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Abstract

A mathematical denotation is proposed for the notion of complex software systems whose
behavior is specified by rigorous formalisms. Complex systems are described in a recursive
way as an interconnection of sub-systems by means of architectural connectors. In order to
consider the largest family of specification formalisms and architectural connectors, this de-
notation is essentially formalism, specification and connector-independent. For this, we build
our denotation on Goguen’s institution theory. We then denote in this abstract framework,
system complexity by the notion of property emergence and give some conditions to establish
when a system is or is not complex. Moreover, we define a refinement theory to deal with the
complexity of systems in our generic framework. Indeed, one of the main problem encoun-
tered when dealing with complex system is the problem of emergent property detection. In this
paper, we propose to use the algebraic refinement technics as a basic incremental method to
simplify the emergent property detection. Finally, we illustrate our approach on the formal-
ism classicaly used to specify biological processes: R. Thomas ’s genetic regulatory networks
(GRNs) over the temporal logic CTL and through the connector of sub-GRN embedding.
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Chapter 1

Introduction

A powerful approach to develop large systems is to describe them in a recursive way as an
interconnection of sub-systems. In the software engineering community [5, 7, 19, 30, 34], this
has then made emerge the notion of architectural connector as a powerful tool to describe
systems in terms of components and their interactions. Academic and industrial groups have
defined and developed computer languages dedicated to the description of software archi-
tectures provided with architectural connectors, called Architectural Description Language
(ADL), such as ACME/ADML [22], Wright [4] or Community [20, 21]. The interest of de-
scribing software systems as interconnected sub-systems is that this promotes the reuse of
components either directly taken in a library or adapted by slight modifications made on
existing ones.
The well-known difficulty with such systems is to infer the global behavior of the system
from the ones of sub-systems. Indeed, complex systems are often open on the outside, that
is they interact with the environment, composed of interacting sub-systems (e.g. active ob-
jects which interact together concurrently [1, 38]) or defined by questioning requirements
of sub-systems (e.g. feature-oriented systems where each feature can modify the expected
properties of pre-existing features [2, 23, 35]). Hence, what makes such systems complex is
they cannot be reduced to simple rules of property inference.

Following some works issued from scientific disciplinaries such as biology, physics, economy
or sociology [9, 14], let us make more precise what we mean by complex systems. A complex
system is characterized by a holistic behavior, i.e. global: we do not consider that its
behavior results from the combination of isolated behaviors of some of its components, but
instead has to be considered as a whole. This is expressed by the apparition (emergence) of
global properties which is very difficult, see impossible, to anticipate just from a complete
knowledge of component behaviors. This notion of emergence seems to be the simplest way
to define complexity. Succinctly, this could be expressed as follows: suppose a system XY
composed of two sub-systems X and Y. Let us also suppose we have a mathematical function
F which gives all the potential richness of XY, X and Y, and an operation ’+’ to combine
potential richness of sub-systems. If we have that F (XY ) = F (X) + F (Y ) then this means
that the system XY integrates in a consistent whole both sub-systems X and Y . Therefore,
we can say that the system XY is not complex (i.e. modular). On the contrary, if there
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exists some a ∈ F (X) ∪ F (Y ) such that a6∈F (XY ) or there exists some a ∈ F (XY ) such
that a6∈F (X) + F (Y ), then there is reconsideration of some potential richness of X or Y in
the first case, and apparition of true emergence in the second case. The system XY is then
said complex.

In this paper, we will study the notion of complex systems from the angle of formal
specifications, that is we will suppose that every part of systems have been specified in a given
formalism from which we can infer properties. The system XY will be built from sub-systems
X and Y by an architectural connector. Finally, the function F will give for a specification its
whole set of satisfied properties, the so-called semantic consequences of specifications usually
noted X•, and F (X) + F (Y ) = (X• ∪ Y •)•. The notion of complexity being based on the
emergence of properties, a general framework dedicated to complex systems can be defined
independently of formalisms, specifications and architectural connectors. To deal abstractly
with these three elements, our approach will be based on previous works:

• we will use the general framework of institutions [27] which is recognized as well-
adapted to generalize formalisms. The theory of institutions abstracts the semantical
part of logical systems according to the needs of software specifications in which changes
of signatures are taken into account. The abstraction of the different parts of logical
systems is obtained by using some notions of the category theory such as the category
of signatures Sig and the two functors Sen : Sig → Set and Mod : Sig → Cat to
denote respectively the set of sentences and the category of models over a signature
(see Chapter 2 for the complete definition of institutions and some related notions);

• specifications will be defined following the generic approach of specification logics [15,
16]. Specification logics are another general framework that abstract formalisms by
just focusing on specifications and models (they abstract away of sentences and the
satisfaction relation). The interest of specification logics is they unify in the same
framework heterogeneous forms of specifications by considering them as simple ob-
jects of a category SPEC, while handled specifications over institutions are mostly
axiomatic (i.e. of the form (Σ, Ax) where Σ is a signature and Ax is a (finite) set of
formulas (axioms) over Σ). However, because we are interested by emergent properties,
we will adapt/modify specification logics by defining them over institutions in order to
focus on specification properties;

• abstract connectors will be defined by using notions of the category theory. The use
of category theory has already been applied strikingly to model the architecture of
software systems by Goguen [26] and Fiadeiro & al. [29, 18]. It has also been applied
to model complex natural systems such as biological, physical and social systems (e.g.
Ehresman and Vanbremeersch’s works [14]).
Fiadeiro & al. [19, 30] have proposed an abstract formal denotation of a class of ar-
chitectural connectors in the style of Allen and Garlan [5], that is defined by a set of
roles and a glue specification. Here, we will go beyond by not supposing any structure
in the architectural connectors.

6



Over our abstract notions of specification and architectural connector, we will define the
notion of emergent properties according to the two following sub-classes:

1. the ones we will call true emergent properties that are properties which cannot be
inferred from sub-system properties,

2. and the ones we will call non conformity properties that are sub-system properties
which are not satisfied by the global system anymore.

A system will be then said complex when emergent properties can be inferred from it. We
take the liberty to insist on the sentence “inference of emergent properties” because many
people think that emergent properties cannot be inferred but just simulated. Hence, the
study of complex systems would lead to a deep change in the way of addressing the analysis
of such systems by going from the paradigm “modeling + formal analysis” to “modeling
+ simulation + statistical analysis”. This is as a matter of course not true. A typical
example coming from formal logic (but many others can be found in most scientific disciplines
such as computer science), that makes fail this belief, is Godel’s second incompleteness
theorem [39]. Indeed, this result states that arithmetic consistency cannot be inferred from
Peano’s axioms [39]. However, the arithmetic consistency can be inferred when Zermelo&
Frankael’s set theory with choice (ZFC) [37] is added to Peano’s one (this is the famous
Gentzen’s theorem consequence of the Hautspatz one [24]). Hence, the arithmetic consistency
is an emergent property for ZFC + Peano. The complexity of systems just means that we do
not benefit from the complete knowledge of sub-systems we have, to analyze the behavior of
the large system. Hence, the recursive approach used to describe the system cannot be used
to analyze its behavior. Complex systems can then be opposed to modular systems which by
definition strictly preserve local properties at the global level (see [33] for a state-of-the-art
on the modular approach in the formal software engineering framework).

The formalizations of system complexity and emergent properties are interesting if they
are done in such way to support both the characterization of general properties to guarantee
when a system is or is not complex, and the description of analytic process to check and
study the behavior of such systems. In this paper, to answer the first point, we will give
some conditions under which a system is modular. We will then establish two results: in
the first one we will give a sufficient and necessary condition to ensure the absence of true
emergent properties. In the second result, we will give sufficient conditions to ensure the
absence of non-conformity properties.
One of the features of complex systems is to not address the analysis of their behavior
incrementally, that is by benefiting from their recursive design. To retrieve an incremental
method of analysis of their behavior, we will study in this paper how to apply algebraic
refinement techniques to simplify the detection of emergent properties. The underlying
motivation is emergent properties are easier to study and detect at the level where they
emerge from. Of course, the problem of the correctness of the mapping that enables to go
from one level to the next one is essential: the important point is to study emergent property
preservation when dealing with more concrete specifications. In this framework, we will then
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study some conditions enabling us to preserve emergent properties from an abstract level to
a more concrete one. For this, we will take inspiration of previous works we made in the
framework of the feature design where we used the algebraic refinement to study feature
interactions [2].

The paper is then structured as follows: Chapter 2 presents some concepts, notations and
terminology about institutions which will be useful later in the paper. Chapter 3 defines
an abstract notion of specifications over institutions. In Chapter 4, abstract architectural
connectors are defined and classified as complex and modular. Moreover, Section 4.5 studies
some conditions for a connector to be modular (i.e. non complex). In Chapter 5, we define a
refinement theory in the generic framework developped in this paper, and give preservation
results of emergent properties in this refinement theory. Finally, in Chapter 6, we illustrate
our approach on the formalism classicaly used to specify biological processes: R. Thomas’s
genetic regulatory networks (GRNs) over the temporal logic CTL-X (Computational Tree
Logic without the modality X) and through the connector of sub-GRN embedding. More
precisely, we will show under some conditions that this formalim is in institution. This will
then lead up us to consider the GRN embedding as a connector to make bigger GRNs from
smaller ones.

The notations of the category theory used in this paper are the standard ones and can be
found in any textbooks on this subject such as [18].
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Chapter 2

Institutions

The theory of institutions [27] is a categorical abstract model theory which formalizes the
intuitive notion of logical system, including syntax, semantics, and the satisfaction between
them. This emerged in computing science studies of software specification and semantics, in
the context of the population explosion of logics there, with the ambition of doing as much
as possible at the level of abstraction independent of commitment to any particular logic.
Now institutions have become a common tool in the area of formal specification, in fact its
most fundamental mathematical structure.

2.1 Basic definitions

Definition 2.1.1 (Institution) An institution I = (Sig, Sen,Mod, |=) consists of

• a category Sig, objects of which are called signatures,

• a functor Sen : Sig → Set giving for each signature a set, elements of which are called
sentences,

• a contravariant functor Mod : Sigop → Cat giving for each signature a category, objects
and arrows of which are called Σ-models and Σ-morphisms respectively, and

• a |Sig|-indexed family of relations |=Σ⊆ |Mod(Σ)|×Sen(Σ) called satisfaction relation,

such that the following property holds: ∀σ : Σ→ Σ′, ∀M′ ∈ |Mod(Σ′)|, ∀ϕ ∈ Sen(Σ),

M′ |=Σ′ Sen(σ)(ϕ)⇔Mod(σ)(M′) |=Σ ϕ

Here, we define some notions over institutions which will be useful thereafter.

Definition 2.1.2 (Elementary equivalence) Let I = (Sig, Sen,Mod, |=) be an institu-
tion. Let Σ be a signature. Two Σ-models M1 and M2 are elementary equivalent, noted
M1 ≡Σ M2 if, and only if the following condition holds: ∀ϕ ∈ Sen(Σ), M1 |=Σ ϕ ⇐⇒
M2 |=Σ ϕ.
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This means thatM1 andM2 are undistiguinshable with respect to the formula satisfaction.

Definition 2.1.3 (Closed under isomorphism) An institution is closed under isomor-
phism if, and only if every two isomorphic models are elementary equivalent.

All reasonable logics (anyway all the logics classicaly used in mathematics and computer
science) are closed under isomorphism.

Definition 2.1.4 (Logical theory) Let I = (Sig, Sen,Mod, |=) be an institution. Let Σ
be a signature of |Sig|. Let T be a set of Σ-sentences (i.e. T ⊆ Sen(Σ)). Let us denote
Mod(T ) the full sub-category of Mod(Σ) whose objects are all Σ-models M such that for
any ϕ ∈ T , M |=Σ ϕ, and T • the subset of Sen(Σ), so-called semantic consequences of T ,
defined as follows: T • = {ϕ | ∀M ∈ |Mod(T )|, M |=Σ ϕ}. T is a logical theory if, and
only if T = T •.

ϕ ∈ T • is also denoted by T |=Σ ϕ.

2.2 Examples

Here we give some examples of institutions which will be used in the sequel to illustrate
our approach. Most of them are of particular importance for computer science and some
are more exotic (e.g. the institutions of formal languages or programming languages given
below). Many other examples can be found in the literature (e.g. [27, 41]).

2.2.1 Propositional Logic (PL)

Signatures and signature morphisms are sets of propositional variables and functions be-
tween them respectively.
Given a signature Σ, the set of Σ-sentences is the least set of sentences finitely built over
propositional variables in Σ and Boolean connectives in {¬,∨,∧,⇒}. Given a signature
morphism σ : Σ → Σ′, Sen(σ) translates Σ-formulas to Σ′-formulas by renaming proposi-
tional variables according to σ.
Given a signature Σ, the category of Σ-models is the category of mappings ν : Σ→ {0, 1} 1

with identities as morphisms. Given a signature morphism σ : Σ→ Σ′, the forgetful functor
Mod(σ) maps a Σ′-model ν ′ to the Σ-model ν = ν ′ ◦ σ.
Finally, satisfaction is the usual propositional satisfaction.

2.2.2 Many-sorted First Order Logic with equality (FOL)

Signatures are triples (S, F, P ) where S is a set of sorts, and F and P are sets of function
and predicate names respectively, both with arities in S∗×S and S+ respectively.2 Signature

1{0, 1} are the usual truth-values.
2S+ is the set of all non-empty sequences of elements in S and S∗ = S+ ∪ {ǫ} where ǫ denotes the empty

sequence.
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morphisms σ : (S, F, P ) → (S ′, F ′, P ′) consist of three functions between sets of sorts, sets
of functions and sets of predicates respectively, the last two preserving arities.
Given a signature Σ = (S, F, P ), the Σ-atoms are of two possible forms: t1 = t2 where 3

t1, t2 ∈ TF (X)s (s ∈ S), and p(t1, . . . , tn) where p : s1 × . . . × sn ∈ P and ti ∈ TF (X)si

(1 ≤ i ≤ n, si ∈ S). The set of Σ-sentences is the least set of formulas built over the set of
Σ-atoms by finitely applying Boolean connectives in {¬,∨,∧,⇒} and quantifiers ∀ and ∃.
Given a signature Σ = (S, F, P ), a Σ-model M is a family M = (Ms)s∈S of sets (one for
every s ∈ S), each one equipped with a function fM : Ms1 × . . . ×Msn

→ Ms for every
f : s1 × . . . × sn → s ∈ F and with a n-ary relation pM ⊆ Ms1 × . . . × Msn

for every
p : s1 × . . .× sn ∈ P . Given a signature morphism σ : Σ = (S, F, P )→ Σ′ = (S ′, F ′, P ′) and
a Σ′-model M′, Mod(σ)(M′) is the Σ-model M defined for every s ∈ S by Ms = M ′

σ(s),

and for every function name f ∈ F and predicate name p ∈ P , by fM = σ(f)M
′

and
pM = σ(p)M

′

. Finally, satisfaction is the usual first-order satisfaction.

Many other important logics can be obtained as FOL restrictions such as:

• Horn Clause Logic (HCL). An universal Horn sentence for a signature Σ in FOL
is a Σ-sentence of the form Γ ⇒ α where Γ is a finite conjunction of Σ-atoms and α

is a Σ-atom. The institution of Horn clause logic is the sub-institution of FOL whose
signatures and models are those of FOL and sentences are restricted to the universal
Horn sentences.

• Equational Logic (EQL). An algebraic signature (S, F ) simply is a FOL signature
without predicate symbols. The institution of equational logic is the sub-institution of
FOL whose signatures and models are algebraic signatures and algebras respectively.

• Conditional equational logic (CEL). The institution of conditional equational logic
is the sub-institution of EQL whose sentences are unversal Horn clauses for algebraic
signatures.

• Rewriting Logic (RWL) Given an algebraic signature Σ = (S, F ), Σ-sentences are
formulas of the form ϕ : t1 → t′1 ∧ . . . ∧ tn → t′n ⇒ t → t′ where ti, t

′
i ∈ TF (X)si

(1 ≤ i ≤ n, si ∈ S) and t, t′ ∈ TF (X)s (s ∈ S). Models of rewriting logic are preorder
models, i.e. given a signature Σ = (S, F ), Mod(Σ) is the category of Σ-algebras
A such that for every s ∈ S, As is equipped with a preorder ≥. Hence, A |= ϕ

if, and only if for every variable interpretation ν : X → A, if each ν(ti)
A ≥ ν(t′i)

A

then ν(t)A ≥ ν(t′)A where A : TF (A) → A is the mapping inductively defined by:
f(t1, . . . , tn)A = fA(tA1 , . . . , t

A
n ).

2.2.3 Modal FOL (MFOL)

Signatures are couples (Σ, A) where Σ is a FOL-signature and A is a set of actions,
and morphisms are couples of FOL-signature morphisms and total functions on sets of

3TF (X)s is the term algebra of sort s built over F with sorted variables in a given set X .
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actions. In the sequel, we will note by the same name both MFOL-signature and each of
its components.
Given a MFOL signature (Σ, A) with Σ = (S, F, P ), (Σ, A)-atoms are either predicates
p(t1, . . . , tn) or the symbol T (for T rue), and the set of (Σ, A)-formulas is the least set
of formulas built over the set of (Σ, A)-atoms by finitely applying Boolean connectives in
{¬,∨,∧,⇒}, quantifiers ∀ and ∃, and modalities in {�a|a ∈ A}. For every a ∈ A, the
intuitive meaning of �a is “always after the action a”.
Given a signature (Σ, A), a (Σ, A)-model (W,R), called Kripke frame, consists of a family
W = (W i)i∈I of Σ-models in FOL (the possible worlds) such that 4 W i

s = W j
s for every i, j ∈

I and s ∈ S, and a A-indexed family of “accessibility” relations Ra ⊆ I×I. Given a signature
morphism σ : (Σ, A) → (Σ′, A′) and a (Σ′, A′)-model ((W ′i)i∈I , R

′), Mod(σ)(((W ′i)i∈I , R
′))

is the (Σ, A)-model (Mod(σ)(W ′i)i∈I , R) defined for every a ∈ A by Ra = R′
σ(a). A (Σ, A)-

sentence ϕ is said to be satisfied by a (Σ, A)-model (W,R), noted (W,R) |=(Σ,A) ϕ, if for
every i ∈ I we have (W,R) |=i

Σ ϕ, where |=i
Σ is inductively defined on the structure of ϕ as

follows:

• for every FOL-formula ϕ built over Σ-atoms, (W,R) |=i
Σ ϕ iff W i |=Σ ϕ

• (W,R) |=i
Σ �aϕ when (W,R) |=j

Σ ϕ for every j ∈ I such that i Ra j.

2.2.4 More exotic institutions

The institution theory also enables to represent formalisms which are not logics strictly
speaking.

Formal languages (FL)

The institution of formal languages is defined by the category of signatures Set. Given a set
A, the set of sentences is A∗ and Mod(A) is the category whose objects are all subsets of A∗.
Given a signature morphism σ : A→ A′, Mod(σ) is the functor which at L′ ⊆ A′∗ associates
the set L = {α|σ(α) ∈ L′}. Finally, given a signature Σ ∈ Sig, |=Σ is just the membership
relation ∋. It is obvious to show that the satisfaction condition holds.

Proogramming languages (PLG)

The institution of a programming language [40] is built over an algebra of built-in data types
and operations of a programming language. Signatures are FOL signatures and sentences are
programs of the programming language over signatures; and models are algebraic structures
in which functions are interpreted as recursive mappings (i.e for each function symbol is
assigned a computation (either diverging, or yielding a result) to any sequence of actual
parameters). A model satisfies a sentence if, and only if it assigns to each sequence of
parameters the computation of the function body as given by the sentence. Hence, sentences

4In the literature, Kripke frames satisfying such a property are said with constant domains.
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determine particular functions in the model uniquely. Finally, signature morphisms, model
reductions and sentence translations are defined similarly to those in FOL.
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Chapter 3

Specifications in institutions

Over institutions, specifications are usually defined either by logical theories or couples
(Σ, Ax) where Σ is a signature and Ax a set (usually finite) of formulas (often called axioms)
over Σ. However, there is a large family of specification formalisms mainly used to specify
reactive and dynamic systems for which specifications are not expressed in this way. We can
cite for instance process algebras, transition systems or Petri nets. Now, all of these kinds of
specifications can be studied through the set of their semantic consequences expressed in an
adequate formalism. This leads us up to define the notion of specifications over institutions.

3.1 Definitions

Let us now consider a fixed but arbitrary institution I = (Sig, Sen,Mod, |=).

Definition 3.1.1 (Specifications) A specification language SL over I is a pair (Spec, Real)
where:

• Spec : Sigop → Set is a functor. Given a signature Σ, elements in Spec(Σ) are called
specifications over Σ.

• Real = (RealΣ)Σ∈|Sig| is a Sig-indexed family of mappings RealΣ : Spec(Σ) → |Cat|
such that for every Σ ∈ |Sig|, and every Sp ∈ Spec(Σ), RealΣ(Sp) is a full subcategory
of Mod(Σ). Objects of RealΣ(Sp) are called realizations of Sp.

Definition 3.1.2 (Semantic consequences) Let SL = (Spec, Real) be a specification
language over I. Let us define • = ( •

Σ)Σ∈Sig the Sig-indexed family of mappings •
Σ :

Spec(Σ) → P(Sen(Σ)) that to every Sp ∈ Spec(Σ), yields the set Sp•Σ = {ϕ|∀M ∈
RealΣ(Sp),M |=Σ ϕ}. Sp•Σ is called the set of semantic consequences of Sp or the the-
ory of Sp.

Definition 3.1.2 calls for some comments:
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• We could expect that Mod(Sp•) = Real(Sp) what would make unmeaning the exis-
tence of the mappings in Real in Definition 3.1.1. However, we can often be led up
to make some restrictions on specification models. For instance, when dealing with
axiom specifications expressed in FOL or EQL, we can be interested by reachable or
initial models to allow inductive proofs or for computability reasons. We will also see
in Section 3.2.3, when specifications are transition systems over MFOL, models are
then specific Kripke frames. Indeed, they have further to respect the structure of the
transition system under consideration.

• Sometimes, • is a natural transformation from Spec to1 P ◦ Senop. However, most of
times, it is not the case (see the examples in Section 3.2).

Definition 3.1.3 (Category of specifications) Let SL be a specification language. De-
note SPEC the category of specifications over SL whose the objects are the elements in

⋃

Σ∈|Sig|

Spec(Σ), and morphisms are every arrow σ from Sp ∈ Spec(Σ) to Sp′ ∈ Spec(Σ′)

such that there exists a signature morphism noted Sig(σ) : Σ → Σ′. If σ further satisfies:
Sen(Sig(σ))(Sp•Σ) ⊆ Sp′

•
Σ′, then σ is called specification morphism.

Sig : SPEC → Sig is the functor which maps any specification Sp ∈ Spec(Σ) to the signa-
ture Σ and any morphism σ to the signature morphism Sig(σ).

Hence, specification morphisms are arrows in SPEC that further preserve semantic con-

sequences. Commonly, the category of specifications over institutions have
⋃

Σ∈|Sig|

Spec(Σ)

as objects and specification morphisms as arrows [13, 27, 41]. Here, the fact to consider
just signature morphisms between specifications will be useful to define both architectural
connectors and their combination.

Proposition 1 Let σ : Sp→ Sp′ be a specification morphism. Then, the functor Mod(σ) :
Mod(Sig(Sp′)) → Mod(Sig(Sp)) can be restricted to specification semantic consequences
(i.e. Mod(σ) : Mod(Sp′•Σ′)→Mod(Sp•Σ) is a functor).

Proof. Let ϕ ∈ Sp•Sig(Sp) andM∈Mod(Sp′). As σ is a specification morphism,M |=Sig(Sp′)

Sen(σ)(ϕ). Therefore, by the satisfaction condition, we also have that Mod(σ)(M) |=Sig(Sp)

ϕ.

1Given a functor F : C → D, Fop : Cop → Dop is the dual of F defined as follows:

– ∀o ∈ C, F op(o) = F (o)

– f∗ being the reverse arrow of f in C, ∀o, o′ ∈ C, ∀f ∈ HomC(o, o′), F op(f∗) = F (f)∗

The powerset functor P : Setop → Set takes a set S to its powerset P(S), and a set function f : S → S′

(i.e., an arrow from S′ to S in Setop) to the inverse image function f−1 : P(S′)→ P(S) which associates to
a subset A ⊆ S′ the subset {s ∈ S|f(s) ∈ A} of S.
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We cannot state a similar result for the family of mappings Real, i.e. we cannot define in
a general way a functor of the form Real(σ) : Real(Sp′)→ Real(Sp). The following notion
of compatibility captures the existence of such a functor.

Definition 3.1.4 (Compatible) Let SL = (Spec, Real) be a specification language over
I. Let σ : Sp → Sp′ be a specification morphism. Real is said compatible with σ if, and
only if we can define a functor Real(σ) : Real(Sp′)→ Real(Sp).

Here, we define two other notions that we will use afterwards.

Definition 3.1.5 (Definable by specification) Given an institution I and a specifica-
tion language over I, a Σ-theory T is said definable by specification or definable for being
shorter if, and only if there exists Sp ∈ Spec(Σ) such that T = Sp•Σ.

In the following definition, we now adapt the standard notion of liberal specification mor-
phism [13] which will be useful in Section 4.5.

Definition 3.1.6 (Liberality) In any specification language SL over I, a specification
morphism σ : Sp → Sp′ is liberal if, and only if Real is compatible with σ and Real(σ) :
Real(Sp′)→ Real(Sp) has a left-adjunct F(σ) : Real(Sp)→ Real(Sp′).

In FOL (resp. EQL), each specification morphism between theories T and T ′ of universal
Horn sentences (resp. positive conditional sentences) is liberal under the condition that given
a theory T , Real(T ) = Mod(T ).

3.2 Examples

We give four examples of specification languages. The two first correspond to the usual
forms of specifications over arbitrary institutions. In the third example, we present the spec-
ification language made of symbolic transition systems defined over the institution MFOL.
Finally, in the last example, we define specifications over formal languages by sets of inference
rules.

3.2.1 Logical theories

Here, specifications are logical theories. To meet the requirements given in Definition 3.1.1,
this gives rise to the functor Spec : Sigop → Set which to every Σ ∈ Sig, associates the set
of all Σ-theories T , and to every signature morphism σ : Σ→ Σ′, matches every Σ′-theory T ′

with the Σ-theory T = {ϕ|Sen(σ)(ϕ) ∈ T ′}. Hence, Spec(Σ) ⊆ P(Sen(Σ)). We naturally
define RealΣ(T ) = Mod(T ). Moreover, specifications being saturated theories, this naturally
leads to the identity function •

Σ : Spec(Σ) → P(Sen(Σ)). It is easy to check that given a
signature morphism σ : Σ → Σ′, the following diagram commutes and then • is a natural
transformation:
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Spec(Σ) P(Sen(Σ))

Spec(Σ′) P(Sen(Σ′))

•
Σ

•
Σ′

Spec(σ) P(Senop(σ∗))

(See Footnote 4 for the definition of σ∗)

3.2.2 Axiomatic specifications

In this case, specifications are defined by pairs (Σ, Ax) where Σ is a signature and Ax ⊆
Sen(Σ), and given a signature morphism σ : Σ→ Σ′, Spec(σ) matches every Σ′-specification
Sp′ = (Σ′, Ax′) to Sp = (Σ, {ϕ|Sen(σ)(ϕ) ∈ Ax′}). By the satisfaction condition, we have
that Sen(σ)(Ax•) ⊆ Ax′•. The functor Spec then associates to every signature Σ the set of
pairs (Σ, Ax), and (Σ, Ax)•Σ = Ax•.

Observe that • is not a natural transformation. Indeed, let us set in FOL, and consider the
inclusion morphism σ : Σ → Σ′ where Σ′ = ({s}, ∅, {R1, R2 : s× s}) and Σ = ({s}, ∅, {R1 :
s× s}). Let Ax′ be the set of axioms:

x R2 y =⇒ y R2 x

x R1 y ⇐⇒ x R2 y

Obviously, we prove from Ax′ that R1 is a symmetric relation.
However, Spec(σ)((Σ′, Ax′)) = ∅, and then Spec(σ)((Σ′, Ax′))• is restricted to tautologies
while P(Senop(σ∗))(Ax′) contains at least x R1 y ⇒ y R1 x.

3.2.3 Transition systems

When dealing with modal logics which are well-adapted to express properties on dynamic
and reactive systems, many works specify such systems with different forms of automaton.
In the MFOL framework, specifications over a signature (Σ, A) can be defined by transition
systems (Q,T) where:

• Q is the set of states, and

• T ⊆ Q×A× Sen(Σ)×Q.

Given a signature morphism σ : (Σ, A) → (Σ′, A′) and a specification S ′ = (Q′,T′) over
(Σ′, A′), Spec(σ)(S ′) is the specification S = (Q,T) over (Σ, A) such that Q = Q′ and
T = {(q, a, ϕ, q′)|(q, σ(a), σ(ϕ), q′) ∈ T

′}.

Given a transition system S = (Q,T), realizations for S are (Σ, A)-models (W,R) where
W is a Q-indexed family of Σ-models in FOL and R is a A-indexed family of binary relations
on Q such that:

(q, a, ϕ, q′) ∈ T ∧W q |=Σ ϕ⇒ q Ra q
′

q Ra q
′ ⇒ ∃(q, a, ϕ, q′) ∈ T,W q |=Σ ϕ
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3.2.4 Inference rules

In the framework of formal language, languages L over an alphabet A can be specified
by inference rules, that is n-ary relations r on A∗ and a tuple (α1, . . . , αn) ∈ r means that
if α1, . . . , αn−1 are words of the language, then so is αn. Hence, a specification over an
alphabet A is a set R of n-ary relations on A∗. Given a signature morphism σ : A→ A′ and
a specification R′ over A′, the specification Spec(σ)(R′) over A is the set R of n-ary relation r
such that there exists r′ ∈ R′ and r = {(a1, . . . , an)|(∀i, 1 ≤ i ≤ n, ai ∈ A)∧(a1, . . . , an) ∈ r

′}.
Given a set of inference rules R over an alphabet A, R•

A is the language L inductively
generated from inference rules of R. Given a signature morphism σ : A → A′ and a set of
inference rules R′ over A′. It is easy to show that Spec(σ)(R′)•A = R′•

A′ ∩A∗ what proves that
• is a natural transformation from Spec to P ◦ Senop.
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Chapter 4

Architectural connector

4.1 Definitions

Succinctly, architectural connectors enable one to combine components (specifications)
together to make bigger ones. However, depending on the used specification language, the
way of combining components can be different. For instance, when specifications are logical
theories then their combination is often based on the set theoretical union on signatures
whereas the combination of specifications made of transition systems is based on some kinds
of product. However, one can observe that most of existing connectors c have the following
common features:

• a connector c gets as arguments a fixed number n of existing specifications Sp1, Sp2,
. . .Spn defined respectively over the signatures Σ1, Σ2, . . . Σn, to build a new one,
denoted Sp = c(Sp1, Sp2, . . . , Spn). We can then see the connector c as a mapping
of arity n from |SPEC|n to |SPEC|. We will see in the examples that actually c

may be a partial function, but often defined in a way sufficiently general to accept as
arguments tuples (Sp1, Sp2, . . . , Spn) with a large associated family of signature tuples
(Σ1,Σ2, . . . ,Σn).

• as specifications will be recursively defined by means of connectors, the arguments
Sp1, Sp2, . . .Spn of the connector c can be linked together by some constraints on
elements present in specification signatures, expressed by signature morphisms. These
constraints will be taken into account by the definition of the connector c. Hence, the
arguments of a connector c will not be a tuple of n specifications, but n specifications
equipped with signature morphisms. This will be defined by a graph whose nodes
are specifications and edges are signature morphisms. In the category theory, such a
graph is called a diagram of the specification category SPEC. In practice, for a given
connector c, all the diagrams accepted as arguments by c have the same graph shape
(i.e. the same organization between nodes and edges). Hence, our connectors will be
built on the diagram category with the same shape over the category SPEC.

• the signature Σ of Sp is the least one over the signatures Σ1, Σ2, . . . , Σn. This expresses
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the fact that generally, a connector c does not explicitly introduce new elements to be
specified, but on the contrary only combines the elements already present in one of
the signatures Σ1, Σ2 . . . Σn. In the following definition of connectors, this will be
expressed by the co-limit of the diagram, projected on signatures.

This then leads us up to formally define architectural connectors. But before, let us recall
the notions of the category theory of diagram, co-cone and co-limit on which our architectural
conectors are defined.

Definition 4.1.1 (Diagram category) Let I and C be two categories. Note ∆(I,C) the
category of diagrams in C with shape I, i.e. the category whose objects are all functors
δ : I → C, and morphisms are natural transformations between functors δ, δ′ : I → C.
Let I ′ be a subcategory of a category I. Let δ be a diagram of ∆(I,C). Let us denote δ|I′ the
diagram of ∆(I′,C) obtained by restricting δ to I ′.

The category I can be thought as a graph of interconnections between the objetcs of C that
the functor δ selects.

Definition 4.1.2 (Co-cone) Given a diagram δ : I → C. A co-cone of δ consists of an
object c ∈ |C| and a I-indexed family of morphisms αi : δ(i) → c such that for each edge
e : i→ i′ in I, we have that αi′ ◦ δ(e) = αi.

A co-limiting co-cone (co-limit) (c, {αi}i∈I) can be understood as a minimal co-cone, that
is:

Definition 4.1.3 (Co-limit) A co-cone (c, {αi}i∈I) of a diagram δ is a co-limit if, and
only if it has the property that for any other co-cone (d, {βi}i∈I) of δ, there exists a unique
morphism γ : c→ d such that for every i ∈ I, γ ◦ αi = βi.
When I is the category • ← • → • with three objects and two non-identity arrows, the
co-limit is called a pushout.

Definition 4.1.4 (Co-complete) A category C is co-complete if for every shape category
I, every diagram δ : I → C has a co-limit.

In the sequel, we will then consider institutions whose the signature category is co-
complete.

Definition 4.1.5 (Architectural connector) Let SL be a specification language over an
institution I for which the category Sig is co-complete. An architectural connector c :
|∆(I,SPEC)| → |SPEC| is a partial mapping such that every δ ∈ ∆(I,SPEC) for which c(δ) is
defined, is equipped with a co-cone p : Sig ◦ δ → Sig(c(δ)) co-limit of Sig ◦ δ.
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The reader accommodated to the terminology and to the concepts of software architec-
ture [5, 7, 19, 30, 34] can be disappointed by the way connectors are interpreted here, i.e.
by functions that take components and produce systems. Indeed, connectors are typically
viewed as forms of communicating components. Such connectors can also be formalized in
our framework. For instance, in Community [20, 21], in the style of Allen and Garlan [5],
a connector consists of n roles Ri and one glue G stating the interaction between roles
(i.e. the way roles communicate together). Roles and glue are programs defined over signa-
tures (see [19] for a complete definition of programs). In our framework, programs denote
specifications from which we can observe temporal properties. Each role and the glue are in-
terconnected by a channel to denote via signature morphisms shared attributes and actions.
This gives rise to a diagram defined as the interconnection on the glue G of basic diagrams
of the form:

channel

Ri G

In Community, the mathematical meaning of a connector is then defined by the colimit
of such diagrams. This can be easily defined in our framework by considering a connector
c defined for every diagram of the previous form over the category PROG (defined in [19])
taken as the category SPEC.

4.2 Examples

4.2.1 Enrichment and union

Enrichment and union of specifications have surely been the first primitives architectural
connectors (so-called structuring primitives) to be formally defined and studied especially
when dealing with specifications defined as axiomatic specifications (see Section 3.2.2). They
even received an abstract formalization in institutions [36, 8]. In our framework, both struc-
turing primitives are defined as follows: we consider an institution I = (Sig, Sen,Mod, |=).
For all the rest of Section 4.2.1, SPEC is the category whose objects are specifications of
the form (Σ, Ax) over a given institution I as defined in Section 3.2.2, and morphisms are
any σ : (Σ, Ax)→ (Σ′, Ax′) such that σ : Σ→ Σ′ is a signature morphism.

Enrichment. Let I be the graph composed of two nodes i and j and one arrow a : i→ j.
The connector Enrich for axiomatic specifications is defined for every diagram δ : I → SPEC

where δ(i) = (Σ, Ax) and δ(j) = (Σ′, Ax′) such that Sen(Sig(δ(a)))(Ax) ⊆ Ax′, and yields
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Enrich(δ) = (Σ′, Ax′) together with the co-cone Sig(δ(a)) and IdSig(δ(j)) which is the obvious
co-limit of Sig ◦ δ. Observe that δ(a) and Idδ(j) are further specification morphisms.

Union. Let I be the graph composed of three nodes i, j, and k and two arrows a1 :
i → j and a2 : i → k. The connector Union is defined for every diagram δ : I →
SPEC where δ(i) = (Σ0, Ax0), δ(j) = (Σ1, Ax1) and δ(k) = (Σ2, Ax2), and such that
Sen(Sig(δ(a1)))(Ax0) ⊆ Ax1 and Sen(Sig(δ(a2)))(Ax0) ⊆ Ax2, and yields Union(δ) =
(Σ, Ax) with the co-cone p : Sig ◦ δ → Σ which is the pushout of Sig(δ(a1)) and Sig(δ(a2))
and such that Ax = Sen(pj)(Ax1) ∪ Sen(pk)(Ax2). Observe that we can derive the co-cone
pSPEC : δ → (Σ, Ax) such that Sig ◦ pSPEC = p, and pSPECj

and pSPECk
are specification

morphisms.

In [8], both above connectors have been brought down to two basic connectors: union
with constant signatures

⋃

, and translate by σ for every signature morphism σ. They
are defined by:

1. Let I be the graph composed of two nodes i and j and without arrows between i

and j. The connector
⋃

is defined for every diagram δ : I → SPEC where δ(i) =
(Σ, Ax1) and δ(j) = (Σ, Ax2), and yields

⋃

(δ) = (Σ, Ax) with the obvious co-limit
p : Sig ◦ δ → Σ where pi and pj are the identity signature morphism for Σ, and such
that Ax = Ax1 ∪ Ax2.

2. Let I be the graph composed of one node k. The connector translate by σ where
σ : Σ→ Σ′ is a signature morphism, is defined for every diagram δ : I → SPEC where
δ(k) = (Σ, Ax), and yields translate by σ(δ) = (Σ′, Sen(σ)(Ax)).

In [8],
⋃

(δ) and translate by σ(δ) are respectively noted δ(i)
⋃

δ(j) and translate δ(k)
by σ.

4.2.2 Synchronous product of transition systems

Synchronous product combines two transition systems into a single one by synchronizing
transitions. Understandably, executions of synchronous product model system behavior as a
synchronizing concurrent system. Hence, when an action a is “executed” in the product, then
every component with a in its alphabet must execute a transition labeled with a. Formally,
the synchronous product of two transition systems can be defined through the connector
Sync. To define the connector Sync, let us consider a shape I composed of three nodes i, j
and k and two arrows a1 : i → j and a2 : i → k. The connector Sync is defined for every
diagram δ where δ(i) is the empty transition system over the signature (Σ∅, Ai) where Σ∅ is
the empty FOL-signature, δ(j) = (Qj ,Tj) over the signature (Σj , Aj) and δ(k) = (Qk,Tk)
over the signature (Σk, Ak), and yields Sync(δ) = (Q,T) over the signature (Σ, A) with the
co-cone p : Sig ◦ δ → (Σ, A) which is the pushout of Sig(δ(a1)) and Sig(δ(a2)) in Sig.

• Q = Qj ×Qk
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• if a ∈ Ai, (qj , δ(a1)(a), ϕj, q
′
j) ∈ Tj and (qk, δ(a2)(a), ϕk, q

′
k) ∈ Tk then

((qj, qk), pj(δ(a1)(a)), Sen(pj)(ϕj) ∧ Sen(pk)(ϕk), (q′j, q
′
k)) ∈ T

• if a ∈ Aj \ δ(a1)(Ai) and (qj , a, ϕj, q
′
j) ∈ Tj then for every qk ∈ Qk,

((qj , qk), pj(a), Sen(pj)(ϕj), (q
′
j, qk)) ∈ T

• if a ∈ Ak \ δ(a2)(Ai) and (qk, a, ϕk, q
′
k) ∈ Tk then for every qj ∈ Qj ,

((qj , qk), pk(a), Sen(pk)(ϕk), (qj, q
′
k)) ∈ T

4.3 Combination of connectors

Architectural connectors can be combined to deal with specifications in the large.

Definition 4.3.1 (Connector combination) Let c : |∆I,SPEC| → |SPEC| and c′ : |∆(I′,SPEC)| →
|SPEC| be two architectural connectors. Let i′ ∈ |I ′| be an object. Let I ′ ◦i′ I be the category
defined by:

• |I ′ ◦i′ I| = |I|
∐

|I ′|

• the sets HomI′◦i′I
(k, l) for every k, l ∈ |I ′ ◦i′ I| are inductively defined as follows:

– k, l ∈ |I ′| ⇒ HomI′(k, l) ⊆ HomI′◦i′I
(k, l)

– k, l ∈ |I| ⇒ HomI(k, l) ⊆ HomI′◦i′I
(k, l)

– for every i ∈ |I|, we introduce the arrow qi in HomI′◦i′I
(i, i′).

– HomI′◦i′I
is closed under composition.

Let us denote c′ ◦i′ c : |∆I′◦i′I,SPEC| → |SPEC| the architectural connector defined by:

δ 7→































c′(δ′|I′ ) if c(δ|I ) is defined

δ(i′) = c(δ|I )
and δ(qi) is the morphism ri in SPEC

whose the image by Sig is the component
pi of the co-limit p associated to c(δ|I )

undefined otherwise

1

Example 1 Enrichment can be removed and replaced by the following combination of
translate and ∪ as follows: let δ be a diagram of ∆(I,SPEC) where I is the index cate-
gory of the connector Enrich, δ(i) = (Σ, Ax) and δ(j) = (Σ′, Ax′)

Enrich(δ) =
⋃

◦itranslate byδ′(pi)(δ
′)

where δ′ is the diagram of ∆(I′′◦iI′,SPEC) for I ′′ (resp. I ′) the index category of the con-
nector ∪ (resp. translate), defined by: δ′(k) = δ(i), δ′(i) = translateδ′(k)byδ′(pi) =
(Σ′, Sen(Sig(pi))(Ax)) and δ′(j) = (Σ′, Ax′ \ Ax). ♦

1qi is the arrow introduced in HomI′◦
i′

I(i, i
′).
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4.4 Complex structuring

As already explained in the introduction of the paper, an architectural connector will be
considered as complex when:

1. the global system does not preserve the complete behavior of some sub-systems. We
will then talk about non-conformity properties.

2. Some global properties cannot be deduced from a complete knowledge of these com-
ponents. We will then talk about true emergent properties.

This is expressed by comparing the set of semantic consequences of sub-systems with the
ones of the global system up to signature morphisms.

Definition 4.4.1 (Complex connector) Let c : |∆(I,SPEC)| → |SPEC| be an architec-
tural connector. Let δ be a diagram of ∆(I,SPEC) such that c(δ) is defined. c is said complex
for δ if, and only if one of the two following properties fails:

1. Conformity.

∀i ∈ I, ∀ϕ ∈ Sen(Sig(δ(i))), ϕ ∈ δ(i)•Sig(δ(i)) ⇐⇒ Sen(pi)(ϕ) ∈ c(δ)•Sig(c(δ))

2. Non true emergence.

∀ϕ ∈ c(δ)•Sig(c(δ)),
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))) |=Sig(c(δ)) ϕ

A formula ϕ that makes fail the equivalence of both Point 1. and Point 2. is called emergent
property for c and δ.
If c is not complex for a diagram δ, then it is said modular.

Example 2 Here, we give a very simple example of specifications in which modularity fails.
Let Nat be the specification in EQL defined as follows:

Specification of Nat Sorts: SNat = {nat }

Functions : FNat = {0 :→ nat ,

succ : nat→ nat ,

+ : nat× nat→ nat }

Axioms: AxNat = {x+ 0 = x

x+ succ(y) = succ(x+ y)}

Let us us enrich this specification by adding operations and axioms to specify stacks of
natural numbers. This leads to the following enrichment:

Sorts: SStack = {nat, stack }
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Functions : FStack = FNat∪{empty :→ stack ,

push : nat× stack → stack ,

pop : stack → stack ,

top : stack → nat ,

high : stack → nat}

Axioms: AxStack = AxNat ∪ {pop(empty) = empty

pop(push(e, P )) = P

top(psuh(e, P )) = e

high(push(e, P )) = succ(P )}

If we suppose that realizations are either the initial model or reachable models 2 of both
specifications, then an example of emergent property is:

∀x, (x = 0) ∨ (∃y, x = succ(y))

This is because high(empty) has not been specified to be equal to 0. ♦

4.5 Conditions for modularity

Theorem 1 states that showing the non-presence of true emergent properties for a connector

c and a diagram δ comes to show that (
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

• is definable by c(δ).

Theorem 1 Let c be an architectural connector and δ be a diagram such that c(δ) is defined.
Then, we have:

(
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

• is definable by c(δ) if, and only if the set of true emergent prop-

erties is empty and each pi is a specification morphism.

Proof. The only if part. This obviously results from the fact that (
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

•

is definable by c(δ). Indeed, we have c(δ)•Sig(c(δ) = (
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

•, that is for every

ϕ ∈ c(δ)•Sig(c(δ)), we have that
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))) |=Sig(c(δ)) ϕ.

The if part. As each pi of p is a specification morphism, we have that (
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

• ⊆

c(δ)•Sig(c(δ). Moreover, as the set of true emerging properties is empty, we have that c(δ)•Sig(c(δ) ⊆

(
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

•. Hence, c(δ)•Sig(c(δ) = (
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

•, and then

(
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

• is definable by c(δ).

2A model is reachable when any of its values is the result of the evaluation of a ground term.
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By Theorem 1, the architectural connectors Enrich, Union,
⋃

and translate by σ have
no true emergence properties for any defined diagram.

Conversely, the architectural connector Sync may have true emergent properties. The

reason is the class of Kripke frames in Mod(
⋃

i∈I

Sen(pi)(δ(i))
•
Sig(δ(i))) may be greater than

Sync(δ)’s one. Indeed, Kripke frames in Real(Σ,A)(Sync(δ)) have to preserve the shape of

the transition system Sync(δ) unlike Kripke frames in Mod(
⋃

i∈I

Sen(pi)(δ(i))
•
Sig(δ(i))). Hence,

properties in Sync(δ)•(Σ,A) may be more numerous than in (
⋃

i∈I

Sen(pi)(δ(i))
•
Sig(δ(i)))

•. How-

ever, we can show that under some conditions, each morphism of the pushout p is a spec-
ification morphism and then the semantic consequences of δ(j) and δ(k) are preserved by
Sync(δ) (i.e. the only if part of the conformity property is satisfied). Indeed, suppose a
(Q,T)-model (W,R), and denote for every l ∈ {j, k}, the binary relation ≈l on W as the
reflexive, transitive and context closure defined by:

Context closure: ∀ql ∈ Ql, ∀qm, q
′
m ∈ Qm (m 6= l ∈ {j, k}), ∀f : s1 × . . .× sn → s ∈ F

∀(a1, . . . , an), (a′1, . . . , a
′
n) ∈Ws1 × . . .×Wsn

ai ≈l a
′
i (i = 1, . . . , n) =⇒ fW (ql,qm)

(a1, . . . , an) ≈l f
W (ql,q

′

m)
(a′1, . . . , a

′
n)

of the following binary relation on W :

a ≈l a
′ ⇐⇒



























∃qm, q
′m ∈ Qm (m 6= l ∈ {j, k}),

∃f : s1 × . . .× sn → s ∈ F
∃(a1, . . . , an) ∈Ws1 × . . .×Wsn

,

fW (ql,qm)
(a1, . . . , an) = a∧

fW (ql,q
′

m)
(a′1, . . . , a

′
n) = a′

It is obvious to show that for every l ∈ {j, k}, ≈l is an equivalence relation compatible with
sorts. ≈l is said stable when the following property is satisfied: ∀ql ∈ Ql, ∀qm, q

′
m ∈ Qm (m 6=

l ∈ {j, k}), ∀p : s1 × . . .× sn ∈ P

∀(a1, . . . , an), (a′1, . . . , a
′
n) ∈Ws1 × . . .×Wsn

ai ≈l a
′
i (i = 1, . . . , n) ∧ (a1, . . . , an) ∈ pW (ql,qm)

=⇒ (a′1, . . . , a
′
n) ∈ pW (ql,q

′

m)

This property can be obviously satisfied if the logic used to express non-modal formula is
EQL instead of FOL.

When ≈l is stable, we can then define a (Ql,Tl)-model (Wl, Rl) from (W,R) as follows:

• ∀s ∈ S, (Wl)s = Wpl(s)/≈l

,

• ∀f : s1 × . . . sn → s ∈ Fl, ∀a1 ∈ (Wl)s1, . . . , an ∈ (Wl)sn
, ∀ql ∈ Ql,

fW
ql
l (a1, . . . , an) = pl(f)W (ql,qm)

(a1, . . . , an),

• ∀p : s1 × . . .× sn ∈ Pl, ∀ql ∈ Ql,

pW
ql
l = {(a1, . . . , an)|∃qm ∈ Qm, (a1, . . . , an) ∈ pl(p)

(ql,qm)},
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• ∀a ∈ Al, Ra = {(ql, q
′
l)|∃(ql, a, ϕ, q

′
l) ∈ Tl}

Theorem 2 (Wl, Rl) is a (Ql,Tl)-model.

Proof. [Sketch] This is a consequence of the following proposition which is proved by induc-
tion on the formula structure:

Proposition 2 For every ϕ ∈ Sen((Σl, Al)) and every ι : V →Wl

(∀qm ∈ Qm,W
(ql,qm)) |=ι′ Sen(pl)(ϕ)⇐⇒W

ql

l |=quol◦ι′ ϕ

By Proposition 2, we can then show that

W |= Sen(pl)(ϕ)⇐⇒ Wl |= ϕ

Suppose a transition (ql, a, ϕ, q
′
l) ∈ Tl.

By construction, there exists a transition ((ql, qm), pj(a), ϕ
′, (q′l, q′m)) ∈ T such that either

ϕ′ = Sen(pl)(ϕ) or ϕ′ = Sen(pj)(ϕ) ∧ Sen(pm)(ϕ′′). In both cases, by hypothesis, we then
have that W (ql,qm) |= Sen(pl)(ϕ) whence we can conclude W ql

l |= ϕ.

Corollary 1 Each morphism of the pushout p in Sig associated to the architectural connec-
tor Sync is a specification morphism.

Corollary 2 Real is compatible with each pi for the architectural connector Sync.

As we could expect, modularity is a property which holds for some, but certainly not for all

architectural connectors. More surprising, even under the condition that (
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

•

is definable by c(δ) for a connector c and a diagram δ such that c(δ) is defined, modularity
can fail because of non-conformity properties (see Example 2).
In the next theorem, we give a supplementary condition based on the liberality of each pi

of the co-limit p, that leads to an empty set of non-conformity properties. For Theorem 3,
we suppose that the institution under consideration is closed under isomorphism, and Real
is compatible for every specification morphism pi of the associated co-cone p. A supplemen-
tary condition is needed to have the next theorem. This condition imposes for each pi of the
co-limit p associated to the connector c in ∆(I,SPEC) to satisfy: ∀ϕ ∈ Sen(Sig(δi)), ∀M ∈
Real(c(δ)), Real(pi)(M) |=Sig(δi) ϕ =⇒ M |=Sig(δ(c)) Sen(pi)(ϕ). Indeed, realizations being
a subset of models, some prunings on realizations in Real(δ(c)) have been allowed to be
done, and then this direction of the satisfaction condition has been able to be brought into
failure. For instance, this property does not hold when specifications are logical theories and
realizations are restricted to reachable models (see Example 2). In the following, we will
suppose that this property holds.
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Theorem 3 Let c be an architectural connector and δ be a diagram such that c(δ) is defined.

Suppose that (
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

• is definable by c(δ), Real is compatible with each pi

and each pi is liberal. Then, for every i ∈ I and everyM∈ Real(δ(i)), If each adjunct mor-
phism µM : M → Real(pi)(F(pi)(M)) is an isomorphism, then the set of non-conformity
properties is empty.

Proof. Let ϕ ∈ δ(i)•Sig(δ(i)), and let M ∈ Real(c(δ)). As (
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

• is de-

finable by c(δ), Real(pi)(M) |=Sig(δ(i)) ϕ. Therefore, by the hypothesis that the truth of
property is preserved for the functor Real through each signature morphism pi, we have that
M |=Sig(c(δ)) Sen(pi)(ϕ).

let ϕ ∈ Sen(δ(i)) such that Sen(pi)(ϕ) ∈ c(δ)•, and let M ∈ Real(δ(i)). As F(pi) is
left-adjunct to Real(pi), we have F(pi)(M) |=Sig(c(δ)) Sen(pi)(ϕ). As Real is compatible
with each pi, Real(σ)(F(pi)(M)) |=Sig(δ(i)) ϕ. As the adjunct morphism is an isomorphism
and I is stable under isomorphism, M and Real(σ)(F(pi)(M)) are elementary equivalent,
and thenM |=Sig(δ(i)) ϕ.

Theorem 3 generalizes to any architectural connectors the standard condition of modu-
larity based on the two notions of hierarchical consistency and sufficient completeness [28],
which has been stated for the enrichment connector in the algebraic specification framework
(when specifications are conditional positive).
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Chapter 5

Refinement

One of the main open problem encountered when dealing with complex system design is
that some emergent properties (i.e. both non-conformity and true emergent properties) may
appear at different levels of design. We can then observe that some properties may be
inherited from higher to lower levels but also that some others may disappear through the
operation of concretization. For example, a property due to a non-deterministic description
may disappear in a lower level of design because of a deterministic choice on the description.
This leads to the conclusion that:

• non-conformance and emerging properties should be addressed at the levels they emerge
from, and

• it is necessary to have a framework that supports the mapping from one level to the
next lower one.

Here, we propose then to use refinement techniques as a basic incremental method to design
complex systems. The underlying motivation is that emergent properties are easier to study
on more abstract specifications when some details are hidden. Of course, the problem of
the correction of the mapping from an abstract level to a more concrete one is essential:
the important point is to study property preservation when dealing with more concrete
specifications.

Defining a refinement theory in the framework of complex system design has then two
purposes:

1. answering the problem of specifying real size systems, and

2. studying emergent properties at every design step, and how these properties behave
along refinement, that is are or are not they preserved along refinement steps?

We are then going to take advantage that the underlying logic is an institution to define
a refinement theory within it. Hence, we will use notations and results established in [8, 36]
where refinement has been studied in the abstract framework of institution.
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5.1 Component refinement

Since complex system are grounded on a diagram of components, the basic refinement is
component refinement.

Definition 5.1.1 (Syntactic refinement) Let SL be a specification language over an in-
stitution I. Let Sp be a specification of SPEC. A syntactic refinement of Sp is a specifi-
cation Sp′ together with a morphism σ : Sp → Sp′. We note Sp  σ Sp

′ such a syntactic
refinement.

Example 3 When specifications are theories or are axiomatic, a syntactical refinement of
a specification Sp = (Σ, Ax) is any specification Sp′ = (Σ′, Ax′) such that there exists a
signature morphism σ : Σ → Σ′. Hence, a syntactical refinement consists on removing
axioms of the abstract specification and replace them by other (more concrete) ones.

In [3], we defined a refinement theory for transistion systems. In this work, a syntactical
refinement of a transistion system T over a signature (Σ, A) is any transistion system T ′ over
(Σ′, A′) such that:

• there is a signature morphism σ : (Σ, A)→ (Σ′, A′),

• and T ′ is obtained from T by replacing some transitions (q, a, ϕ, q′) by sub-transition
systems of T ′′ of T ′ such that there exists a path in T ′′ starting and finishing at q and
q′, respectively, and for every path satisfying such conditions, there exists a unique
transition labelled by σ(a), the other transistions being labelled by actions in A′\σ(A).

♦

In the area of software formal design in which the refinement theories have been defined
and studied [8, 36], a refinement can introduce both decision and algorithmic choices. For
instance, abstractly specifying a list sorting only requires that the resulting list is a per-
mutation of the input one, and its elements are sorted in the expected order. It is clear
that all existing sorting are correct realizations of such a specification. But, if we specify
a specific algorithm such as quick-sort, then we cut down in the class of acceptable sorting
algorithms (realizations) and only preserve the desired one. The consequence of such choices
then consists in cutting down in model classes. This expresses the refinement correctness:

Definition 5.1.2 (Refinement correctness) A syntactic refinement Sp  σ Sp′ is cor-
rect if, and only if Real is compatible with σ.

Under the condition that the satisfaction condition can be extended to Real and σ, that
is:

∀ϕ ∈ Sen(Sig(Sp)), ∀M ∈ Real(Sp′),M |=Sig(Sp) Sen(σ)(ϕ)⇐⇒ Real(σ)(M) |=Sig(Sp′) ϕ

then we have the following result:
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Proposition 3 Sp  σ Sp
′ is correct if, and only if σ is a specification morphism from Sp

to Sp′.

Proof. This directly results from the property of Real to be compatible with σ.

Proposition 3 expresses that the refinement specification meets all requirements of the
higher level specification, that is σ is a specification morphism.
The required condition to prove Proposition 3 is obviously satisfied when dealing with theo-
ries and axiomatic specifications and that the class of models is restricted to the whole class
of models that satisfy all the properties (of theories and specifications). When dealing with
specification defined by symbolic transition systems, this property is then a consequence of
Proposition 2.

Another condition is usually added to refinement correctness in order to express that a
refinement does not make any decision and design choice but rather completely simulates
the abstract specification, that is the refinement specification is indistinguishable from the
behavior of the implemented specification. This occurs in programming, for instance, when
we simulate a data structure from other data structures which are available in the target pro-
gramming language (e.g. stacks from the pair (array,natural number) or list from pointers).
This will express refinement completeness:

Definition 5.1.3 (Refinement completeness) A syntactic refinement Sp σ Sp
′ is com-

plete if, and only if it is correct and further Real(σ)(Sp′) = Real(Sp).

Under the same condition that the satisfaction condition can be extended to Real and σ,
we have:

Proposition 4 If Sp σ Sp
′ is complete then Sen(σ)(Sp•) = Sp′•∩Sen(σ)(Sen(σ)(Sig(Sp))).

Proof. Let ϕ ∈ Sp• and let M ∈ Real(Sp). By hypothesis, Real(σ)(M) ∈ Real(Sp)
and then Real(σ)(M) |=Sig(Sp) ϕ. By the satisfaction condition, we have that M |=Sig(Sp′)

Sen(σ)(ϕ).

Let Sen(ϕ) ∈ Sp′• and letM ∈ Real(Sp). By the hypothesis, there existsM′ ∈ Real(Sp′)
such thatM = Real(σ)(M′). Moreover, by hypothesis,M′ |=Sig(Sp′) Sen(σ)(ϕ). Therefore,
by the satsifaction condition, we have thatM |=Sig(Sp) ϕ.

Later in this chapter, we will always suppose that the satisfaction condition can be ex-
tended for Real and σ where Sp σ Sp

′ is a correct (complete) refinement.

5.2 refinement and connectors

Of course, it is not reasonable to refine a specification as a whole in a single step. Large
softwares usually require many refinement steps before obtaining efficient programs. This
leads to the notion of sequential composition of refinement steps. Usually, composition of
enrichment is mainly divided into two concepts:
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1. horizontal composition, and

2. vertical composition.

Horizontal composition deals with refinement of subparts of system specifications when they
are structured into “blocks”. In our framework, blocks are specifications of SPEC. On the
contrary, vertical composition deals with many refinement steps. In both cases, we will show
that the correctness is preserved.

5.3 Horizontal composition

Here, the correctness of horizontal composition of refinement can be informally expressed
as follows:

“if a specification Sp′ correctly refines a sub-specification δ(i) of a larger specification c(δ)
for δ a diagram and c a connector such that c(δ) is defined, then all requirements of c(δ)
are preserved by the specification c(δ′) where δ′ is obtained from δ by replacing δ(i) by its

refinement Sp′”

Before establishing this result, we have first to formally define the diagram δ′ obtained
from δ. Indeed, this replacement cannot be a simple substitution of δ(i) by δ′(i) = Sp′ in
the diagram δ because δ(i) can be concerned by some morphisms (as domain or co-domain)
in δ. Such a definition then requires the following further condition: for every n ∈ N and
every sequences of arrows (a1 : i → j1, a2 : j1 → j2, . . . , an : jn−1 → jn) in I, we can build
a specification Sp with two morphisms σ′

j,1 : δ(jn) → Sp and σ′
j,2 : Sp′ → Sp such that

the co-cone (Sp, {σ′
j,k}k=1,2) is the pushout of the diagram δ(jn)

an◦...◦a1←− i
σ
−→ Sp′. Actually,

for the examples of specification languages and connectors developped in this paper, this
property is obviously satisfied because it never occurs.
We would have been able to impose that SPEC has pushout for every diagram Sp← Sp′ →
Sp”. The problem is this condition is not satisfied by our examples of specifications. The
reason is that morphisms in SPEC are just signature morphisms, no property preservation
condition is required on them.

Definition 5.3.1 (Horizontal composition) Let c : |∆(I,SPEC)| → |SPEC| be a connec-
tor. Let δ be a diagram of ∆I,SPEC such that c(δ) is defined. Let δ(i)  σ Sp

′ be a correct
refinement for i ∈ I. Define the diagram δ′ by:

• δ′(i) = Sp′,

• for every j ∈ I if there exists an arrow a : i → j ∈ I, then (σ′
j,1 : δ(j) → δ′(j), σ′

j,2 :
Sp′ → δ′(j)) is the pushout of δ(a) and σ in SPEC (this pushout exists by the above
condition), and δ′(a) = σ′

j,2, otherwise δ′(j) = δ(j),

• for every arrow b : j → k ∈ I, δ′(b) is:
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1. the unique morphism µ : δ′(j) → δ′(k) if there exists an arrow a : i → j. In-
deed, by the condition given above and the property of pushouts we have that the
following commutative diagram:

δ(j) δ(k)

δ(i) δ′(j) δ′(k)

Sp′

δ(a)

σ

δ(b)

σ′
j,1

σ′
j,2

σ′
k,2

σ′
k,1

µ

2. the morphism σ′
k,2 ◦ δ(b) if there exists an arrow from i to k in I and δ(j) = δ′(j)

(i.e. there does not exist a : i→ j ∈ I),

3. the morphism δ(b) otherwise (i.e. there does not exist arrows a : i → j and
a′ : i→ k in I).

δ′ is called the refined diagram of δ for δ(i) σ Sp
′ and c, more simply the refined diagram

of δ.

By definition, the I-indexed family σ′ = (σ′
j,1)j∈I is a diagram morphism (i.e. a natural

transformation) from δ to δ′. Let us call such a diagram morphism, the refined morphism of
δ for the correct refinement δ(i) σ Sp

′.
A reasonable condition to impose is that the refinement δ(i)  σ Sp′ has no effect on the
behavior of other components in the large system. Hence, we suppose that the following
property for each σ′

j,1 with j 6= i holds:

Real(σ′
j,1)(Real(δ

′(j))) = Real(δ(j))

Indeed, by Proposition 4, we have that Sen(σ′
j,1)(δ(j)

•) = δ′(j)•∩Sen(σ′
j,1)(Sen(Sig(δ(j)))).

Moreover, by the universal property of co-limit, there is a unique signature morphism
ρ : Sig(c(δ))→ Sig(c(δ′)). Therefore, the correctness of horizontal composition of refinement
consists on showing that for every diagram δ and every correct refinement δ(i)  σ Sp′,
the unique morphism ρ : c(δ) → c(δ′) in SPEC is actually a specification morphism (i.e.
Sen(ρ)(c(δ)•) ⊆ c(δ′)•). A sufficient condition to have such a result is to suppose that for
both diagrams δ and δ′, the connector c has not true emergence properties both for δ and
δ′. Indeed, when this condition is verified, we have the following result:

Theorem 4 Let c : |∆(I,SPEC)| → |SPEC| be a connector. Then, correctness of horizontal
composition holds for every diagram δ of ∆I,SPEC such that c(δ) is defined and every correct
refinement δ(i) σ Sp

′ for some i ∈ I.
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Proof. Let us note p : Sig ◦ δ → Sig(c(δ)) and p′ : Sig ◦ δ′ → Sig(c(δ′)) be the two
co-limits for c and δ and c and the refined diagram δ′, respectively. Because, we have
supposed that there is no true emergence property, by Theorem 1, we have that both c(δ)

and c(δ′) are definable by
⋃

i∈I

Sen(Sig(pi))(δ(i)
•) and

⋃

i∈I

Sen(Sig(p′i))(δ
′(i)•), that is c(δ)• =

(
⋃

i∈I

Sen(Sig(pi))(δ(i)
•))• and

c(δ′)• = (
⋃

i∈I

Sen(Sig(p′i))(δ
′(i)•))•. Therefore, by the property that the correct refinement

does not make effect on the behavior of other components δ(j) for j 6= i, we have that
Sen(σ′

j,1)(δ(j)
•) = δ′(j))• ∩ Sen(σ′

j,1)(Sen(Sig(δ(j)))). Moreover, because the refinement is
correct, we also have Sen(σ)(δ(i)•) ⊆ δ′(i)•.

Therefore, we have that Sen(ρ)((
⋃

i∈I

Sen(Sig(pi))(δ(i)
•))•) ⊆ (

⋃

i∈I

Sen(Sig(pi))(δ(i)
•))•, that

is Sen(ρ)(c(δ)•) ⊆ c(δ′)•.

Corollary 3 If further the refinement δ(i) σ Sp
′ is complete then so is the resulting hori-

zontale composition.

Hence, these results can be applied to the enrichment and union connectors. On the
contrary, it cannot be applied to the synchronized product because some true emergent
properties can occur through this connector. However, we have shown in [3] that both
correctness and completeness of refinement are preserved along the synchronized product.

5.4 Vertical composition

The vertical composition establishes a transitive closure of correct refinement relations. It
is expressed by the following result:

Theorem 5 (Vertical composition) Given a diagram δ and a connector c such that c(δ)
is defined, the following rule is correct:

δ(i) σ δ
′(i) correct δ′(i) σ′ δ”(i) correct

δ(i) σ′◦σ δ”(i) correct

where δ′ (resp. δ”) is the refined diagram of δ (resp. δ′).
Moreover, δ” is the refined diagram of δ for the correct refinement δ(i) σ′◦σ δ”(i).

Proof. This is a direct consequence of Proposition 3.

5.5 Refinement and emergent properties

Here, we propose to use refinement in order to restrict complexity of emergent property
detection along specification abstraction, and then obtain that all emergent properties stud-
ied at an abstract level are preserved at more concrete ones. Indeed, a system specification
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can put many particular points forward, but only some of them are recognized to be sensi-
tive to particular emergent properties. The idea is then to abstract specifications by hiding
the non-sensitive points. Consequently, given a diagram δ : I → SPEC and a connector c
such that c(δ) is defined, for a given i ∈ I, we have a component specification Sp such that
Sp  σ δ(i). Sp is called an abstraction of δ(i). Here, any design choice has not been done.
Therefore, as we saw previously, in this case the completeness of the refinement Sp σ δ(i)
can be supposed, that is we can suppose that Real(σ)(Real(δi)) = Real(Sp). This sufficient
condition allowed us to obtain a complete preservation of behaviors along refinement (cf.
Proposition 4), that is we then have that Sen(σ)(Sp)• = δ(i)• ∩ Sen(σ)(Sig(Sp)).
Before establishing our preservation results of emergent properties, we need first to define
the opposite mapping of Definition 5.5.1, that is how to build a diagram δ′ such that δ is its
refined diagram for the refinement Sp σ δ(i). A condition that allows such a construction
is to imposed the dual of the condition given in Section 5.3, that is for every n ∈ N and
every sequence of arrows (a1 : j1 → j2, a2 : j2 → j3, . . . , an : jn → i) in I, we can build a
specification Sp′ with two morphisms σ′

j,1 : Sp′ → δ(j1) and σ′
j,2 : Sp′ → Sp such that the

cone (Sp′, {σ′
j,k}k=1,2) is the pullback of δ(j1)

an◦...◦a1−→ δ(i)
σ
←− Sp.

This condition is naturally the dual of the previous one given in Section 5.3 because dealing
with abstraction rather than refinement. This then leads to the following definition:

Definition 5.5.1 (Composition along abstraction) Let c : |∆(I,SPEC)| → |SPEC| be a
connector. Let δ be a diagram of ∆(I,SPEC) such that c(δ) is defined. Let Sp  σ δ(i) be an
abstraction for i ∈ I. Define the diagram δ′ by:

• δ′(i) = Sp,

• for every j ∈ I if there exists an arrow a : j → i ∈ I, then (σ′
j,1 : δ′(j) → δ(j), σ′

j,2 :
δ′(j)→ Sp) is the pullback of δ(a) and σ in SPEC and δ′(a) = σ′

j,2, otherwise δ′(j) =
δ(j),

• for every arrow b : k → j ∈ I, δ′(b) is:

1. the unique morphism µ : δ′(k) → δ′(j) if there exists an arrow a : j → i. This
morphism exists and is unique by the condition given above and the property of
pullback.

2. the morphism δ(b) ◦ σ′
k,2 if there exists an arrow from k to i in I and δ(j) = δ′(j)

(i.e. there does not exist a : j → i ∈ I),

3. the morphism δ(b) otherwise (i.e. there does not exist arrows a : i → j and
a′ : i→ k in I).

δ′ is called the abstract diagram of δ for Sp σ δ(i) and c, more simply the abstract diagram
of δ.

By definition, the I-indexed family σ′ = (σ′
j,1)j∈I is also a diagram morphism from δ′ to

δ. Let us call it, the abstract morphism of δ for the abstraction Sp  σ δ(i). As previously,
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a reasonable condition to impose is that the abstraction Sp  σ δ(i) has no effect on the
behavior of other components in the large system, that is for each σ′

j,1 with j 6= i, we have:

Real(σ′
j,1)(Real(δ(j))) = Real(δ′(j))

Moreover, by the universal property of co-limit, there is a unique signature morphism ρ :
Sig(c(δ′))→ Sig(c(δ)).
As in Section 5.3, under the condition that for both diagrams δ and δ′, c has no true mergent
properties, we have the following result:

Theorem 6 Let c : |∆(I,SPEC)| → |SPEC| be a connector. Then, the signature morphism
ρ : Sig(c(δ′))→ Sig(c(δ)) is a specification morphism from c(δ′) to c(δ). Moreover, we have:
Sen(ρ)(c(δ′)•) = c(δ•) ∩ Sen(ρ)(Sen(Sig(c(δ′)))).

Proof. The proof is similar to the one of Theorem 4.

The problem is that without the sufficient condition to not have true emergent properties,
Theorem 6 cannot be applied. However, the conclusion of Theroem 6 is important to preserve
emergent properties along abstraction as this is expressed by the following result:

Theorem 7 With all the notations introduced in Section 5.5, under the condition that
Sen(ρ)(c(δ′)•) = c(δ•) ∩ Sen(ρ)(Sen(Sig(c(δ′)))), we have for every emergent property ϕ

of c and δ′ that Sen(ρ)(ϕ)) is an emergent property of c and δ.

Proof. Let us note p : Sig ◦ δ → Sig(c(δ)) and p′ : Sig ◦ δ′ → Sig(c(δ′)) be two co-limits
for c and δ, and c and δ′, respectively. Suppose that ϕ is a true emergent property of c

and δ′. This then means that c(δ′) |= ϕ but ϕ 6∈(
⋃

i∈I

Sen(Sig(p′i)))(δ
′(i)•))•. Because for

every j ∈ I, we have that Sen(σ′
j,1)(δ

′(j)•) = δ(j)• ∩ Sen(σ′
j,1)(Sen(Sig(c(δ′(j))))), we can

write that Sen(ρ)(ϕ) 6∈(
⋃

i∈I

Sen(Sig(p′i)))(δ
′(i)•))•. By the hypothesis that Sen(ρ)(c(δ′)•) =

c(δ)• ∩ Sen(ρ)(Sen(Sig(c(δ)))), we have that Sen(ρ)(ϕ) ∈ c(δ)•, and then we can conclude
that Sen(ρ)(ϕ) is a true emergent property for c and δ.
Suppose now that ϕ either belongs to δ′(i)• but not to c(δ′)• (more precisely Sen(p′i)(ϕ) 6∈c(δ′)•),
or the opposite, that is ϕ is a non-conformity property for c and δ′.
Therefore, suppose that ϕ ∈ δ′(i)• but Sen(p′i)(ϕ) 6∈c(δ′)•. Because for every j ∈ I, we have
that Sen(σ′

j,1)(δ
′(j)•) = δ(j)•∩Sen(σ′

j,1)(Sen(Sig(c(δ′(j))))), we can write that Sen(σ′
i,1)(ϕ) ∈

δ(i)•. By the hypothsesis that Sen(ρ)(c(δ′)•) = c(δ)• ∩ Sen(ρ)(Sig(c(δ′))), we have that
Sen(ρ ◦ p′i)(ϕ) 6∈c(δ)• and then we can conclude that Sen(σ′

i,1)(ϕ) is a non-conformity prop-
erty for c and δ. The opposite direction is proved by following the same process.
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Chapter 6

Instantiation

In this chapter, we instantiate our abstract framework to R. Thomas’s genetic regulatory
networks (GRN for short) over the temporal logic CTL-X (Computational Tree Logic with-
out the modality next). More precisely, we will define the institution which underlies this
formalism. We will then show that this requires some conditions on signature morphisms.
By studying these conditions, we will study as a result the connector which embbeds a GRN
into a bigger one. This connector is actually similar to the enrichment of axiomatic specific-
taions but restricted to specifications (Σ, Ax) where Σ is a GRN-signature and Ax a set of
(CTL-X)-formulas over Σ.

6.1 Computational Tree Logic

Computational tree logic (CTL) [17] is a branching-time temporal logic where the structure
representing all possible executions is tree-like rather than linear. It is well-adapted to
specify and reason about non-deterministic and/or concurrent processes. Here, we consider
actually a restriction of CTL by removing the next operator X, noted CTL-X [45, 46]. The
reason is for biological applications, the logical connector X is not of big relevance. The
reason is twofold. First, the time mandatory for a biological system to change of qualitative
state is not deterministic and the elapsed time between two consecutive states has a large
variance. Secondly, the discretization of the dynamical system abstracts the quantitative
time (represented by t ∈ R

+) into a qualitative time (n ∈ N) which represents only succession
of events during an execution. Then the real time necessary for a NEXT transition of the
biological system is not known nor constant. Thus, an experiment along which a state B is
observed after a state A does not imply that B is a successor of state A because it is not
known if others states have been visited in between.

When dealing with propositional fragment of logics, a signature Atom is only a set of
propositional variables which are the atomic formulas.
Given a signature Atom, a model over Atom, so-called Kripke frame, is a transition system
(S, T ) where:

• S is a set whose elements are usually called states;
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• T ⊆ S × S is a binary relation satisfying: ∀s ∈ S, ∃s′ ∈ S, (s, s′) ∈ T .

equipped with a total function L : S → 2Atom called labeling function.
Therefore, models over Atom are labeled transition systems where T denotes the transition

relation and L is the labeling associating for each state s of S the set of propositional variables
true at s.
Formulas over Atom are well-formed formulas whose the syntactical rules are given by:

For ::= ATOM | For ⇒ For | For ∧ For | For ∨ For | ¬For
AG For |EG For |AF For |EF For | A[For U For] | E[For U For]

The intuitive meaning of modal operator Fϕ (resp. Gϕ) means that ϕ will be finally (F)
(resp. is globally (G)) true. The prefix A (resp. E) means that the formula is true for all
possible futures (resp. there exists a future for which the following property is true). Finally,
formulas of the form ϕ U ψ mean that ϕ has to be true until (U) ψ becomes true. They are
also preceded by the prefixes A or E.
The validity of formulas is expressed via a binary relation usually denoted by |= between
models and formulas over a set of atomic formulas Atom. A path is any sequence σ =
(s0, s1, . . . , sn, . . .) such that for every i ∈ N we have (si, si+1) ∈ T . Then, (S, T ) |= ϕ if for
any state s ∈ S, (S, T ) satisfies ϕ, denoted by ((S, T ), s) |= ϕ, according to the following
inductive definition:

• ((S, T ), s) |= p iff p ∈ L(s) for p ∈ Atom;

• ((S, T ), s) |= AGϕ (resp. ((S, T ), s) |= EGϕ) iff for every (resp. there exists a) path
(s0, s1, . . . , sn, . . .), for every i ∈ N, ((S, T ), si) |= ϕ;

• ((S, T ), s) |= AFϕ (resp. ((S, T ), s) |= EFϕ) iff for every (resp. there exists a) path
(s0, s1, . . . , sn, . . .), there exists i ∈ N, ((S, T ), si) |= ϕ;

• ((S, T ), s) |= A[ϕ U ψ] (resp. ((S, T ), s) |= E[ϕ U ψ]) iff for every (resp. there exists
a) path (s0, s1, . . . , sn, . . .), there exists i ∈ N such that ((S, T ), si) |= ψ and for every
j < i, ((S, T ), sj) |= ϕ.

• Boolean connectives are handled as usual.

In the sequel, to prove the satisfaction condition through GRN-signature morphisms, we
will use a standard equivalence relation on the states of transition systems, the so-called
divergence blind stuttering equivalence (dbs), which have been proved to preserve CTL-X
formulas, i.e. the transition system and its quotient, with respect to the dbs equivalence
relation, are elementary equivalent [32].

Let us recall the definition of a dbs relation R on a transition system (S, T ).
A binary relation R on S is called a divergence blind stuttering (dbs) relation if, and only

if it is symmetric and

r R s⇐⇒







L(r) = L(s)
(r, r′) ∈ T ⇒ ∃s0, s1, . . . , sn finite path , n ≥ 0, (s0 = s)

∧(∀i < n, r R si) ∧ r
′ R sn

40



It is obvious to show that every dbs relation is transitive. Moreover, as the case n = 0 is
allowed in the second condition, the empty relation is a dbs relation. Finally, the diagonale
relation on S is also a dbs relation, and it is easy to show that dbs relations are closed under
union. Hence, the largest dbs relation exists and is an equivalence relation noted ≃dbs.

Given a transition system (S, T ), its quotient by ≃dbs, denoted (S, T )/≃dbs
, is defined by:

• the set of states S/≃dbs
is the set of equivalence classes of ≃dbs, [s] denoting the equiv-

alence class of s for s state of S

• the set of transitions T/≃dbs
defined by ([s], [t]) ∈ T/≃dbs

iff there exists s′ ∈ [s] and
t′ ∈ [t] such that (s, t) ∈ T

• (S, T )/≃dbs
is provided with the labeling function L/≃dbs

defined by L/≃dbs
([s]) = L(s)

6.2 GRN institution

To understand the functioning of genetic regulatory networks (GRN for short), mathe-
matical modeling and simulation are often useful or even mandatory since the complexity of
the interleaved interactions between constituents of the network (mainly genes and proteins)
makes intuitive reasoning too difficult [10]. The lack of precise knowledge about the system
(are all constituents/interactions taken into account? Which values are given to parameters?
Which is the confidence on these parameters?...) is one of the more accurate difficulties to
handle computationally all possible hypotheses on the systems. Qualitative modeling frame-
works have then arose [25, 44, 12]: they consist in abstracting continuous concentrations of
constituents into qualitative ones (discrete and finite) although preserving qualitative obser-
vations (like presence/absence of a constituent, increasing of the concentration of a target
when increasing the one of a regulator...).

We focus here on the multivalued discrete approach developed by R. Thomas and co-
workers [44], in which the concentrations of constituents are abstracted by integers to denote
thresholds from which constituents can act on other ones in the network. In this formalism,
biological systems are described by an interaction graph defining the static part of the system
from which we can build a huge but finite set of state transition graphs defining all the
possible dynamics of the system. However, given an interaction graph, just a few dynamic
models meet the set of biological experiment observations bringing into play interactions
between graph’s constituents. To cut down in the class of dynamic models and just preserve
the good candidates, some recent works expressed these biological experiment observations
by temporal properties and used various model-checking technics to select suitable dynamic
models [11, 6, 31]. From these works, two software tools have been developed: GNA [11]
which automatically checks that a given dynamic model satisfies some biological experiment
observations, and SMBioNet [6] which cuts down in the whole class of dynamic models to
select the ones that satisfy some given biological experiment observations. In both cited
tools, temporal properties denoting biological experiment observations have been expressed
in Computation Tree Logic [17].
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6.2.1 Signatures and formulas

A particularity of the institution for GRN presented in this section is signatures are not
a simple sets of symbols but are interaction graphs (the static part of GRN). This is what
makes tough the definition of the signature morphism (see Definition 6.2.3) as well as the
definitions of the consequences of the signature morphisms both on biological experiment
observations expressed by (CTL-X)-formulas over sub-GRNs (see Definition 6.2.6) and on
the dynamics of sub-GRNs embedded into a larger one (see Definition 6.2.10). This is what
makes also untrivial the proof of the satisfaction condition.

Signatures. A genetic regulatory network is represented by a labeled directed graph, called
interaction graph. Vertices abstract biological entities, as genes or proteins, and will be
called variables. Edges abstract interactions between variables. When a variable i activates
a variable j, variable i can act positively on j, then there exists an edge from i to j labeled
by the sign ”+”. On the contrary, when a variable i inhibits a variable j, variable i can act
negatively on j, then there exists an edge from i to j labeled by the sign ”-”. Moreover,
the action, activation or inhibition, between two variables becomes efficient only when the
level of concentration of the regulator reaches a given threshold. In the discrete modeling
framework of R. Thomas, the concentration levels for the variable i can take a finite number
of values {0, 1, . . . , bi} and thresholds related to the actions of i are numbered from 1 to
bi: the action of i on j is triggered only if the concentration of i crosses its concentration
level. Thus, each interaction i −→ j is labeled by a sign and a threshold. The knowledge
of interactions between variables, including signs and thresholds, is called the static part of
GRNs and constitutes the elements of signatures for a logic dedicated to GRNs.

Definition 6.2.1 (Signature) A GRN-signature is a labeled directed graph G =< V, F, Sn, Th >

where :

1. V is a finite set whose the elements are called variables.

2. F ⊆ V × V denotes the set of edges. For any i ∈ V , G+
i , resp. G−

i , denotes the set of
successors, resp. predecessors, of i in the graph < V, F >.

3. Sn is a mapping from F to {+,−}.

4. Th is a mapping from F to N \ {0} such that:

∀i ∈ V, ∀j ∈ G+
i , Th(i, j) = c ∧ c 6= 1⇒ ∃k ∈ G+

i : Th(i, k) = c− 1

Point 4. gives some restrictions on the way the edges are labeled. If an edge outgoing from
a variable i is labeled by c ≥ 2, then there exist edges outgoing from i labeled by 1, . . . , c−1.
This well represents the qualitative nature of thresholds in GRN as used in this paper.

Notation 6.2.2 Let G =< V, F, Sn, Th > be a GRN-signature and i be a variable, bi denotes
the cardinal of the set of thresholds for i. Formally:

bi = |{s ∈ N \ {0} | ∃j ∈ G+
i , Th(i, j) = s}|
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Example 4 To illustrate Definition 6.2.1, we take as running example a model inspired from
the one of control of immunity in temperate bacteriophage lambda. This model, proposed by
Thieffry and Thomas in [42], contains genes cI and cro: cI inhibits cro and activates its own
synthesis whereas the variable cro inhibits the expression of both variables, see Figure 6.1.
The associated GRN-signature, denoted G1 in the sequel, is simply given by :

< {cI, cro}, {(cI, cI), (cI, cro), (cro, cI), (cro, cro)},
Sn : {(cI, cI) 7→ +, (cI, cro) 7→ −, (cro, cI) 7→ −, (cro, cro) 7→ −},
Th : {(cI, cI) 7→ 1, (cI, cro) 7→ 1, (cro, cI) 7→ 1, (cro, cro) 7→ 2} >

−1

+1 cI cro

−1

−2

Figure 6.1. Interaction graph for the cI − cro system

♦

Signature morphism. Biologists can identify small parts issued from a GRN involving a
large number of genes. These parts are assimilated to a biological function insofar as it can
be proven that the biological function is essentially related to the concentration levels of the
variables occurring in the considered subpart.

GRN-signature morphisms can formalize such an approach. However, they cannot be sim-
ple graph morphisms (which is defined by Conditions 1 and 2 of Definition 6.2.3 just below).
Indeed, as well as preserving edge signs (see Condition 2), as the thresholds on edges depend
on the properties of the graph (a threshold cannot be greater than the number of outgoing
edges), it matters to pay attention to the preservation of the conditions on the thresholds
(Conditions 3 and 4). In fact, as thresholds are taken into consideration in signatures, the
key point to carry through the GRN-signature morphism is the preservation of the equality
between thresholds and the numerical order between them. New intermediate thresholds for
a given variable can be introduced when including a GRN in another one, but relationships
between existing thresholds have to be preserved in the larger one. Finally, a supplementary
condition (Condition 5) has to be added. This condition means the preservation of prede-
cessors in interaction graphs. This condition can seem very restrictive. However, it is useful
to ensure the preservation of properties inherited from the small GRN to the large GRN (see
the counter-example given in Section 6.3.2 which makes fail the preservation result when
Condition 5 does not hold). This leads to the following definition:

Definition 6.2.3 (Signature morphism) Let G =< V, F, Sn, Th > and G′ =< V ′, F ′, Sn′, Th′ >

be GRN-signatures. A signature morphism G→ G′ is an injective mapping σ : V → V ′ such
that:

1. ∀i, j ∈ V, (i, j) ∈ F ⇔ (σ(i), σ(j)) ∈ F ′

2. ∀i, j ∈ V, (i, j) ∈ F, Sn(i, j) = Sn′(σ(i), σ(j))

43



3. ∀i ∈ V, ∀j, k ∈ G+
i , Th(i, j) = Th(i, k)⇔ Th′(σ(i), σ(j)) = Th′(σ(i), σ(k))

4. ∀i ∈ V, ∀j, k ∈ G+
i , Th(i, j) < Th(i, k)⇔ Th′(σ(i), σ(j)) < Th′(σ(i), σ(k))

5. ∀j ∈ V, ∀k′ ∈ V ′, (k′, σ(j)) ∈ F ′ ⇒ ∃i ∈ V, (i, j) ∈ F ∧ σ(i) = k′

Notation 6.2.4 Let σ : G→ G′ be a signature embedding where G =< V, F, Sn, Th > and
G′ =< V ′, F ′, Sn′, Th′ > and let ω a set of variables in V , σ(ω) denotes the set {σ(i) | i ∈ ω}.

The injectivity of the mapping σ in Definition 6.2.3 reflects a biological reality, that is two
different genes in a sub-GRN have to be preserved different in the bigger one. So, we will
talk about embedding signatures instead of signature morphisms.

Example 5 Figure 6.2 presents the GRN-signature G2, sharing with G1 both variables
cI and cro, and containing a new variable N . According to Definition 6.2.1, a signature
embedding σid between {cI, cro} and {cI, cro,N} can be defined: σid(cI) = cI and σid(cro) =
cro. Conditions 1 and 2 are clearly verified (all edges of G1 are in G2 labeled with the
same sign). Condition 3 requires that the equality between thresholds for outgoing edges
in G1 is preserved in G2, it is verified since only Th(cI, cI) = Th(cI, cro) in G1 and we
have Th′(cI, cI) = Th′(cI, cro) in G2. Condition 4, which requires that the order between
thresholds for outgoing edges in G1 is preserved in G2, is also verified. For instance, in G1,
cro has two outgoing edges (cro, cI) and (cro, cro) with Th(cro, cI) < Th(cro, cro). In G2,
we have Th′(cro, cI) < Th′(cro, cro). Condition 5 is also verified (cI and cro in G2 have no
new predecessors with respect to G1).

Roughly speaking, we can link two GRN-signatures by a signature embedding when the
addition of new variables has only the effect of shifting the thresholds issued from the inher-
ited variables.

−1

+2 cI
−1 −2

cro −3N

−2

Figure 6.2. GRN-signature G2

♦

Formulas. Formulas for GRN are simply CTL-X formulas whose atomic formulas describe
comparisons between a concentration level of a variable with some threshold values.

Definition 6.2.5 (GRN Formulas) Let G =< V, F, Sn, Th > be a GRN-signature. For-
mulas over G are CTL-X formulas whose atomic formulas are of the form (i ∼ s) where
i ∈ V , s ∈ {0, . . . , bi} and ∼∈ {=, <,>}.

We note Atom(G) the set of atomic formulas built on G and Sen(G) the set of formulas
over G.
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In the sequel, i ≥ s (resp. i ≤ s) will denote the formula i = s ∨ i > s (resp. i = s ∨ i < s).

Signature embeddings obviously rename variables and thresholds occurring in atomic for-
mulas. However, the threshold renaming is not so simple. Indeed, the presence of new
variables makes side effects on the thresholds by shifting them. This gives rise to the follow-
ing definition:

Definition 6.2.6 (Formula renaming) Let σ : G → G′ be a signature embedding where
G =< V, F, Sn, Th > and G′ =< V ′, F ′, Sn′, Th′ >. For any i ∼ l with l 6= 0, let us note j
any arbitrary variable such that j ∈ G+

i and (Th(i, j) = l) and let us note σi(l) the threshold
value Th′(σ(i), σ(j)). For l = 0, let us note σi(0) = 0.

Let us note σ : Atom(G)→ Sen(G′) the mapping defined by:

• For all (i = l) ∈ Atom(G), σ(i = l) = σ(i) ≥ σi(l) ∧ σ(i) < σi(l + 1)

• For all (i > l) ∈ Atom(G), σ(i > l) = σ(i) ≥ σi(l + 1)

• For all (i < l) ∈ Atom(G), σ(i < l) = σ(i) < σi(l)

Let us note σ♯ the canonical extension of the signature embedding σ on formulas in Sen(G)
defined as follows:

• For p ∈ Atom(G), σ♯(p) = σ(p),

• For other formulas, Boolean connectives and temporal operators are preserved.

The definition can seem a little intricate. It just defines how to convert formulas in Sen(G)
into formulas in Sen(G′) by following the simple idea of translating a threshold into an
interval of possible values.

6.2.2 Models and the satisfaction condition

Models. Each variable i in a GRN-signature G is a genetic entity which is characterized
at a given point in time by a concentration level. Dealing with regulatory networks with
thresholds whose the set of nodes is finite, the state space generated from G is finite and
defined by:

Definition 6.2.7 (State) Let G =< V, F, Sn, Th > be a GRN-signature. The state space
SG of G is the set of mappings s : V → N such that for every i ∈ V , s(i) ∈ {0, . . . , bi}.

Example 6 In the GRN-signature G1 of Example 4, Variables cI and cro have, respectively
2 and 3 possible concentration levels: 0 or 1, and 0, 1 or 2. Therefore, The state space for
G1 is SG1 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}. ♦
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The concentration level of each variable i ∈ V of a given GRN-signature G, evolves over
time depending on the concentration level of its resources (i.e. sets of i’s predecessors in G

which have reached a concentration level to affect i’s one by making it increase or decrease).
However, neither G nor the concentration level of i’s resources gives clues to decide the
concentration level that i can reach. This is a degree of freedom of GRN-signatures which
gives rise to a class of possible G-models, so-called dynamics of G. All these possible G-
models do not correspond to actual biological functions. This is by biological knowledge
described by CTL-X properties that we can cut down in the class of all possible G-models.
Formally, G-models are defined as follows:

Definition 6.2.8 (Resources) Let G be a GRN-signature. The set of resources RG,i(s) of
a variable i at the state s ∈ SG is defined by :

RG,i(s) =







{j ∈ G−
i |(Sn(j, i) = + and s(j) ≥ Th(j, i))}

∪
{j ∈ G−

i |(Sn(j, i) = − and s(j) < Th(j, i))}

Hence, a resource is the presence of an activator or the absence of an inhibitor.

Example 7 Figure 6.3 gives the sets of resources for the three variables cI, cro and N in
SG1 and SG2 . ♦

cI cro RG,cI RG,cro

0 0 {cro} {cI, cro}
0 1 ∅ {cI, cro}
0 2 ∅ {cI}
1 0 {cI, cro} {cro}
1 1 {cI} {cro}
1 2 {cI} ∅

cI cro N RG′,cI RG′,cro RG′,N

0 0 0 {cro} {cI, cro} {cI, cro}
0 1 0 ∅ {cI, cro} {cI, cro}
0 2 0 ∅ {cI, cro} {cI}
0 3 0 ∅ {cI} {cI}
1 0 0 {cro} {cI, cro} {cro}
1 1 0 ∅ {cI, cro} {cro}
1 2 0 ∅ {cI, cro} ∅
1 3 0 ∅ {cI} ∅
2 0 0 {cI, cro} {cro} {cro}
2 1 0 {cI} {cro} {cro}
2 2 0 {cI} {cro} ∅
2 3 0 {cI} ∅ ∅

Figure 6.3. Resources of cI , cro and N in SG1 (left) and in SG2 (right)

Definition 6.2.9 (G-models) Let G =< V, F, Sn, Th > be a GRN-signature and let κ =
{(i, w) | i ∈ V ∧ w ⊆ G−

i } be the set of all subsets of predecessors in G for every variable
i ∈ V . A G-model is a mapping p : κ→ N such that: ∀(i, w) ∈ κ, p((i, w)) ∈ {0, . . . , bi}.
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Example 8 From the GRN-signature G2 of Figure 6.2, we have the following set κ:

κ =























{(cI, ∅), (cI, {cI}), (cI, {cro}), (cI, {cI, cro})}
∪

{(cro, ∅), (cro, {cI}), (cro, {cro}), (cro, {cI, cro})}
∪

{(N, ∅), (N, {cI}), (N, {cro}), (N, {cI, cro})}

From the value of the concentration levels for cI, cro and N , a possible G2-model p2 is given
in Figure 6.4 (left). ♦

Signature embeddings σ : G → G′ have a counterpart on models which is expressed by a
classic forgetful mapping. Here also, some difficulties occur due to some restrictions to make
on thresholds from the “richer” model defined on G′ to the “poorer” one defined on G. This
then leads to the following definition:

Definition 6.2.10 (Reduced model) Given a signature embedding σ : G → G′ and a
G′-model p′, the reduced G-model p from p′, denoted p′|σ , is defined as follows: ∀(i, w) ∈ κ,

p((i, w)) =







Th(i, j) if ∃j ∈ V, Th′(σ(i), σ(j)) =
max(i,k)∈F{Th

′(σ(i), σ(k)) | Th′(σ(i), σ(k)) ≤ p′((σ(i), σ(w)))}
0 otherwise

Example 9 Figure 6.4 (right) gives the reduced G1-model p1 of p2 along the signature
embedding given in Example 5.

resource ω′ p2((cI, ω
′)) p2((cro, ω

′)) p2((N,ω
′))

∅ 0 0 0
{cI} 2 2 0
{cro} 2 1 0

{cI,cro} 2 3 0

resource ω p1((cI, ω)) p1((cro, ω))
∅ 0 0

{cI} 1 1
{cro} 1 1

{cI,cro} 1 2

Figure 6.4. A G2-model p2 (left) and its reduced G1-model p1 (right)

♦

From a G-model p, a transition system (SG, T ) can be generated where the transitions in T
give the state evolution as described in p. Here, two possibilities can occur. We make evolve
either many variables directly to their concentration level specified by p, or one variable i
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Figure 6.5. Asynchronous transition systems GTA((G1, p1)) and GTA((G2, p2)). Colored
boxes represent the ≃dbs equivalence classes of GTA((G2, p2)) – see Section 6.3

and only by one unit in the direction of p((i, ω)) where ω is the set of resources of i at the
current state. These two possibilities are respectively called synchronous and asynchronous
description of the G-model p. Here, we follow the asynchronous description because in the
nature, it is unlikely that, in vivo, several variables cross a threshold simultaneously [43].

Definition 6.2.11 (Asynchronous transition system) Let G =< V, F, Sn, Th > be a
GRN-signature and let p be a G-model. The asynchronous transition system generated from
p is a directed graph GTA((G, p)) =< SG, T > such that:

• ∀s ∈ SG, (s, s) ∈ T ⇔ ∀i ∈ V, s(i) = p((i, RG,i(s)))

• ∀s 6= s′ ∈ SG, (s, s′) ∈ T if, and only if:

– there exists i ∈ V , such that

s′(i) =

{

s(i) + 1 and s(i) ¡ p((i, RG,i(s)))
s(i) - 1 and s(i) ¿ p((i, RG,i(s)))

– and s′(j) = s(j) for every j ∈ V \ {i}.

Example 10 Figure 6.5 gives from the left to the right, the asynchronous transition systems
GTA((G1, p1)) and GTA((G2, p2)) generated from p1 and p2.

♦

Satisfaction relation. The asynchronous transition system (SG, T ) generated from a G-
model p is a transition system following the definition in Section 6.1. However, to satisfy
CTL formulas, we have to manipulate Kripke frames and then we need to precise the labeling
function L : SG → 2Atom(G). Given a state s in SG,

L(s) = {i > l, i < l′, i = l′′ | i ∈ V, l, l′, l′′ ∈ {0, 1, . . . , bi}, s(i) > l, s(i) < l′, s(i) = l′′}

Therefore, the satisfaction relation of a formula ϕ over a GRN-signature G for a G-model
p is then defined by: p |= ϕ ⇐⇒ GTA((G, p)) |= ϕ following the definitions given in
Section 6.1.
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6.3 The institution of GRN over CTL-X

6.3.1 The satisfaction condition

In the next theorem, we start by establishing the satisfaction condition. we then show
that given a signature morphism σ : G → G′ satisfying the properties of Definition 6.2.3,
and a G′-model p′, p′ and p′|σ are elementary equivalent on formulas in Sen(G) up to σ. This
is stated by the following result.

Theorem 8 (The satisfaction condition) For every signature embedding σ : G → G′,
for every G′-model p′ and for every formula ϕ ∈ Sen(G),

p′ |= σ♯(ϕ) ⇐⇒ p′|σ |= ϕ

Proof. [Sketch] Let us consider a signature embedding σ : G → G′, a G′-model p′ for the
GRN-signature G′, its associated asynchronous transition system (SG′, T ′) = GTA((G′, p′))
and a formula ϕ ∈ Sen(G). Let us note (SG, T ) = GTA(G, p′|σ). Start by defining the

mapping B : SG → 2SG′ as follows: for every s ∈ SG, B(s) is the set of states s′ in SG′

verifying for every i in V :

• if s(i) = 0, then

s′(σ(i)) ≥ 0∧
s′(σ(i)) < min(i,k)∈F {Th

′(σ(i), σ(k)) | Th′(σ(i), σ(k)) > 0}

• otherwise, let j be any variable in G+
i such that s(i) = Th(i, j) (such a variable j exists

by construction of GRN-signature), then

s′(σ(i)) ≥ Th′(σ(i), σ(j))∧
s′(σ(i)) < min(i,k)∈F {Th

′(σ(i), σ(k)) | Th′(σ(i), σ(k)) > Th′(σ(i), σ(j))}

The proof of Theorem 8 rests on the following intermediate propositions: to make more
readable this section, the proofs of these propositions are not given here but can be found
in Appendix.

Proposition 5 The mapping B makes a partition of SG′, i.e.

1. ∀s, s′ ∈ S, B(s) ∩B(s′) = ∅, and

2.
⋃

s∈SG
Bs = SG′.

Note P = {B(s)|s ∈ SG}. Then, we have:

Proposition 6 P is a dbs equivalence.

It then remains to prove:
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Proposition 7 (SG′ , T ′)/≃dbs
and (SG, T ) are isomorphic.

It is well known that isomorphic models are elementary equivalent (i.e. they satisfy the
same set of properties). Therefore, by applying the result of [32], we can conclude that
GTA((G′, p′)) and GTA((G, p)) are elementary equivalent on formulas over G up to formula
renaming resulting from σ.

Corollary 4 (The institution of GRN) The tuple INSGRN = (SigGRN ,ModGRN , SenGRN , |=GRN

) is an institution whereby:

• SigGRN is the category of GRN-signatures and GRN-signature morphisms.

• The functor SenGRN : SigGRN → Set maps:

– each GRN-signature G to the set of GRN-formulas over G Sen(G) (cf. Defini-
tion 6.2.5) and

– each GRN-signature morphism σ to σ♯.

• The contravariant functor ModGRN : SigGRN → Cat maps

– each GRN-signature G to the category of G-models and

– each GRN-signature morphism σ to the reduct functor ↾σ.

• |=GRN= (|=G)G∈|SigGRN | where for each GRN-signature G, |=G is the satisfaction rela-
tion of a G-formula by a G-model (cf. Paragraph 6.2.2).

Example 11 For the current example, the equivalence classes of ≃dbs in G2 are highlighted
in Figure 6.5 by colored boxes. ♦

6.3.2 Counter-example justifying our restrictive notion of signature morphism

In this section we give a counter-example to show the significance of Condition 5 (preser-
vation of predecessors) of Definition 6.2.3. Let us consider both GRN-signatures G and G′ of
figure 6.6. It is possible to construct an injective mapping σ : V −→ V ′ satisfying Conditions
1, 2, 3, and 4 of Definition 2 with σ(a) = a. For the signature G′ we consider the model p′

a b1,− 1,−a1,−

Figure 6.6. Counter-example: we consider an embedding not s atisfying Condition 5 in Defini-
tion 2

given in Figure 6.7 (left) from which we deduce the reduced G-model p = p′|σ from p′ (see

Figure 6.7-right), and we consider the asynchronous transition systems generated from p and
p′.
It is then easy to see that models p′ and p do not satisfy the same formulas of CTL-X. For
example the formula AG(AF (a = 0)) which means that the system will infinitely often pass
through a state where a = 0 is true, is satisfied by p but not by p′.
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resource ω′ p′((a, ω′)) p′((b, ω′))
∅ 0 0
{a} 1
{b} 1
{a, b} 1

resource ω p((a, ω))
∅ 0
{a} 1

(0) (1) (0,1) (1,1)

(0,0) (1,0)

(0) (1)

Figure 6.7. a G′-model p′ and its reduced G-model p.

6.3.3 Enrichment and union of biological knowledges over GRNs

The logical approaches based on model-checking technics have been shown very efficient
to study small GRNs but are not well-adapted for large GRNs. The well-known reason is
because model-checking technics are time consuming. However, GRNs are generally embed-
ded into other ones. To allow to describe and study GRN behaviors in the large, we propose
here to study the consequences of the embedding. Indeed, by Corollary 4, we can specialize
both connectors of enrichment and union defined in Section 4.2.1 for axiomatic specifications
(G,Ax) where G is a GRN-signature and Ax is a set of CTL-X formulas over G. By Theo-
rem 1, we then have a complete preservation of properties along enrichment and union, that
is the global GRN completely preserves the behavior of sub-GRNs under the condition that
morphisms between GRNs satisfy the conditions of Definition 6.2.3. The interest of such
results is this then leads us just to focus on the biological experiment observations linked
with interactions of the sub-BRNs between them. We can then hope to be able to use both
tools such as GNA and SMBioNet to automatically study the dynamics of the global BRN.
Moreover, this approach corresponds to the classical method used by biologists when they
study a biological system. They start by studying small BRNs that they believe to be of
particular importance to represent a biological function. The interactions of this BRN with
the external genes, are studied only afterwards even if these external genes potentially could
influence the functioning of the studied part.

6.4 Conclusion

In this paper, our main contributions are triple. First, we have formally define the no-
tions of complex systems and emergent properties independently of formalism, and of the
form of both specifications and architectural connectors. Then, we have studied in the ab-
stract framework, some general conditions that enable us to obtain two general properties
to guarantee when a system is or is not complex. These conditions are based on the notions
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of the category theory of morphism conservativeness and adjunction. Finally, a theory of
component refinement has been intrdiced for complex systems as defined in this paper. If
such a refinement is correct (i.e. all realizations of the system used for refinement can sim-
ulate the behavior of the refined component), then the refined component can be replaced
by its refinement in the system, and preserves the global behavior of the system. Moreover,
we have studied emergent property preservations along refinement. Therefore, in order to
obtain a complete preservation of emergent properties along refinement, we have given some
sufficient conditions in order to ensure such a result.
To illustrate our abstract framework, we have instantiated it with the formalism of Genetic
Regulatory Networks (GRNs) within which biological knowledges have been specified by us-
ing the temporal logic CTL-X. We have then shown to make an institution of this formalism
that some conditions on signature morphisms were needed. These conditions led up us to
study GRN embedding as an architectural connector to make bigger GRNs, for which we
have shown a complete preservation of local biological knowledges at the global level.
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Appendix: proof of Theorem 8

Let us consider a signature embedding σ : G → G′, a G′-model p′ for the BRN-signature
G′, its associated asynchronous transition system (SG′, T ′) = GTA((G′, p′)) and the asyn-
chronous transition system (SG, T ) = GTA(G, p′|σ) associated to the reduce G-model p′|σ.

Let us consider the mapping B : SG → 2SG′ defined in Section 6.3.

Proposition 8 The mapping B makes a partition of SG′.

Proof. 1. B(s1) ∩B(s2) = ∅

Suppose that there exists s′ ∈ B(s1) ∩ B(s2).

For all i ∈ V :

• if s1(i) = 0 then s′(σ(i)) ≥ 0∧

s′(σ(i)) < min(i,k)∈F{Th
′(σ(i), σ(k)) | Th′(σ(i), σ(k)) > 0}

Suppose that s2(i) 6= 0, then with j2 any variable inG+
i such that s2(i) = Th(i, j2),

s′(σ(i)) ≥ Th′(σ(i), σ(j2))∧
s′(σ(i)) < min(i,k)∈F{Th

′(σ(i), σ(k)) | Th′(σ(i), σ(k)) > Th′(σ(i), σ(j2))}

Absurd, then s2(i) = 0.

• for s1(i) 6= 0, with j1 any variable in G+
i such that s1(i) = Th(i, j1),

s′(σ(i)) ≥ Th′(σ(i), σ(j1))∧
s′(σ(i)) < min(i,k)∈F{Th

′(σ(i), σ(k)) | Th′(σ(i), σ(k)) > Th′(σ(i), σ(j1))}

Then s2(i) 6= 0, and with j2 any variable in G+
i such that s2(i) = Th(i, j2),

s′(σ(i)) ≥ Th′(σ(i), σ(j2))∧
s′(σ(i)) < min(i,k)∈F{Th

′(σ(i), σ(k)) | Th′(σ(i), σ(k)) > Th′(σ(i), σ(j2))}

Thus Th′(σ(i), σ(j1)) = Th′(σ(i), σ(j2)) and we can deduce that, Th(i, j1) =
Th(i, j2)

By replacing Th(i, j1) and Th(i, j2) by their values we obtain, s1(i) = s2(i).

Then s1 = s2.

2.
⋃

s∈SG
B(s) = SG′
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• Let s′ be a state in
⋃

s∈SG
B(s), then there exists s ∈ SG such that s′ ∈ B(s). By

definition of B we have s′ ∈ SG′ .

• Let s′ be a state in SG′, we can construct easily a state s ∈ SG such that s′ ∈ B(s).

This partition of SG′ is denoted by P :P = {B(s) | s ∈ SG}. Actually the proof of
Propositions 6 and 7 rest on the following lemma and corollary:

Lemma 1 For all s in SG, for all i in V , for all s′ ∈ B(s),

RG′,σ(i)(s
′) = σ(RG,i(s))

Proof. 1. RG′,σ(i)(s
′) ⊆ σ(RG,i(s))

Let r′ ∈ RG′,σ(i)(s
′) then r′ ∈ G′−

σ(i) and







Sn′(r′, σ(i)) = + and s′(r′) ≥ Th′(r′, σ(i))
or

Sn(r′, σ(i)) = − and s′(r′) < Th′(r′, σ(i))

• r′ ∈ G′−
σ(i) then there exists r ∈ V such that σ(r) = r′.

• Suppose that Sn′(σ(r), σ(i)) = + (the other case is handled similarly), then we
have s′(σ(r)) ≥ Th′(σ(r), σ(i)).

Let us prove that r ∈ RG,i(s).

We have Sn′(σ(r), σ(i)) = Sn(r, i) = +, then we have to show that s(r) ≥ Th(r, i).

s′ ∈ B(s), then there exists a variable j in G+
r such that s(r) = Th(i, j) and

s′(σ(r)) ≥ Th′(σ(r), σ(j))∧
s′(σ(r)) < min(r,k)∈F{Th

′(σ(r), σ(k)) | Th′(σ(r), σ(k)) > Th′(σ(r), σ(j))}

Then, we obtain that Th′(σ(r), σ(i)) ≤ Th′(σ(r), σ(j)) ≤ s′(σ(r)) and we can deduce
that Th(r, i) ≤ s(r). Thus, r ∈ RG,i(s).

2. σ(RG,i(s)) ⊆ RG′,σ(i)(s
′)

Let r ∈ RG,i(s) and let us prove that σ(r) ∈ RG′,σ(i)(s
′).

r ∈ RG,i(s) then r ∈ G−
i and







Sn(r, i) = + and s(r) ≥ Th(r, i)
or

Sn(r, i) = − and s(r) < Th(r, i)
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Suppose that Sn(r, i) = +,

then we have s(r) ≥ Th(r, i) and Sn′(σ(r), σ(i)) = +.

To prove that σ(r) ∈ RG′,σ(i)(s
′) we have to show that s′(σ(r)) ≥ Th′(σ(r), σ(i)).

s′ ∈ B(s), then there exists a variable j in G+
r such that s(r) = Th(r, j) and

s′(σ(r)) ≥ Th′(σ(r), σ(j))∧
s′(σ(r)) < min(r,k)∈F{Th

′(σ(r), σ(k)) | Th′(σ(r), σ(k)) > Th′(σ(r), σ(j))}

Because Th(r, i) ≤ Th(r, j), we can deduce that

Th′(σ(r), σ(i)) ≤ Th′(σ(r), σ(j)) ≤ s′(σ(r))

Thus σ(r) ∈ RG′,σ(i)(s
′).

Corollary 5 ∀s′1 ∈ SG′∀s′2 ∈ SG′,

(∃s ∈ SG s′1 ∈ B(s) ∧ s′2 ∈ B(s))⇔ ∀i ∈ V RG′,σ(i)(s
′
1) = RG′,σ(i)(s

′
2)

Proposition 9 P defines a divergence blind stuttering equivalence.

Proof. Let us define ≃dbs by : s′1 ≃dbs s
′
2 ⇔ ∃s ∈ SG s′1 ∈ B(s) ∧ s′2 ∈ B(s).

By construction, we have :

∀s ∈ SG, ∀s
′ ∈ B(s), ∀ϕ ∈ Atom(G), ϕ ∈ L(s)⇔ σ♯(ϕ) ∈ L′(s′)

We get :

σ♯(ϕ) ∈ L′(s′1)⇔ σ♯(ϕ) ∈ L′(s′2)

Thus the first condition of the definition of divergence blind stuttering equivalence (see
Section 2) is ensured.

Let us show the second condition of the definition. Let s1, s2 be in SG, let s′1, s
′
2 be

in B(s1) and let r′ be in B(s2) such that (s′1, r
′) in T ′. To show that s′1 ≃dbs s

′
2 we must

prove that there exists a sequence s′2, . . . , s
′
n, with n ≥ 2 such that s′2, . . . , s

′
n−1 ∈ B(s1) and

s′n ∈ B(s2) and (s′i, s
′
i+1) ∈ T

′ with 2 ≤ i < n.
The symmetric case, that is there exists r′ in B(s2) such that (s′2, r

′) in T ′ would be exactly
the same.

We first clarify the three hypotheses : s′1 and s′2 are in B(s1), r
′ in B(s2) and (s′1, r

′) ∈ T ′.

1. s′1 and s′2 are in B(s1) then,
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• for s1(i) = 0,

s′1(σ(i)) ≥ 0∧
s′1(σ(i)) < min(i,k)∈F{Th

′(σ(i), σ(k)) | Th′(σ(i), σ(k)) > 0}
and

s′2(σ(i)) ≥ 0∧
s′2(σ(i)) < min(i,k)∈F{Th

′(σ(i), σ(k)) | Th′(σ(i), σ(k)) > 0}

• for s1(i) 6= 0, ∃j1 ∈ G
+
i such that s1(i) = Th(i, j1) and

s′1(σ(i)) ≥ Th′(σ(i), σ(j1))∧
s′1(σ(i)) < min(i,k)∈F{Th

′(σ(i), σ(k)) | Th′(σ(i), σ(k)) > Th′(σ(i), σ(j1))}
and

s′2(σ(i)) ≥ Th′(σ(i), σ(j1))∧
s′2(σ(i)) < min(i,k)∈F{Th

′(σ(i), σ(k)) | Th′(σ(i), σ(k)) > Th′(σ(i), σ(j1))}

2. r′ in B(s2) then,

• for s2(i) = 0,

r′(σ(i)) ≥ 0∧
r′(σ(i)) < min(i,k)∈F {Th

′(σ(i), σ(k)) | Th′(σ(i), σ(k)) > 0}

• for s2(i) 6= 0, ∃j2 ∈ G
+
i such that s2(i) = Th(i, j2) and

r′(σ(i)) ≥ Th′(σ(i), σ(j2))∧
r′(σ(i)) < min(i,k)∈F {Th

′(σ(i), σ(k)) | Th′(σ(i), σ(k)) > Th′(σ(i), σ(j2))}

3. (s′1, r
′) ∈ T ′ with s′1 and r′ are in two different equivalence classes then there exists

j ∈ V such that,

r′(σ(j)) =

{

s′1(σ(j)) + 1 and s′1(σ(j)) ¡ p′(σ(j), RG′,σ(j)(s
′
1))

s′1(σ(j)) - 1 and s′1(σ(j)) ¿ p′(σ(j), RG′,σ(j)(s
′
1))

and r′(j′) = s′1(j
′) for j′ ∈ V ′ \ {σ(j)}

We can now start the proof of the second step. We explore different cases but present here
only one since the others are handled similarly. Let us consider the case where s′1(σ(j)) <
p′(σ(j), RG′,σ(j)(s

′
1)) and s′1(σ(j)) 6= 0. We have r′(σ(j)) = s′1(σ(j)) + 1. Since s′1 and r′ are

in two different equivalence classes, we deduce that,

r′(σ(j)) = mins′∈B(s2){s
′(σ(j))} = Th′(σ(j), σ(j2))

and
s′1(σ(j)) = maxs′∈B(s1){s

′(σ(j))}

Because s′1 and s′2 are in B(s1), we deduce from the last equation :

s′2(σ(j)) ≤ s′1(σ(j))

We decompose the proof in following cases :
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1. case 1 : s′2(σ(j)) = s′1(σ(j))
Let us consider s′3 in SG′ such that :

• s′3(σ(j)) = r′(σ(j)) = s′2(σ(j)) + 1

• s′3(j
′) = s′2(j

′) for all j′ ∈ V ′ \ {σ(j)}

We have : s′2(σ(j)) < p′(σ(j), RG′,σ(j)(s
′
2)) because s′2(σ(j)) = s′1(σ(j)) and p′(σ(j), RG′,σ(j)(s

′
1))

p′(σ(j), RG′,σ(j)(s
′
2)) (see Corollary 5)

Then we deduce that (s′2, s
′
3) ∈ T

′.

By construction, we can verify easily that s′3 ∈ B(s2).

So we showed that there exists s′3 in B(s2) such that (s′2, s
′
3) ∈ T

′.

2. case 2 : s′2(σ(j)) < s′1(σ(j)).

Let k = s′1(σ(j))− s′2(σ(j)) + 1.

Let us consider s′3, . . . , s
′
k+1 in SG′ such that, for all 2 < i ≤ k + 1 :

• s′i(σ(j)) = s′2(σ(j)) + i− 2 , then s′k+1(σ(j)) = s′1(σ(j))

• s′i(j
′) = s′2(j

′) with j′ ∈ V ′ \ {σ(j)}

By construction, states s′3, . . . , s
′
k+1 are in B(s1), and (s′i, s

′
i+1) ∈ T

′. Indeed, we have:

• s′i+1(σ(j)) = s′i(σ(j)) + 1

• s′i+1(j
′) = s′i(j

′) with j′ ∈ V ′ \ {σ(j)}

• s′i(σ(j)) ¡ p′(σ(j), RG′,σ(j)(s
′
i)) because s′i(σ(j)) ≤ s′1(σ(j))

and p′(σ(j), RG′,σ(j)(s
′
i)) = p′(σ(j), RG′,σ(j)(s

′
1)) (see Corollary 5)

Let s′k+2 ∈ S
′
G defined as follows :

• s′k+2(σ(j)) = r′(σ(j)) + 1

• s′k+2(j
′) = s′k+1(j

′), for all j’ ∈ V ′ \ {σ(j)}

We can prove, as we did in the case where s′2(σ(j)) = s′1(σ(j)), that
(s′k+1, s

′
k+2) ∈ T

′.
Thus we proved that there exists a sequence s′2, s

′
3, . . . , s

′
k+1 ∈ B(s1) and a state s′k+2 ∈

B(s2) such that (s′i, s
′
i+1) ∈ T

′, with 2 ≤ i < k + 2.

Thus we proved that the partition P defined a divergence blind stuttering equivalence. Let
us now consider the quotient transition system built from GTA(G′, p′) with the equivalence
relation ≃dbs, denoted in the sequel (SG′, T ′)/≃dbs

, then (SG′, T ′) and (SG′, T ′)/≃dbs
satisfy the

same formulas of σ♯(Sen(G)).

Proposition 10 (SG′ , T ′)/≃dbs
and (SG, T ) are isomorphic.
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Proof. First step. (SG′, T ′)/≃dbs
and (SG, T ) should have isomorphic state sets provided with

the same labeling. These state sets are isomorphic by construction since at each state s in
SG, corresponds the state B(s) in SG′/≃dbs

and reciprocally. Moreover, by construction (see
above) :

∀s ∈ SG, ∀s
′ ∈ B(s), ∀ϕ ∈ Atom(G), ϕ ∈ L(s)⇔ σ♯(ϕ) ∈ L′(B(s))/≃dbs

Second step. Let us now prove that (SG′ , T ′)/≃dbs
and (SG, T ) have the same accessibility

relation, i.e. the same set of transitions:

∀s1, s2 ∈ S, (s1, s2) ∈ T ⇔ (B(s1), B(s2)) ∈ T
′
/≃dbs

We consider separately the ⇒ and ⇐ parts of the equivalence ⇔.

The ⇒ part: Let s1, s2 ∈ S such that (s1, s2) ∈ T .
To show that (B(s1), B(s2)) ∈ T

′
/≃dbs

we have to prove that there exist two states s′1 ∈ B(s1)

and s′2 ∈ B(s2) such that (s′1, s
′
2) ∈ T

′.

(s1, s2) ∈ T , then ∃i ∈ V such that,

s2(i) =

{

s1(i) + 1 and s1(i) ¡ p((i, RG,i(s1)))
s1(i) - 1 and s1(i) ¿ p((i, RG,i(s1)))

and s2(j) = s1(j) ∀j ∈ V \ {i}.

Suppose that s1(i) < p((i, RG,i(s1))), then s2(i) = s1(i) + 1, and suppose that s1(i) 6= 0
(the other cases are handled similarly). Let s1(i) = Th(i, j1) and s2(i) = Th(i, j2). Let
s′1 ∈ B(s1) such that :

s′1(σ(i)) = maxs′∈B(s1){s
′(σ(i))}

Since s2(i) = s1(i) + 1 then,

Th′(σ(i), σ(j2)) = min(i,k)∈F {Th
′(σ(i), σ(k)) | Th′(σ(i), σ(k)) > Th′(σ(i), σ(j1)} (6.1)

then we can deduce that,

Th′(σ(i), σ(j2)) = s′1(σ(i)) + 1. (6.2)

Let s′2 ∈ SG′ such that, s′2(σ(i)) = s′1(σ(i)) + 1 and s′2(j
′) = s′1(j

′) ∀j ∈ V ′ \ {σ(i)} Let us
first prove that (s′1, s

′
2) ∈ T

′ then that s′2 ∈ B(s2).

1. To prove that (s′1, s
′
2) ∈ T

′ it is sufficient to prove that,

s′1(σ(i)) < p′(σ(i), σ(RG,i(s1)))

because RG′,σ(i)(s
′
1) = σ(RG,i(s1)) (see Lemma 1). Since p is a reduced model p of p′

(see Definition 8), we have p((i, RG,i(s1))) = Th(i, k) where k is a variable such that :

Th′(σ(i), σ(k)) = max(i,j)∈F{Th
′(σ(i), σ(j)) | Th′(σ(i), σ(j)) ≤ p′(σ(i), σ(RG,i(s1)))}
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Since s2(i) = s1(i) + 1 and (s1, s2) ∈ T , we deduce

s1(i) < p((i, RG,i(s1))) (6.3)

By replacing s1(i) and p((i, RG,i(s1))) by their values in (6.3), we have
Th(i, j1) < Th(i, k). We then obtain,

Th′(σ(i), σ(j1)) < Th′(σ(i), σ(k)) ≤ p′(σ(i), σ(RG,i(s1))) (6.4)

Since s′1 ∈ B(s1), we have Th′(σ(i), σ(j1)) ≤ s′1(σ(i)) < Th′(σ(i), σ(j2)). Using (6.2)
and (6.4) we have Th′(σ(i), σ(j2)) = s′1(σ(i)) + 1 then,

s′1(σ(i)) < Th′(σ(i), σ(j1)) < Th′(σ(i), σ(k)) ≤ p′(σ(i), σ(RG,i(s1)))

In other words, (s′1, s
′
2) ∈ T

′.

2. Let us now show that s′2 ∈ B(s2). We have to prove that for all j in V :

• if s2(j) = 0, then s′2(σ(j)) ≥ 0 ∧ s′2(σ(j)) < min(j,k)∈F{Th
′(σ(j), σ(k)) > 0}

• else ∃l2 ∈ G
+
j , s2(j) = Th(j, l2) and

s′2(σ(j)) ≥ Th′(σ(j), σ(l2))
∧s′2(σ(j)) < min(j,k)∈F{Th

′(σ(j), σ(k)) > Th′(σ(j), σ(l2))}}

It is evident for all j ∈ V \ {i} since s2(j) = s1(j), s
′
2(σ(j)) = s′1(σ(j)) and s′1 ∈ B(s1)

(Def. B(s1)). For j = i, we have

s′2(σ(i)) ≥ Th′(σ(i), σ(j2))
∧s′2(σ(i)) < min(i,k)∈F{Th

′(σ(i), σ(k)) > Th′(σ(i), σ(j2))}}

since s′2(σ(i)) = s′1(σ(i)) + 1 = Th′(σ(i), σ(j2), so s′2 ∈ B(s2).

The ⇐ part: Let s1, s2 ∈ SG such that (B(s1), B(s2)) ∈ T
′
/≃dbs

. Let us show that (s1, s2) ∈
T .
Since (B(s1), B(s2)) ∈ T ′

/≃dbs
there exist necessarily s′1 ∈ B(s1) and s′2 ∈ B(s2) such that

(s′1, s
′
2) ∈ T ′. Because that s′1 and s′2 are in two different equivalence classes there exists

i ∈ V such that,

s′2(σ(i)) =

{

s′1(σ(i)) + 1 and s′1(σ(i)) ¡ p′(σ(i), RG′,σ(i)(s
′
1))

s′1(σ(i)) - 1 and s′1(σ(i)) ¿ p′(σ(i), RG′,σ(i)(s
′
1))

and s′2(j
′) = s′1(j

′) for j′ ∈ V ′ \ {σ(i)}.

Suppose that s′1(σ(i)) < p′(σ(i), RG′,σ(i)(s
′
1)), so s′2(σ(i)) = s′1(σ(i)) + 1, and suppose that

s′1(σ(i)) 6= 0 (the other cases are handled similarly).
Let Th(i, j1) = s1(i) and Th(i, j2) = s2(i).
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For all j ∈ V \ {i} we have s′2(σ(j)) = s′1(σ(j)) then we can easily deduce that,

∀j ∈ V \ {i} s2(j) = s1(j) (6.5)

For i we have,

s′2(σ(i)) = s′1(σ(i)) + 1 (6.6)

Since s′1 and s′2 are in two different equivalence classes then,

s′2(σ(i)) = mins′∈B(s2){s
′(σ(i))} = Th′(σ(i), σ(j2)) (6.7)

and

s′1(σ(i)) = maxs′∈B(s1){s
′(σ(i))} (6.8)

Since s′1 ∈ B(s1) then we have,

s′1(σ(i)) < min(i,k)∈F{Th
′(σ(i), σ(k)) | Th′(σ(i), σ(k)) > Th′(σ(i), σ(j1))} (6.9)

Using (6.6) and (6.7) we have,

Th′(σ(i), σ(j2)) = s′1(σ(i)) + 1 (6.10)

Using (6.8) and (6.9) we have,

s′1(σ(i)) + 1 = min(i,k)∈F {Th
′(σ(i), σ(k)) | Th′(σ(i), σ(k)) > Th′(σ(i), σ(j1))} (6.11)

Using (6.10) and (6.11) we have,

Th′(σ(i), σ(j2)) = min(i,k)∈F {Th
′(σ(i), σ(k)) | Th′(σ(i), σ(k)) > Th′(σ(i), σ(j1))}

Thus we can deduce that,

Th(i, j2) = Th(i, j1) + 1

By replacing Th(i, j2) and Th(i, j1) by their values we obtain,

s2(i) = s1(i) + 1 (6.12)

Let us show that s1(i) < p(((i, RG,i(s1)))).

By construction of p, the reduced model of p′, we have,

p((i, RG,i(s1))) = Th(i, j) where j is a variable such that,

Th′(σ(i), σ(j)) = max(i,k)∈F{Th
′(σ(i), σ(k)) | Th′(σ(i), σ(k)) ≤ p′(σ(i), σ(RG,i(s1)))}
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With (6.8) and (6.10) we obtain,

Th′(σ(i), σ(j1)) ≤ s′1(σ(i)) < Th′(σ(i), σ(j2)) ≤ Th′(σ(i), σ(j)) ≤ p′(σ(i), σ(RG,i(s1)))

then,

Th(i, j1) < Th(i, j2) ≤ Th(i, j)

So we can deduce that,

s1(i) < p(((i, RG,i(s1)))) (6.13)

Using (6.5) and (6.12) and (6.13) we deduce that (s1, s2) ∈ T .

We showed that GTA(G′, p′)/≃dbs
is isomorphic to GTA(G, p′|σ), then they satisfy the same

formulas of σ♯(Sen(G)).
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