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Abstract. Mobile devices collect a variety of information about their environ-
ments, recording “digital footprints” about the locations and activities of their
human owners. These footprints come from physical sensors such as GPS, WiFi,
and Bluetooth, as well as social behavior logs like phone calls, application usage,
etc. Existing studies analyze mobile device footprints to infer daily activities like
driving/running/walking, etc. and social contexts such as personality traits and
emotional states. In this paper, we propose a different approach that uses mul-
timodal mobile sensor and log data to build a novel user modeling framework
called mFingerprint that can effectively and uniquely depict users. mFingerprint
does not expose raw sensitive information from the mobile device, e.g., the exact
location, WiFi access points, or apps installed, but computes privacy-preserving
statistical features to model the user. These descriptive features obscure sensitive
information, and thus can be shared, transmitted, and reused with fewer privacy
concerns. By testing on 22 users’ mobile phone data collected over 2 months,
we demonstrate the effectiveness of mFingerprint in user modeling and identifi-
cation, with our proposed statistics achieving 81% accuracy across 22 users over
10-day intervals.

1 Introduction

Mobile devices such as smartphones and tablets have become powerful people-centric
sensing devices thanks to embedded sensors such as GPS, Bluetooth, WiFi, accelerome-
ter, touch, light, and many others. The devices have also advanced significantly in terms
of computational capacity, memory and storage. These improvements have stimulated
people-centric mobile applications, ranging from inferring and sharing real-time con-
texts such as location and activities [3,8] to identifying heterogeneous social behaviors
of mobile users [6,9,11,15]. Most of these studies focus on using phone data to infer
physical and social contexts for a particular user at a specific point in time. Additional
studies have concentrated on analyzing long-term data from mobile devices to monitor
trends and to establish predictive models of location [7] and app usage [12].
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In this paper, we take a significantly different view of mobile device data. Instead
of focusing on real-time inference of contexts or social behaviors from phone sensors,
we analyze multimodal mobile usage data to extract simple yet effective statistics that
can uniquely represent mobile users. We construct a novel user modeling framework
called ‘mFingerprint’ to define ‘fingerprints’ that try to uniquely identify users from
mobile device data. Our experiments show the effectiveness of mFingerprint in model-
ing users and identifying them uniquely. In contrast to many user identification studies
that try to identify users based on raw sensor data such as touch screen [2] and cell
towers [5], mFingerprint computes high-level statistical features that do not disclose
sensitive information from the phone, such as raw location, browser history, and ap-
plication names. Therefore, applications can share, transmit, and use these descriptive
privacy-preserving feature vectors to enable personalized services on mobile devices
with fewer privacy concerns.

Research Challenges. It is non-trivial to build a system to identify users based
on high level statistics of their mobile usage data, due to the following challenges:
(1) Mobile devices collect a variety of multimodal data including logs from physical
sensors such as GPS and accelerometer and application data like app usage and web
browser history; how to choose sources to construct effective mobile fingerprints re-
mains a question. (2) Mobile data is generated under complex real-life settings, intro-
ducing significant noise that demands robustness in processing. (3) In contrast to most
existing offline data analysis approaches deployed on the server side, our mFingerprint
framework focuses on designing lightweight energy-efficient algorithms that are able to
run on mobile devices directly. (4) mFingerprint must avoid disclosing sensitive mobile
data, such as geo locations from GPS, the applications installed, and URLs of website
visited, to protect user’s privacy.

Main Contributions. To address these challenges, this paper presents a novel ap-
proach for user modeling and identification based on digital footprints from mobile de-
vices, with the following key contributions: (1) We build mFingerprint, a novel frame-
work to analyze data from mobile devices and model users via digital footprints; (2)
mFingerprint generates fingerprints from heterogeneous hardware sensors such as GPS,
WiFi, and Bluetooth and soft sensors including app usage logs; (3) By designing a dis-
criminative set of statistical features to capture mobile footprints, mFingerprint is able
to identify users while preserving their privacy.

2 Related Work

Recently, user’s digital footprints from mobile device have gained significant attention
in various research areas such as mobile computing, data mining and social analysis.

In mobile computing and data mining, several studies build mobile systems to in-
fer context offline or in real-time, such as detecting semantic locations (home and of-
fice) from GPS [14], identifying physical activities from accelerometer data [8], or es-
timating user’s environmental properties such as crowdedness from Bluetooth [13] and
noise-level [10]. These studies however focus on analyzing only single physical sensors
to infer specific types of daily contexts and activities.
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Fig. 1: The mFingerprint framework.

For social and behavioral analysis on mobile data, the recent focus is mainly on
continuously monitoring user’s daily social contexts, such as inferring emotions from
audio [11], detecting mood from communication history and application usage patterns
[9], predicting user’s personality using various phone usage data [4,6], and estimating
user’s profile and sociability level using Bluetooth crowdedness [15]. The mFinger-
print framework further extends these studies to analyze multimodal mobile footprints
(including both soft usage data and physical sensor data) by extracting discriminative
statistical features as a fingerprint to model the user and provide accurate user identifi-
cation with privacy preservation.

3 mFingerprint System Overview

Fig. 1 shows the four layers of the mFingerprint framework. The bottom layer collects
various sensor readings using hardware sensors that trace location (e.g., GPS, WiFi, and
cell tower), proximity (Bluetooth and microphone). Furthermore, soft sensor data such
as application usage and web browser history are also recorded. The second layer of
mFingerprint computes a set of privacy-preserving statistical features from these digi-
tal footprints. In this paper, we particularly focus on designing frequency and entropy
based statistical features to capture mobile device usage patterns. Such features flow up
to the third layer for user learning, which includes building user models via the feature
vectors, identifying users via classification methods, and grouping users into meaning-
ful clusters via unsupervised learning. The forth layer is the application layer where
various applications can be established, such as inferring user profile, logging mobile
behaviors, and creating personalized services and user interfaces.

4 Footprint Feature Computation and User Identification

We focus on designing simple frequency and entropy-based statistical features to create
users’ “fingerprints” and evaluate the features’ performance in user identification.
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4.1 Frequency based Footprint Features

The number of devices and cell towers that are observed by a phone throughout the
day provides information about the owner’s environment. For example, a phone in a
busy public place will likely observe many wireless devices while a phone in a moving
car observes different cell towers over time. Meanwhile, a user’s app usage patterns
throughout the day tell us something about his or her daily routine. We thus propose
simple frequency-based features that measure how much activity of four different types
(Wifi, Cell towers, Bluetooth, and App usage) is observed at different time intervals
throughout the day. More specifically, we divide time into T -minute time periods, and
make observations about the phone’s state every M minutes, with M < T so that there
are multiple observations per time period. In the i-th observation of time period t, we
record: (1) the number of Wifi devices that are observed (W t,i), (2) the number of cell
phone towers that the phone is connected to (Ct,i), (3) the number of bluetooth devices
that are seen (Bt,i), and the number of unique apps that have been used over the last
m minutes (At,i). We then aggregate each of these observation types to produce four
features in each time period:

F t
W =

∑
i

W t,i, F t
C =

∑
i

Ct,i, F t
B =

∑
i

Bt,i, and F t
A =

∑
i

At,i.

A feature incorporating all of these features is simply the vector F t = [F t
W F t

C F t
B F t

A].

4.2 Entropy based Footprint Features

While the simple frequency features above give some insight into the environment of the
phone, they ignore important evidence like the distribution of this activity. For example,
in some environments a phone may see the same Wifi hotspot repeatedly through the
day, while other environments may have an ever-changing set of nearby Wifi networks.
To illustrate this, Fig. 2 compares observed frequency versus anonymized device IDs
for two users across each of the four observation types, for a period of 10 days. We can
observe that User 2 is less active in WiFi and cell mobility compared to User 1, but has
more Bluetooth encounters and uses more diverse apps.

We thus propose using entropy of these distributions as an additional feature of our
user fingerprints. The entropy feature summarizes the distribution over device IDs, but
in a coarse way such that privacy concerns are minimized. For Wifi, let W t

j denote the

Fig. 2: Comparison of activity histograms for 2 users over 10 days. Y-axes are frequen-
cies; X-axes are WiFi, Cell, Bluetooth, and App IDs.
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number of times we observe wifi hotspot j during time period t. Then we define the
Wifi entropy during time period t as,

Et
W = −

∑
j

W t
j

F t
W

log
W t

j

F t
W

.

Entropy features for Cell towers, Bluetooth, and Apps (Et
C , Et

B , and Et
A, respectively)

are computed in the same way, and we define a multimodal entropy feature vector Et =
[Et

W Et
C Et

B Et
A], which incorporates all four perspectives.

4.3 Conditional Entropy and Frequency based Footprint Features

In our system, we calculate the above entropy and frequency features conditioned on
time and location. Intuitively at different times and at different locations, users have
different patterns of application usage and surrounding devices (Bluetooth, WiFi, cell,
etc.). For example, two users might have similar overall apps usage but one user always
uses apps in the mornings, while the other uses them only in the afternoon. Two other
users might have similar overall Bluetooth entropies but one might have more surround-
ing devices at work while the other observes the variety at a coffeeshop. Conditioning
on time and space is thus useful to better differentiate users.

Conditional features on time. For the frequencies and entropies conditioned on
time, we differentiate on time of a day and day of a week. Currently we distinguish
between three fixed daily time intervals, mornings (0:00 - 8:59), working hours (9:00
- 17:59) and evenings (18:00 - 23:59), and two types of days, weekdays (Mon through
Fri) and weekends (Sat and Sun). This gives five time periods over which we compute
the conditional features. Future work might explore adaptive intervals instead.

Conditional features on location. We also compute frequency and entropy features
conditioned on location. For each user, we filter and cluster their geo-locations in order
to identify the top-k significant locations. From data collected at these k locations,
we compute the conditional entropies and frequencies. There are two steps in finding
significant locations: Segmentation and Clustering. In the segmentation step, we find
periods of time when the phone appears to be stationary, by looking for time intervals
when the IDs of surrounding devices are stable. In particular, we divide the data streams
into 10-minute time frames and for each time frame, we record the IDs of the WiFi,
Bluetooth and Cell towers. For adjacent time frames, we compute Jaccard similarity of
the corresponding sets of IDs, J(S1, S2) = |S1 ∩ S2|/|S1 ∪ S2|, where S1 and S2 are
sets of device IDs. If the similarity is larger than a threshold, we say that the device is
stationary during the two time frames. Fig. 3(a) illustrates finding stationary and non-
stationary periods according to WiFi readings. Similarly, we perform this on Bluetooth
and Cell readings and take the union of all stationary time periods.

We then apply the DBSCAN clustering algorithm to the stationary segments in or-
der to identify important locations. Fig. 3(b) shows the clustering results on the same
data with and without non-stationary points. We see that noisy signals (e.g., location
points moving along highways) have been removed by keeping only stationary data,
which generates better and fewer clusters. Note that our mFingerprint system computes
location based conditional features using anonymized cluster and device IDs, not the
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(a) (b)

Fig. 3: Time segmentation and location clustering: (a) Finding stationary times using
Wifi. (b) Location clustering using all (top) and only stationary (bottom) data.

original locations, to help preserve privacy. We choose k = 2 and statistics from the ith
location will be compared with that from the location of the same rank across users.

5 Evaluation

We define a user identification problem in order to test whether mFingerprint can uniquely
characterize users. We pose this as a classification problem: can we build a multi-class
classifier trained on the entropy and frequency fingerprint features labeled with user
IDs, such that it tells which user a certain fingerprint vector belongs to?

5.1 Data collection and experimental settings

To collect data for our evaluation, we deployed an Android app called EasyTrack based
on the Funf Open Sensing Framework [1]. This app has a customizable configuration
with 17 data types, including WiFi, Bluetooth, cell tower, GPS, call log, app usage
etc. We successfully recruited 22 users to install EasyTrack and collected their mobile
footprints for about 2 months with some variation across users.

We first test the initial user identification performance using different time frame
lengths. We uniformly sample the instances to make sure that the same number of in-
stances is used to build the classifier for each time frame length. As shown in Fig. 4a,
when the length of time frame increases, the classification accuracy generally improves,
despite possible variations caused by weekday/weekend patterns. This suggests that in
this range, longer time frames better capture the uniqueness. Since the data collection
time span is about two months, longer time frames decrease the total number of time
periods and thus there are fewer features for training the classifiers. In the following
experiments, we fix the time period at 10 days.

With a 10-day time frame, we reach 107 time frames in total from 22 users. On aver-
age, each user has 4.86 time frames. The range is [2, 8] and the standard deviation is 2.2.
In total, we have 64 features in mFingerprint. We test combinations of features (multi-
modal entropies/frequencies, conditional entropies/frequencies) on multiple classifiers
including Naive Bayes, decision tree, SVM and Multilayer Perceptron. We report the re-
sults from the Multilayer Perceptron, which were best. The learning rate is 0.3, momen-
tum is 0.2, the number of hidden layers is set to #features+#classes

2 where #features
is 64 in mFingerpint and #classes is 22, which is the number of users. The number of
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(a) Accuracy for 22 users with different time
frame lengths, with the basic entropy features.

(b) Classification accuracy with different # of
users for basic frequency and entropy features.

(c) Average classification accuracy with differ-
ent number of users for entropy feature combi-
nations.

(d) Avg accuracy improvement for all features,
compared to baseline frequency. Absolute avg
accuracy is marked on the top of each bar.

Fig. 4: User identification classification results.

epochs is set to 500. We use 10-fold cross validation for training and testing. We use
accuracy as a performance measurement which is defined as #of correct predictions

#of instances .

5.2 User Identification Performance

We tested on varying numbers of users from 4 to 22, and observe that as the number of
users increases, the average accuracy drops but is still significantly better than random
guessing (see Fig. 4b and Fig. 4c). In these experiments, we randomly sample 10 from
the
(
22
n

)
possible combinations (where n is the number of users being tested), apply 10

fold cross validation on each of the samples, calculate the accuracy and then get the
average over the 10 samples. On average, each sample group has 63 instances.

Performance of standalone frequency and entropy features. For basic multi-
modal frequency and entropy features, each vector has 4 dimensions, corresponding to
WiFi, cell tower, Bluetooth, and apps, respectively. We compare their classification re-
sults as shown in Fig. 4b. Both frequency and entropy features outperform the random
baseline significantly. Entropies have better performance for large numbers of users
compared to frequencies: mean accuracy with entropies drops 22 percentage points
from 4 users to 22 users, versus a 35 point drop using basic frequencies.

Performance of conditional features. We also compared various types of condi-
tional features (Fig. 4c). When features including basic multi-modal entropies, location
entropies and time entropies are all combined, the performance is the best. Time fea-
tures perform slightly better than location features, perhaps because there are only 2
location-conditioned features but 5 time-conditioned features. With all three kinds of
features combined, the accuracy is 71.96% for 22 users versus 91.54% for 4 users and
86.59% for 10 users. Though more features improve accuracy, more computation is
required as well, especially for the clustering required by location conditioning.

Performance of all features. Finally, we compute the performance with all mFin-
gerprint features including basic frequencies, entropies, and conditioned features. Fig.
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4d shows the performance improvement against the basic frequency feature results
shown in Fig. 4b, with the absolute accuracy marked on the top of each bar: 94.68% for
4 users, 93.14% for 10 users and remains 81.30% for 22 users.

6 Conclusion

We presented mFingerprint and showed that its statistics (frequencies and entropies)
computed from the device usage data and sensor data can be used as a fingerprint for
user identification while preserving privacy. This serves as the key idea of the pro-
posed mFingerprint framework to collect multimodal mobile data, compute footprint
features, build unique user models, and serve personalized applications. We tested on
a user-identification task and achieved over 81% accuracy even when the number of
users reaches 22. The feature computation is designed considering both simplicity and
energy-efficiency, and thus can naturally be fit into the on-device framework.
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