical theorem of Lehman [12] asserts that Maker can build a 1-connected
spanning graph in n − 1 moves. From Theorem 1.2 it follows that Maker can build a 2-
vertex-connected spanning graph for the price of spending just 3 more (that is, in n + 2)
moves.

In the following, we obtain a generalization of the latter fact for every k ≥ 3. As every
k-connected graph has minimum degree at least k, Maker needs at least kn/2 moves just
to build a member of Vk

n (even if Breaker doesn’t play at all). The next theorem shows
that this trivial lower bound is asymptotically tight, that is, there is a strategy for Maker
to build a k-vertex-connected graph in kn/2 + ok(n) moves.
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Theorem 1.4 For every fixed k ≥ 3 and sufficiently large n,

kn/2 ≤ τM (Vk
n) ≤ kn/2 + (k + 4)(

√
n + 2n2/3 log n).

An easy consequence of Theorems 1.1, 1.2 and 1.4, is that for every fixed k ≥ 1 Maker can
build a graph with minimum degree at least k within (1 + o(1))kn/2 moves. This is clearly
asymptotically optimal.

1.2 Slow strategies for Avoider and fast strategies for Enforcer

In the Avoider-Enforcer non-planarity game, Avoider loses the game as soon as his graph
becomes non-planar. Clearly, Enforcer can win this game within 3n − 5 moves no matter
how he plays; that is, τE(NPn) ≤ 3n− 5, where NPn is the hypergraph whose hyperedges
are all non-planar subgraphs of Kn. On the other hand, Avoider can keep from losing for
3
2
n − 3 moves by simply fixing any triangulation and claiming its edges arbitrarily for as

long as possible.

The following theorem asserts that the trivial upper bound is essentially tight, that is,
Avoider can refrain from building a non-planar graph for at least (3− o(1))n moves. More
precisely,

Theorem 1.5

τE(NPn) > 3n − 28
√

n.

In the Avoider-Enforcer non-k-coloring game NCk
n, Avoider loses the game as soon as

his graph becomes non-k-colorable. Avoider can play for at least (1 − o(1)) (k−1)n2

4k
moves

without losing by simply fixing a copy of the k-partite Turán-graph and claiming half of its
edges. On the other hand, it is not hard to see that the game is an Enforcer’s win if it is
played until the end (see [10]), so Avoider will lose after at most 1

2

(

n
2

)

≈ n2

4
moves. In our

next theorem we essentially close the gap between the two bounds for the case k = 2 (the
“non-bipartite game”). We also improve the trivial lower bound and establish the order of
magnitude of the second order term of τE(NC2

n).

Theorem 1.6
n2

8
+

n − 2

12
≤ τE(NC2

n) ≤ n2

8
+

n

2
+ 1.

Next, we look at two Avoider-Enforcer games that turn out to be of similar behavior. In
the game Dn Enforcer wins as soon as the minimum degree in Avoider’s graph becomes
positive, and in the game Tn Enforcer wins as soon as Avoider’s graph becomes connected
and spanning. Enforcer wins both games (see [9]), entailing τE(Dn), τE(Tn) ≤ 1

2

(

n
2

)

. On
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the other hand, Avoider can choose an arbitrary vertex v, and, for as long as possible,
claim only edges which are not incident with v, implying τE(Dn), τE(Tn) > 1

2

(

n−1
2

)

. This
determines the first order term for both parameters. In the following theorem we determine
the second order term and the order of magnitude of the third.

Theorem 1.7

1

2

(

n − 1

2

)

+

(

1

4
− o(1)

)

log n < τE(Dn) ≤ τE(Tn) ≤ 1

2

(

n − 1

2

)

+ 2 log2 n + 1.

The rest of the paper is organized as follows: in Section 2 we prove Theorems 1.1, 1.2
and 1.4. In Section 3 we prove Theorems 1.5, 1.6 and 1.7. Finally, in Section 4 we present
some open problems.

1.3 Preliminaries

For the sake of simplicity and clarity of presentation, we omit floor and ceiling signs when-
ever these are not crucial. Some of our results are asymptotic in nature and, whenever
necessary, we assume that n is sufficiently large. Throughout the paper, log stands for
the natural logarithm. Our graph-theoretic notation is standard and follows that of [7].
In particular, we use the following: for a graph G, denote its set of vertices by V (G),
and its set of edges by E(G). Moreover, let v(G) = |V (G)| and e(G) = |E(G)|. For a
graph G = (V, E) and a set A ⊆ V denote by G[A] the subgraph of G induced by A.
Let NG(A) = {u ∈ V : ∃w ∈ A, (u, w) ∈ E} be the neighborhood of A in G and let
ΓG(A) = NG(A) \A be the external-neighborhood of A in G. Sometimes, when there is no
risk of confusion, we abbreviate NG(A) to N(A) and ΓG(A) to Γ(A).

2 Maker-Breaker games

In our definition of Maker-Breaker games, Maker starts the game. In the following, when-
ever proving a result of the form τM(H) ≤ a, we will assume that Breaker starts the game
(thus proving a statement which is stronger than the one asserted in the corresponding
theorem).

2.1 Building a perfect matching fast

Proof of Theorem 1.1.

Assume first that n is even. Obviously Maker needs at least n/2 edges to build a perfect
matching. In fact he will need at least one more, as Breaker, seeing the first n/2− 1 moves
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of Maker, can occupy the unique edge (if no such edge exists, then our claim immediately
follows) which would extend Maker’s graph into a perfect matching. Hence τM(Mn) ≥
n
2

+ 1.

In the following we assume that Breaker starts the game and give a strategy for Maker
to build his perfect matching in n

2
+ 1 moves. A round of the game consists of a move

by Breaker and a counter move by Maker. A vertex is considered bad, if it is isolated in
Maker’s graph but not in Breaker’s graph.

We will provide Maker with a strategy to ensure that for every 3 ≤ r ≤ n
2
, the following

three properties hold after his rth move:

(a) Maker’s edges form a forest consisting of r − 1 components: a path uvw of length
two and r − 2 paths of length one;

(b) every isolated vertex of Maker’s graph is adjacent to neither u nor w in Breaker’s
graph;

(c) there are at most two bad vertices.

First, let us see that, if these properties hold after Maker’s n
2
th move, then Maker wins the

perfect matching game on his next move. Observe that by property (a) after the n
2
th move

of Maker there is exactly one isolated vertex z in Maker’s graph, which, by property (b),
is connected to neither u nor w in Breaker’s graph. Hence, no matter which edge Breaker
claims in his (n

2
+ 1)st move, Maker will be able to respond by claiming either (u, z) or

(w, z). After that move Maker’s graph is a spanning forest consisting of a path of length
three and n

2
− 2 paths of length one; obviously such a graph contains a perfect matching.

Next, we prove that for every n ≥ 6, Maker can maintain properties (a) − (c). First, it is
easy to see that Maker can execute his first three moves such that these three properties
hold.

We will prove that on his rth move, where n
2
≥ r > 3, Maker can select two vertices that

are isolated in his graph and connect them by an edge, while ensuring that, right after
his move, properties (b) and (c) hold. Note that this strategy automatically ensures that
property (a) holds as well.

Let Ir be the set of vertices which are isolated in Maker’s graph after the rth round.
Property (a) ensures that |Ir| = n − (2r − 1) and property (c) implies that there are at
most two vertices in Ir which are not isolated in Breaker’s graph; in particular there is
at most one edge in Breaker’s graph spanned by Ir. Assume that the rth round, where
r ≤ n/2 − 1, has just ended, then |Ir| ≥ 3.

In case Breaker claims an edge of the form (x, u) or (x, w) where x ∈ Ir, then Maker
responds by claiming an edge (x, y) where y ∈ Ir. Such a vertex y for which the edge
(x, y) was not previously claimed by Breaker always exists as only one of Breaker’s edges
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is spanned by Ir, and there are at least three vertices in Ir. Since the vertex x will not be
bad at the end of the (r + 1)st round, the number of bad vertices does not increase and
property (c) remains valid. Property (b) will also remain valid because the only new vertex
which could dissatisfy it, x, is not isolated in Maker’s graph anymore.

If Breaker does not claim an edge of the form (x, u) or (x, w), where x ∈ Ir, then Maker
responds by claiming an edge with both endpoints in Ir such that property (c) remains
valid. This can easily be done as there are at most two edges of Breaker with both endpoints
in Ir, and |Ir| ≥ 3. Property (b) was not affected by Breaker’s move.

This concludes our description of Maker’s strategy and the proof if n is even.

If n is odd, then Maker’s strategy is essentially the same as his strategy for even n (in fact
it is a little simpler). The main difference is that property (b) is redundant, property (a)
is replaced with:

(a′) After Maker’s rth round, his graph is a matching with r edges,

and we don’t need to consider separately, Maker’s first three moves. We omit the straight-
forward details.

As for the positive minimum degree game, it is clear that τM(Dn) ≥ bn/2c+1. Furthermore,
if n is even, then by part (i) of Theorem 1.1 we get τM (Dn) ≤ τM(Mn) = n/2 + 1. If n
is odd, then Maker can build a matching that covers all vertices but one in bn/2c rounds,
and then claim an arbitrary edge incident with the last remaining isolated vertex. Hence,
we get τM(Dn) = bn/2c + 1 as claimed.

2

2.2 Building a Hamilton cycle fast

Proof of Theorem 1.2.

In the proof, we use the method of Pósa rotations (see [14]). Let P0 = (v1, v2, . . . , vl) be a
path of maximum length in a graph G. If 1 ≤ i ≤ l − 2 and (vl, vi) is an edge of G then
P ′ = (v1, v2, . . . , vi, vl, vl−1, . . . , vi+1) is also of maximum length. It is called a rotation of
P0 with fixed endpoint v1 and pivot vi. The edge (vi, vi+1) is called the broken edge of the
rotation. We can then, in general, rotate P ′ to get more maximum length paths.

We will assume that Breaker starts the game. A round consists of a move by Breaker and
a counter move by Maker. Assume first that n is even. Maker’s strategy is divided into
three stages.

In the first stage, Maker builds a perfect matching with one additional edge, that is, he
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builds a path of length 3 and (n − 4)/2 paths of length 1. From the proof of Theorem 1.1
we know that Maker can do this in n/2 + 1 moves.

In the second stage, which lasts exactly n/2 − 2 rounds, Maker connects endpoints of the
paths in his graph. In each move he connects two paths to form one longer path. Hence,
in each round he decreases the number of paths by one, and thus, by the end of the second
stage he will have a Hamilton path.

For every 0 ≤ i ≤ n/2 − 3, let B ′
i be the subgraph of Breaker’s graph, induced by the

endpoints of Maker’s paths, just after the (i + 1)st move of Breaker in the second stage
(recall that Breaker starts the second stage). Let Bi be the graph obtained from B ′

i by
removing all edges (x, y) such that x and y are endpoints of the same path of Maker. The
unclaimed edges (x, y) ∈

(

V (Bi)
2

)

, for which x and y are endpoints of different paths of
Maker are called available.

The first move of Maker in this stage is somewhat artificial, thinking ahead about stage
three. Let w ∈ V (B0) be a vertex of highest degree in Breaker’s graph. On his first move
of the second stage Maker claims an arbitrary available edge incident with w. Such an edge
exists if n is large enough, since Breaker has n/2 + 2 edges, while there are n− 2 endpoints
in V (B0). Note that for any two vertices z′, z′′ ∈ V (B1), the sum of the degrees of z′ and
z′′ in Breaker’s graph is at most n/3 + 4 (we will use this observation only in stage three).

Maker’s goal is now the following: he will make sure that e(Bi) ≤ v(Bi) − 1 for every
1 ≤ i ≤ n/2 − 3. This easily holds for i = 1 provided n is large enough. Assume that
the statement holds for some 1 ≤ i ≤ n/2 − 4 and let us prove that Maker can claim an
available edge while ensuring that e(Bi+1) ≤ v(Bi+1) − 1.

Case 1.j. (for every 0 ≤ j ≤ 3). e(Bi) ≤ v(Bi) − 1 − j and there is an available edge
incident with at least 3 − j edges of Bi. Maker claims this edge entailing e(Bi+1) ≤
e(Bi) − (3 − j) + 1 ≤ v(Bi) − 3 = v(Bi+1) − 1.

Case 2. There is a vertex v of degree at least 3 in Bi. Hence by Case 1.0 we can assume
that there is no available edge incident with v, that is, the degree of v in Bi is exactly
v(Bi) − 2 (recall that there are no edges in Bi between the endpoints of the same path of
Maker). Note that by the induction hypothesis there is at most one edge in Bi which is
not incident with v. Since i ≤ n/2 − 4, v(Bi) ≥ 6, and so v has at least four neighbors in
Bi.

Assume first that every edge of Bi is incident with v, entailing e(Bi) = v(Bi) − 2. Among
the four neighbors of v there has to be at least one available edge. This edge is incident
with two edges of Breaker and so Case 1.1 applies.

Suppose now that there is an edge of Bi which is not incident with v. One of its endpoints
z is a neighbor of v. Hence, since v(Bi) ≥ 6, there must exist an available edge between z
and another neighbor of v; thus Case 1.0 applies.

Case 3. The maximum degree of Bi is at most 2. Hence every connected component of
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Figure 1: Dashed edges are unclaimed by Breaker.

Bi is either a path or a cycle. By Case 1.3 we can assume that e(Bi) > v(Bi) − 4. If
e(Bi) = v(Bi) − 3, then by Case 1.2 Maker can claim any available edge which is incident
with some edge of Breaker. If e(Bi) = v(Bi) − 2, then there is a vertex x of degree 2,
since v(Bi) ≥ 6. By Case 1.1 Maker can claim any available edge which is incident with x.
Finally, if e(Bi) = v(Bi) − 1, then again there is a vertex x of degree 2. Moreover, there
is an available edge incident with x whose other endpoint y is a non-isolated vertex in Bi

(such a non-isolated vertex exists, since v(Bi) ≥ 6 and e(Bi) = v(Bi) − 1). Maker claims
the edge (x, y) and Case 1.0 applies.

This means that after n/2 − 3 moves in the second stage Maker has successfully built
a spanning forest consisting of two paths such that Breaker’s graph Bn/2−3 on the four
endpoints of these two paths satisfies e(Bn/2−3) ≤ v(Bn/2−3) − 1. Hence, there exists at
least one available edge in Bn/2−3. Maker claims this edge, thus creating his Hamilton path.

In the third stage, Maker uses Pósa rotations to close his Hamilton path u1, u2, . . . , un to a
Hamilton cycle. Let ui, uj1, uj2 be three vertices on this path such that i−1 > j1+1 > j2+1
and, just before Maker’s first move in this stage, none of the edges (u1, ui), (uj1, un),
(uj2, un), (ui+1, uj1−1), (ui−1, uj1−1), (ui+1, uj1+1), (ui+1, uj2−1), (ui−1, uj2−1), (ui+1, uj2+1)
were previously claimed by Breaker (see Figure 1). In his first move of the third stage,
Maker claims the edge (u1, ui). In his next move, Breaker cannot claim both (uj1, un)
and (uj2, un). Assume without loss of generality that he does not claim (uj1, un). In his
next move Maker claims (uj1, un), and then he claims either (ui+1, uj1−1) or (ui−1, uj1−1)
or (ui+1, uj1+1) (Breaker cannot neutralize these three simultaneous threats with only two
edges). This yields a Hamilton cycle. Note that stage three lasts exactly 3 rounds.

It remains to prove that the three vertices ui, uj1, uj2 with the desired properties exist. Re-
call that, by Maker’s first move in the second stage, we have degB1

(u1)+degB1
(un) ≤ n/3+4.

In the second and third stages Breaker adds n/2 more edges, entailing degBn/2−3
(u1) +

degBn/2−3
(un) ≤ 5n/6 + 4. Hence, for sufficiently large n, there are at least n/7 vertices

uk such that neither (u1, uk) nor (uk, un) was claimed by Breaker. Thus there are at least
n2/200 pairs of vertices ui, uj such that i − 1 > j + 1 and both (u1, ui) and (uj, un) were
not claimed by Breaker. Moreover, Breaker has only O(n) edges and every edge (up, uq) he
claims affects at most four of the pairs (ui, uj), namely (up−1, uq−1), (up−1, uq+1), (up+1, uq−1)
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and (up+1, uq+1). Hence, there exist two such pairs ui, uj1 and ui, uj2.

If n is odd, then the proof is essentially the same, with just a few small technical changes:

1. The first stage lasts bn/2c+1 rounds and, when it ends, Maker has one path of length
2 and (n − 3)/2 paths of length 1.

2. The second stage lasts exactly dn/2e − 2 rounds.

3. In B0 there are n − 1 vertices and at most bn/2c + 2 edges.

2

2.3 Building a k-connected graph fast

Proof of Theorem 1.4. Let Kn = (V, E) where V = {1, 2, . . . , n}. Assume first that n is
even and let m = kn/2. We will present a random strategy for Maker, which enables him
to build a k-vertex-connected graph within kn/2 + (k + 4)(

√
n + 2n2/3 log n) rounds, with

positive probability. This, however, will imply the existence of a deterministic strategy for
Maker with the same outcome.

Before we start with a detailed description of Maker’s strategy, we give an short overview
of his actions. The game consists of two stages (it is possible that the second stage will
not take place). In the first stage most of Maker’s moves are used for building a graph
which is “not far” from being a random k-regular graph. The motivation for this approach
is that random k-regular graphs are known to be k-vertex-connected a.s. (for more on
random regular graphs, the reader is referred to [5], [11] and [15]). In this stage Maker also
has to watch out for Breaker’s maximum degree growing too large; he will handle this by
momentarily abandoning the creation of the pseudo-random graph in order to occupy some
edges incident with the “dangerous vertex” (that is, a vertex of high degree in Breaker’s
graph). In the second stage, Maker occupies some more edges to neutralize possible damage
to his pseudo-random graph, caused by Breaker during the first stage.

Before the beginning of the game, Maker does the following. With every 1 ≤ i ≤ n, he
associates a set Wi = {i1, i2, . . . , ik} of “copies” of i, the sets being pairwise disjoint. Maker
then draws uniformly at random a perfect matching P of the 2m elements of W =

⋃n
i=1 Wi.

Let S = ((a1, b1), (a2, b2), . . . , (am, bm)) be an arbitrary ordering of the matched pairs. Note
that the selection of the perfect matching P , can be done equivalently by choosing the
pairs one at a time. That is, Maker repeatedly draws a pair randomly, uniformly on all
unmatched elements of W . Sometimes this point of view is more convenient for our analysis.
If ar ∈ Wi and br ∈ Wj, then we say that the pair (ar, br) corresponds to the edge (i, j).
Clearly, different pairs can correspond to the same edge, and so it is possible to get parallel
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edges. Furthermore, it is possible that {ar, br} ⊆ Wi and so the pair (ar, br) corresponds to
the loop (i, i). Thus the pairing P corresponds to a k-regular multi-graph. We will discard
loops and parallel edges and thus obtain a simple graph of maximum degree at most k.

A vertex i ∈ V will be called dangerous if its degree in Breaker’s graph is at least k
√

n. As
soon as such a vertex appears, Maker “treats” it immediately (this process will be described
in the following paragraph). Throughout the game, let D denote the set of all dangerous
vertices which were already “treated”. Before the game starts we set D = ∅.

Stage 1: During this stage, if there are no dangerous vertices outside D, then Maker
claims edges of Kn according to the ordering S (note that the matching P and its ordering
S are not known to Breaker). That is, let r be the smallest positive integer such that
the pair (ar, br) was not considered by Maker before. Maker then claims the edge (i, j),
where (ar, br) = (ip, jq) for some 1 ≤ i, j ≤ n and 1 ≤ p, q ≤ k. If i = j or the edge
(i, j) was previously claimed, either by him or by Breaker, then Maker skips his turn (that
is, he claims an arbitrary edge which will not be considered in the analysis) and the pair
(ar, br) is marked a failure. As soon as some u ∈ V becomes dangerous (if there are several
dangerous vertices, then Maker picks one arbitrarily), Maker suspends the above mentioned
strategy and plays as follows. He arbitrarily picks 2k + 8 vertices w1, w2, . . . , w2k+8 6∈ D
such that the edges (u, wj) are unclaimed for every 1 ≤ j ≤ 2k + 8 and, at that point, no
wj is adjacent in Maker’s graph to any vertex in D. This is always possible since the first
stage lasts less than kn/2 moves, so there can be at most

√
n dangerous vertices. Handling

each such vertex takes k + 4 moves, so any dangerous vertex, when handled, has degree at
most k

√
n + (k + 4)

√
n in Breaker’s graph, and every vertex which is not in D has degree

at most k + 1 in Maker’s graph. During his next k + 4 moves, Maker claims some k + 4
edges from the set {(u, w1), (u, w2), . . . , (u, w2k+8)}. He then labels u treated, adds it to D
and returns to his usual strategy. The first stage ends as soon as every dangerous vertex
is treated and all but kn2/3 pairs of S are considered by Maker. The last kn2/3 pairs of S
are also considered to be failures.

Lemma 2.1 During the first stage there are at most n2/3 log n failures almost surely.

Proof of Lemma 2.1: It is well-known that for every fixed k, an n-vertex k-regular multi-
graph that corresponds to a random pairing, almost surely contains at most n2/3 loops and
parallel edges (see e.g. [11]). Hence, it suffices to bound from above the number of failures
that correspond to edges that were previously claimed by Breaker. Throughout the first
stage, there are at most

√
n vertices in D. Hence, after considering at most kn/2 − kn2/3

pairs of S, there are at least n2/3 < 2n2/3 − √
n − (k + 4)

√
n vertices of degree strictly

smaller than k in Maker’s graph. It follows that at any point during the first stage there

are at least
(

n2/3

2

)

− kn/2 edges available for Maker to continue his configuration (following
S). Since Breaker has claimed at most kn/2 edges to this point, the probability that any
specific pair (ai, bi) corresponds to an edge that was previously claimed by Breaker (here
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we view S as if it was built sequentially) is at most

kn/2
(

n2/3

2

)

− kn/2
≤ 2k

n1/3
.

Let F be the random variable that counts the number of the first kn/2− kn2/3 pairs of S,
that correspond to edges that were previously claimed by Breaker. Then

E(F ) ≤ kn

2
· 2k

n1/3
≤ k2n2/3.

Using Markov’s inequality we obtain

Pr(F ≥ n2/3(log n − k − 1)) = o(1).

It follows that almost surely throughout Stage 1 there are at most n2/3 log n failures
(n2/3(log n − k − 1) for hitting Breaker’s edges, n2/3 for loops and parallel edges and kn2/3

for the last kn2/3 pairs of S), which proves the statement of the lemma. 2

Let G1 = (V, E) denote the graph that Maker has built in the first stage, following his
random strategy. Let X be the set of all vertices of V \ D that are incident with at least
one edge, that corresponds to a failure pair, and let V = V1 ∪V2 be a partition of V , where
V1 = D∪X. Observe that each vertex of V2 is incident with k random edges of the random
graph defined by P . We can thus derive expansion properties of subsets of V2 from those
of the random k-regular graph. This is done in the following claim.

Claim 2.2 The following holds almost surely. There exists a constant c > 0 such that if
A ⊆ V2 and |A| < c log n, then |Γ(A)| ≥ (k − 2)|A|, and if A ⊆ V2, B ⊆ V \ A, where
c log n ≤ |A| ≤ |B| and |B| ≥ n − k − |A|, then there is an edge between a vertex of A and
a vertex of B. Moreover, if |A| = 1, then |Γ(A)| ≥ k, and if |A| = 2, then |Γ(A)| ≥ 2k− 3.

The proof of Claim 2.2 is essentially the same as the proof of Theorem 7.32 from [5]. We
omit the straightforward details.

As we already mentioned, since we are looking at a finite, perfect information game with
no chance moves, it follows that Maker has a deterministic strategy to build G1 = (D ∪
X ∪ V2, E) within kn/2 + (k + 4)

√
n moves, such that |D| ≤ √

n, |X| ≤ 2n2/3 log n, and V2

satisfies the properties described in Claim 2.2.

Stage 2: For every u ∈ X, Maker arbitrarily picks 2k + 8 vertices wu
1 , w

u
2 , . . . , w

u
2k+8 ∈

V \ N(D), such that the edges (u, wu
j ) are unclaimed for every 1 ≤ j ≤ 2k + 8 and

{wu
1 , w

u
2 , . . . , w

u
2k+8} ∩ {wv

1, w
v
2, . . . , w

v
2k+8} = ∅ for every u 6= v ∈ X. This is possible as

|X| ≤ 2n2/3 log n, |D| ≤ √
n, and each vertex in X has n − o(n) unclaimed edges incident
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with it, as X ∩ D = ∅. Using an obvious pairing strategy, Maker claims k + 4 of the edges
(u, wu

j ) for every u ∈ X.

Let GM denote the graph built by Maker during the entire game. We claim that it is k-
vertex-connected. Assume for the sake of contradiction, that a small set separates GM , that
is, V = A ∪ S ∪ B, where 1 ≤ a = |A| ≤ |B|, |S| = s < k and there are no edges between
A and B in GM . If a ≤ 5 and x ∈ A ∩ V1, then by Maker’s strategy |(Γ(A) ∪ A) \ {x}| ≥
|Γ(x)| ≥ k+4 > |(A∪S)\{x}| which is a contradiction as (Γ(A)∪A)\{x} ⊆ (A∪S)\{x}.
On the other hand, if A∩V1 = ∅, then |Γ(A)| ≥ k by Claim 2.2 (recall that k ≥ 3). Hence,
from now on we assume that 6 ≤ a < c log n. If |A ∩ V1| ≥ a/4, then by Maker’s strategy
|N(A∩V1)| ≥ (k + 4)a/4 > a + k ≥ |A∪S| which is a contradiction as N(A∩V1) ⊆ A∪S.
Otherwise, |A ∩ V1| < a/4 and so by Claim 2.2 we have |Γ(A ∩ V2)| ≥ (k − 2)3a/4 ≥
a/4 +k > |(A∩V1)∪S|, where the second inequality follows since a ≥ 6 and k ≥ 3. Again,
this is a contradiction.

If n is odd, then Maker plays as follows. He arbitrarily picks some vertex u and then plays
two disjoint games in parallel. One is on the board {(u, v) : v ∈ V \ {u}}, which is played
until he claims exactly k of its elements, and the other is on Kn[V \ {u}] ∼= Kn−1, where
Maker plays according to the above strategy. It is easy to see that the resulting graph is
k-vertex-connected (adding a vertex to a k-connected graph and then connecting it to k
arbitrary vertices of the graph produces a k-connected graph).

Finally, note that by Maker’s strategy and by Lemma 2.1, in both stages Maker plays at
most kn/2 + (k + 4)(

√
n + 2n2/3 log n) moves. 2

3 Avoider-Enforcer games

3.1 Keeping the graph planar for long

Proof of Theorem 1.5 We begin by introducing some terminology. Let v be a vertex, and
let S be a set of vertices. Let NA(v, S) denote the set of neighbors of v in Avoider’s graph,
belonging to S. Similarly, let NE(v, S) denote the set of neighbors of v in Enforcer’s graph,
belonging to S.

We will provide Avoider with a strategy for keeping his graph planar for at least 3n−28
√

n
rounds. The strategy consists of three stages.

Before the game starts, we partition the vertex set

V (Kn) = {v1}∪̇{v2}∪̇A∪̇N1,1∪̇N1,2∪̇N2,1∪̇N2,2,

such that |N1,1| = |N1,2| = |N2,1| = |N2,2| =
√

n − 1 and |A| = n − 4
√

n + 2.
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In the first stage, Avoider claims edges according to a simple pairing strategy. For every
vertex a ∈ A, we pair up the edges (a, v1) and (a, v2). Whenever Enforcer claims one of the
paired edges, Avoider immediately claims the other edge of that pair. If Enforcer claims
an edge which does not belong to any pair, then Avoider claims the edge (a, v1), for some
a ∈ A, for which neither (a, v1) nor (a, v2) were previously claimed. He then removes the
pair (a, v1), (a, v2) from the set of considered edge pairs.

The first stage ends as soon as Avoider connects every a ∈ A to either v1 or v2. Note that,
at that point, Avoider’s graph consists of two vertex-disjoint stars centered at v1 and v2,
and the isolated vertices in N1,1 ∪N1,2 ∪N2,1 ∪N2,2. Hence, during the first stage, Avoider
has claimed exactly n − 4

√
n + 2 edges. Define A1 := NA(v1, A), and A2 := NA(v2, A).

Before the second stage starts, we pick four vertices n1,1 ∈ N1,1, n1,2 ∈ N1,2, n2,1 ∈ N2,1

and n2,2 ∈ N2,2, such that |NE(ni,j, A)| ≤ √
n for every i, j ∈ {1, 2}. Clearly, such a choice

of vertices is possible as the total number of edges Enforcer has claimed during the first
stage is n − 4

√
n + 2 <

√
n · (

√
n − 1). Define G1 := NE(n1,1, A1) ∪ NE(n1,2, A1), and

G2 := NE(n2,1, A2) ∪ NE(n2,2, A2). Note that |G1| ≤ 2
√

n, |G2| ≤ 2
√

n, and |NE(n1,1, A1 \
G1)| = |NE(n1,2, A1 \ G1)| = |NE(n2,1, A2 \ G2)| = |NE(n2,2, A2 \ G2)| = 0.

Using a pairing strategy similar to the one used in the first stage, Avoider connects each
vertex of A1 \ G1 to either n1,1 or n1,2, and each vertex of A2 \ G2 to either n2,1 or n2,2.
More precisely, for every a ∈ A1 \ G1 we pair up the edges (a, n1,1) and (a, n1,2), and for
every a ∈ A2 \ G2 we pair up edges (a, n2,1) and (a, n2,2). Avoider then proceeds as in the
first stage.

The second stage ends as soon as Avoider connects every a ∈ A1 \ G1 to either n1,1

or n1,2, and every a ∈ A2 \ G2 to either n2,1 or n2,2. We define A1,1 := NA(n1,1, A1),
A1,2 := NA(n1,2, A1), A2,1 := NA(n2,1, A2) and A2,2 := NA(n2,2, A2). Since |A1,1| + |A1,2| =
|A1| − |G1|, |A2,1| + |A2,2| = |A2| − |G2| and |A1| + |A2| = |A|, we infer that the number of
edges Avoider has claimed in the second stage is at least n − 8

√
n. Note that during the

first two stages Avoider did not claim any edge with both endpoints in one of the sets A1,1,
A1,2, A2,1, A2,2.

In the third stage, Avoider claims only edges with both endpoints contained in the sets
Ai,j, for some i, j ∈ {1, 2}. His goal in this stage is to build a “large” linear forest in A1,1.
(A linear forest is a vertex-disjoint union of paths.) In the beginning of the third stage,
Avoider’s graph induced on the vertices of A1,1 is empty, that is, it consists of |A1,1| paths
of length 0 each. For as long as possible, Avoider claims edges that connect endpoints of
two of his paths in A1,1, creating a longer path. When this is no longer possible, every
edge that connects endpoints of two different paths must have been previously claimed by
Enforcer. Since the total number of edges that Enforcer has claimed so far is at most 3n,
the number of paths of Avoider in A1,1 is at most 2

√
n. Hence, Avoider has claimed at

least |A1,1| − 2
√

n edges to this point of the third stage.

Similarly, Avoider builds a “large” linear forest in A1,2, A2,1, and finally A2,2, all in the
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Figure 2: Avoider’s graph.

same way. Thus, the total number of edges he claims during the third stage is at least

∑

i,j∈{1,2}

(|Ai,j| − 2
√

n) ≥ |A1| − |G1| + |A2| − |G2| − 8
√

n

≥ |A| − 12
√

n

≥ n − 16
√

n.

The total number of edges claimed by Avoider during the entire game is therefore at least
(n−4

√
n) + (n−8

√
n) + (n−16

√
n) = 3n−28

√
n. Moreover, at the end of the third stage

(which is also the end of the game), Avoider’s graph is the pairwise edge disjoint union of
two stars, four other graphs - each being a subgraph of a union of K2,ni

and a linear forest
which is restricted to one side of the bipartition (see Figure 2). Clearly, such a graph is
planar.

2

3.2 Avoiding an odd cycle for long

Proof of Theorem 1.6

Forcing an odd cycle fast. First, we provide Enforcer with a strategy that will force
Avoider to claim the edges of an odd cycle during the first n2

8
+ n

2
+ 1 moves. In every

stage of the game, each connected component of Avoider’s graph is a bipartite graph with
a unique bipartition of the vertices (we stop the game as soon as Avoider is forced to close
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an odd cycle). In every move, Enforcer’s primary goal is to claim an edge which connects
two opposite sides of the bipartition of one of the connected components of Avoider’s
graph. If no such edge is available, then Enforcer claims an arbitrary edge, and that edge
is marked as “possibly bad”. Clearly, in his following move Avoider cannot play inside
any of the connected components of his graph either, and so he is forced to merge two
of his connected components (that is, he has to claim an edge (x, y) such that x and y
are in different connected components of his graph). As the game starts with n connected
components, this situation can occur at most n − 1 times.

Therefore, when Avoider is not able to claim any edge without creating an odd cycle, his
graph is bipartite, and all of Enforcer’s edges, except some of the “possibly bad” ones, are
compatible with the bipartition of Avoider’s graph. The total number of edges that were
claimed by both players to this point is at most n2

4
+ n − 1, and so the total number of

moves Avoider has played in the entire game is at most n2

8
+ n

2
+ 1.

Avoiding an odd cycle for long. Next, we provide Avoider with a strategy for keeping
his graph bipartite for at least n2

8
+ n−2

12
rounds. For technical reasons we assume that n

is even; however, a similar statement holds for odd n as well. During the game Avoider
will maintain a family of ordered pairs (V1, V2), where V1, V2 ⊆ V (Kn), V1 ∩ V2 = ∅ and
|V1| = |V2|, which he calls bi-bunches. We say that two bi-bunches (V1, V2) and (V3, V4)
are disjoint if (V1 ∪ V2) ∩ (V3 ∪ V4) = ∅. At any point of the game, Avoider calls a vertex
untouched if it does not belong to any bi-bunch and all the edges incident with it are
unclaimed. During the entire game, we will maintain a partition of the vertex set V (Kn)
into a number of pairwise disjoint bi-bunches, and a set of untouched vertices.

Avoider starts the game with n untouched vertices and no bi-bunches. In every move, his
primary goal is to claim an edge across some existing bi-bunch, that is, an edge (x, y) where
x ∈ V1 and y ∈ V2 for some bi-bunch (V1, V2). If no such edge is available, then he claims
an edge joining two untouched vertices x and y, introducing a new bi-bunch ({x}, {y}). If
he is unable to do that either, then he claims an edge connecting two bi-bunches, that is,
an edge (x, y) such that there exist two bi-bunches (V1, V2) and (V3, V4) with x ∈ V1 and
y ∈ V3. He then replaces these two bi-bunches with a single new one (V1 ∪ V4, V2 ∪ V3).

Whenever Enforcer claims an edge (x, y) such that neither x nor y belong to any bi-
bunch, we introduce a new bi-bunch ({x, y}, {u, v}), where u and v are arbitrary untouched
vertices. If at that point of the game there are no untouched vertices (clearly this can
happen at most once), then the new bi-bunch is just ({x}, {y}). If Enforcer claims an
edge (x, y) such that there is a bi-bunch (V1, V2) with x ∈ V1 and y is untouched, then the
bi-bunch (V1, V2) is replaced with (V1 ∪ {y}, V2 ∪ {u}), where u is an arbitrary untouched
vertex. Finally, if Enforcer claims an edge (x, y) such that there are bi-bunches (V1, V2) and
(V3, V4) with x ∈ V1 and y ∈ V3, than these two bi-bunches are replaced with a single one
(V1 ∪V3, V2 ∪V4). Note that by following his strategy, and updating the bi-bunch partition
as described, Avoider’s graph will not contain an edge with both endpoints in the same

17



side of a bi-bunch at any point of the game.

Observe that the afore-mentioned bi-bunch maintenance rules imply the following. If En-
forcer claims an edge (x, y), such that before that move x was an untouched vertex, then
the edge (x, y) will be contained in the same side of some bi-bunch, that is, after that move
there will be a bi-bunch (V1, V2) with x, y ∈ V1 (unless x and y were the last two isolated
vertices).

Assume that in some move Avoider claims an edge (x, y), such that before that move x was
an untouched vertex. It follows from Avoider’s strategy that y was untouched as well, and
there were no unclaimed edges across a bi-bunch at that point. Thus, in his next move,
Enforcer will also be unable to claim an edge across a bi-bunch and so, by the bi-bunch
maintenance rules for Enforcer’s moves, the edge he will claim in that move will have both
its endpoints in the same side of some bi-bunch.

By the previous paragraphs, we conclude that after every round in which at least one of
the players claims an edge which is incident with an untouched vertex (which is not the
next to last untouched vertex), the edge Enforcer claims in this round will be contained in
the same side of some bi-bunch. By the bi-bunch maintenance rules, during every round
the number of untouched vertices is decreased by at most 6. Hence, by the time all but two
vertices are not untouched at least (n−2)/6 edges of Enforcer will be contained in the same
side of a bi-bunch. Therefore, when Avoider can no longer claim an edge without creating
an odd cycle, both players have claimed together all the edges of a balanced bipartite graph
which is in compliance with the bi-bunch bipartition, and at least another (n− 2)/6 edges.
This gives a total of at least n

2
· n

2
+ (n − 2)/6 edges claimed, which means that at least

n2

8
+ n−2

12
rounds were played to that point. 2

3.3 Keeping an isolated vertex for long

Proof of Theorem 1.7. Clearly τE(Dn) ≤ τE(Tn) and so it suffices to prove that τE(Tn) ≤
1
2

(

n−1
2

)

+ 2 log2 n + 1 and that, τE(Dn) > 1
2

(

n−1
2

)

+ (1/4 − ε) log n for every ε > 0 and
sufficiently large n.

Forcing a spanning tree fast. Starting with the former inequality, we provide Enforcer
with a strategy to force Avoider to build a connected spanning graph within 1

2

(

n−1
2

)

+
2 log2 n + 1 rounds. At any point of the game, we call an edge that was not claimed by
Avoider safe, if both its endpoints belong to the same connected component of Avoider’s
graph. An edge which is not safe and was not claimed by Avoider is called dangerous.
Denote by GD the graph consisting of dangerous edges claimed by Enforcer. We will
provide Enforcer with a strategy to make sure that, throughout the game, the maximum
degree of the graph GD does not exceed 4k, where k = log2 n.
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Assuming the existence of such a strategy, the assertion of the theorem readily follows. In-
deed, assume for the sake of contradiction that after 1

2

(

n−1
2

)

+ 2 log2 n+ 1 rounds have been
played (where Enforcer follows the afore-mentioned strategy), Avoider’s graph is discon-
nected. Let C1, . . . , Cr, where r ≥ 2 and |C1| ≤ . . . ≤ |Cr|, be the connected components
in Avoider’s graph at that point. By Enforcer’s strategy, the maximum degree of the graph
GD does not exceed 4k. Hence, the number of edges claimed by both players to this point
does not exceed

r
∑

i=1

(|Ci|
2

)

+ 4k

r−1
∑

i=1

|Ci|.

Assuming that r ≥ 2 and n is sufficiently large, this sum above attains its maximum for
r = 2, |C1| = 1 and |C2| = n−1; that is, the sum is bounded from above by

(

n−1
2

)

+4 log2 n
- a contradiction.

Now we provide Enforcer with a strategy for making sure that, throughout the game, the
maximum degree of the graph GD does not exceed 4k. In every move, if there exists an
unclaimed safe edge, Enforcer claims it (if there are several such edges, Enforcer claims one
arbitrarily). Hence, whenever Enforcer claims a dangerous edge, Avoider has to merge two
connected components of his graph in the following move, and the number of Avoider’s
connected components is decreased by one. We will use this fact to estimate the number
of dangerous edges at different points of the game.

When all edges within each of the connected components of Avoider’s graph are claimed,
Enforcer has to claim a dangerous edge. His strategy for choosing dangerous edges is
divided into two phases. The first phase is divided into k stages. In the ith stage Enforcer
will make sure that the maximum degree of the graph GD is at most 2i; other than that, he
claims dangerous edges arbitrarily. He proceeds to the following stage only when it is not
possible to play in compliance with this condition. Let ci, i = 1, . . . , k, denote the number
of connected components in Avoider’s graph after the ith stage. Let c0 = n, be the number
of components at the beginning of the first stage. During the ith stage, a vertex v is called
saturated, if dGD

(v) = 2i. Note that at the beginning of the first stage the maximum degree
of GD is 2 · 0 = 0.

We will prove by induction that ci ≤ n2−i + 2i, for all i = 0, 1, . . . , k. The statement
trivially holds for i = 0.

Next, assume that cj ≤ n2−j+2j, for some 0 ≤ j < k. At the beginning of the (j+1)st stage
Avoider’s graph has exactly cj connected components, and at the end of this stage it has
exactly cj+1 components. It follows that during this stage Avoider merged two components
of his graph cj−cj+1 times. Hence, Enforcer has not claimed more than cj−cj+1 dangerous
edges during the (j +1)st stage. As the maximum degree of the graph GD before this stage
was 2j, the number of saturated vertices at the end of the (j+1)st stage is at most cj−cj+1.
It follows that there are at least n−(cj−cj+1) non-saturated vertices at this point. The non-
saturated vertices must be covered by at most 2(j + 1) connected components of Avoider’s
graph. Indeed, assume for the sake of contradiction that there are non-saturated vertices
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u1, u2, . . . , u2j+3 and connected components U1, U2, . . . , U2j+3, such that up ∈ Up for every
1 ≤ p ≤ 2j + 3. Since degGD

(up) ≤ 2j + 1 for every 1 ≤ p ≤ 2j + 3, it follows that there
must exist an unclaimed edge (ur, us) for some 1 ≤ r < s ≤ 2j + 3, contradicting the fact
that the (j + 1)st stage is over. Therefore, there are at least cj+1 − 2(j + 1) connected
components in Avoider’s graph that do not contain any non-saturated vertex. Clearly
every such component has size at least one, entailing (cj+1 − 2j − 2) + (n− cj + cj+1) ≤ n.
Applying the inductive hypothesis we get cj+1 ≤ cj/2 + j + 1 ≤ n2−(j+1) + 2(j + 1). This
completes the induction step.

It follows, that at the end of the first phase, after the kth stage, the number of connected
components in Avoider’s graph, is at most ck ≤ n2−k + 2k ≤ 2k + 1.

In the second phase, whenever Enforcer is forced to claim a dangerous edge, he claims one
arbitrarily. Since at the beginning of the second phase, there are at most 2k + 1 connected
components in Avoider’s graph, Enforcer will claim at most 2k dangerous edges during this
phase.

It follows that at the end of the game, the maximum degree in GD will be at most 4k, as
claimed.

Keeping an isolated vertex for long. Fix ε > 0 and set l := 1−4ε
2

log n. We provide

Avoider with a strategy to keep an isolated vertex in his graph for at least 1
2

(

n−1
2

)

+ l
2

rounds.

Throughout the game, Avoider’s graph will consist of one connected component, which we
denote by C, and n − |C| isolated vertices. A vertex v ∈ V (Kn) \ C is called bad, if there
is an even number of unclaimed edges between v and C; otherwise, v is called good.

For every vertex v ∈ V (Kn) let dE(v) denote the degree of v in Enforcer’s graph. If at any
point of the game there exists a vertex v ∈ V (Kn) \ C such that dE(v) ≥ l, then Avoider
simply proceeds by arbitrarily claiming edges which are not incident with v, for as long as
possible. The total number of rounds that will be played in that case is at least 1

2

(

n−1
2

)

+ l
2
,

which proves the theorem. We will show that Avoider can make sure that such a vertex
v ∈ V (Kn) \ C, with dE(v) ≥ l, will appear before the order of his component C reaches
n − lε−1 − 1. Hence, from now on, we assume that |C| ≤ n − lε−1 − 2.

Whenever possible, Avoider will claim an edge with both endpoints in C. If this is not
possible, he will join a new vertex to the component, that is, he will connect it by an edge to
an arbitrary vertex of C. Note that this is always possible. Indeed, assume that every edge
between C and V (Kn) \ C was already claimed by Enforcer. If |C| ≥ l then there exists
a vertex v ∈ V (Kn) such that dE(v) ≥ l and so we are done by the previous paragraph.
Otherwise, |C| < l and thus, until this point, Enforcer has claimed at most l2 < l(n − l)

edges. As for the way he chooses this new vertex, we consider three cases. Let d denote
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the average degree in Enforcer’s graph, taken over all the vertices of V (Kn) \ C, that is,

d :=

∑

v∈V (Kn)\C dE(v)

n − |C| .

Throughout the case analysis, C and d represent the values as they are just before Avoider
makes his selection.

1. There exists a vertex v ∈ V (Kn) \ C, such that dE(v) ≤ d − 1.

Avoider joins v to his component C. Then |C| increases by one, and the new value

of d is at least

(n − |C|)d − (d − 1)

n − |C| − 1
= d +

1

n − |C| − 1
.

2. Every vertex v ∈ V (Kn) \ C satisfies dE(v) > d − 1, and d < bdc + 1 − ε.

Let D denote the set of vertices u ∈ V (Kn) \ C such that dE(u) = bdc. Note that
there must be at least ε(n− |C|) vertices in D. We distinguish between the following
two subcases.

(a) There is a good vertex in D. Avoider joins it to his component C (if there
are several good vertices, then he picks one arbitrarily). Since v was a good
vertex, Enforcer must claim at least one edge (x, y) such that x /∈ C ∪ {v},
before Avoider is forced again to join another vertex to his component. After
this move of Enforcer |C| is (still) increased by (just) one, and the new value of

d is at least

(n − |C|)d − bdc + 1

n − |C| − 1
≥ d +

1

n − |C| − 1
.

(b) All vertices in D are bad. Knowing that dE(v) ≤ l − 1 for all vertices v ∈
V (Kn) \ C, and |C| ≤ n − lε−1 − 2, we have

max
v∈D

dE(v) = bdc < l − 1 + 2ε ≤ ε(n − |C|) − 1 ≤ |D| − 1

and hence there have to be two vertices u, w ∈ D such that (u, w) is unclaimed.
Avoider joins u to his component C, and thus w becomes good. If Enforcer, in
his next move, claims an edge (w, v) for some v ∈ C, then |C| is increased by

one and the new value of d is at least

(n − |C|)d − bdc + 1

n − |C| − 1
≥ d +

1

n − |C| − 1
.
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Otherwise, in his next move Avoider joins w to C. Since w was good, then, as
in the previous subcase, Enforcer will be forced to claim an edge (x, y) such that
x /∈ C∪{w}. After that move of Enforcer, we will have that |C| is still increased

just by two and the new value of d is at least

(n − |C|)d − bdc − bdc + 1

n − |C| − 2
≥ d +

1

n − |C| − 2
.

3. Every vertex v ∈ V (Kn) \ C satisfies dE(v) > d − 1, and d ≥ bdc + 1 − ε.

Let D denote the set of vertices in V (Kn) \ C with degree either bdc or bdc + 1.
Clearly, |D| ≥ 1

2
(n − |C|). We distinguish between the following two subcases.

(a) There is a good vertex in D. Similarly to subcase 2(a), Avoider joins that
vertex to his component C, and after Enforcer claims some edge with at least
one endpoint outside C, we have that |C| is increased by one and the new value

of d is at least

(n − |C|)d − (d + ε) + 1

n − |C| − 1
= d +

1 − ε

n − |C| − 1
.

(b) All vertices in D are bad. Similarly to subcase 2(b), Avoider can find two
vertices in D such that the edge between them is unclaimed. He joins them to
his component C, one after the other. After Enforcer claims some edge with at
least one endpoint outside C, we have that |C| increased by two and the new

value of d is at least

(n − |C|)d − (d + ε) − (d + ε) + 1

n − |C| − 2
= d +

1 − 2ε

n − |C| − 2
.

It follows that in all cases the value of d grows by at least 1−2ε
n−|C|−1

, whenever |C| grows by

at most 2. Hence, when the size of C reaches n − lε−1 − 2, we have

d ≥
n/2− 1

2ε
l−1

∑

i=2

1 − 2ε

n − 2i − 1

≥ 1 − 2ε

2

n−lε−1−2
∑

i=4

1

n − i − 1

≥ 1 − 2ε

2

(

n−5
∑

i=1

1

i
−

lε−1

∑

i=1

1

i

)

≥ 1 − 3ε

2

(

log n − log(lε−1)
)

≥ l,
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which concludes the proof of the theorem.

2

4 Concluding remarks and open problems

• It was proved in Theorem 1.4 that Maker can win the (1, 1) k-vertex-connectivity
game on Kn within kn/2 +o(n) moves. It would be interesting to decide whether the
o(n) term can be replaced with some function of k, if not for this game, then for the
k-edge-connectivity game or the minimum-degree-k game.

• It was proved in Theorem 1.6 that τE(NC2
n) ≤ n2

8
+Θ(n). For k ≥ 3, we know just the

trivial bounds (k−1)n2

4k
≤ τE(NCk

n) ≤ 1
2

(

n
2

)

. It would be interesting to close, or at least
reduce, the gap between these bounds. It seems reasonable that, as in the case k = 2,

the truth is closer to the trivial lower bound, and maybe τE(NCk
n) ≤ (1+o(1)) (k−1)n2

4k

for every k ≥ 3.

• It was proved in Theorem 1.7 that τE(Tn) and τE(Dn) are “almost the same”. This
is reminiscent of the well-known property of random graphs, that the hitting time of
being connected and the hitting time of having minimum positive degree are a.s. the
same, and it motivates us to raise the following conjecture.

Conjecture 4.1 τE(Dn) = τE(Tn).

• It would be interesting to obtain good estimates on τE(Mn) and τE(Hn).

References

[1] J. Beck, On positional games, J. of Combinatorial Theory, Ser. A 30 (1981) 117-133.

[2] J. Beck, Remarks on positional games, Acta Math. Acad. Sci. Hungar. 40 (1-2)
(1982) 65-71.

[3] J. Beck, Tic-Tac-Toe Theory, Cambridge University Press, 2006.

[4] M. Bednarska, On biased positional games, Combin. Probab. Comput. 7 (1998)
339-351.

[5] B. Bollobás, Random graphs, 2nd Ed., Cambridge University Press, 2001.

23
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