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Abstract—With a large variety of wireless access technologies hetworks in parallel creates a huge potential for perforrean

available, multi-homed devices may strongly improve the pe
formance and reliability of communication when using multiple
networks simultaneously. A key question for the practical @-
plication of multi-path strategies is the granularity at which the
traffic streams should be dispersed among the available netwks.
This level of granularity may be expected to have a major impat
on both the efficiency and complexity of practical realizatons.
Motivated by this, we compare two dynamic strategies that
operate at different levels of granularity. The first strategy, which
we call network selection, requires little operational conplexity
and dynamically assigns an arriving application data transfer
to the network that delivers the highest expected performaoe.
Our second strategy, which we call traffic-splitting, is of hgher
complexity and aims to optimally split individual data transfers
among the available networks. To this end, we (1) develop qua
titative models that describe the performance of both straggies,
(2) determine the (near-)optimal algorithms for both strategies,
and (3) validate the efficiency and practical usefulness ofhe
algorithms via extensive network simulations and experimets
in a real-life testbed environment. These experimental radts
show that the optimal strategies obtained from the theoretal
models lead to extremely well-performing solutions in pratical
circumstances. Moreover, the results show that the splittig of
data transfers, which is easy to embed in the network requirg
no information on the number of flows in the system, leads
to a much better performance compared to dynamic network
selection.

Index Terms—Multi-homed systems, capacity aggregation,
Processor Sharing queues, file splitting

|. INTRODUCTION

and reliability improvements.

Over the years, many approaches have been proposed
on aggregating capacity on multi-homed devices in wireless
networks. As opposed to the research on the physical layer
of wireless systems, the application performance in multi-
network environments is not well understood with respect to
its fundamental limits and how to approach these by prdctica
systems.

Motivated by this, in the present paper we study both
the theoretical modeling and the practical viability of the
following two performance improvement strategies for file
transfers over multiple wireless access networks: @yreamic
network selectiorstrategy that assigns an entire file transfer
to just one of the available networks, based on the number
of ongoing transfers in each network, and (2jraffic-split
strategy that dynamically splits the file contents into segis
each of which is assigned to one of the networks on the basis
of TCP-level information (e.g. measured throughput anchcou
trip times) from the connections.

In the literature, research efforts on aggregating capacit
on mobile multi-homed devices multiple networks concdntra
primarily on the use of SCTP (see for example [2], [3], [4])
or TCP. It needs to be pointed out that the functionality for
efficiently using multiple network paths is not considered
by the SCTP standard [5], meaning that distributing and
re-sequencing the data should be implemented separately.
In addition, SCTP applies the same flow- and congestion-
control mechanism for the possibly different networks used

ODAY'S wireless Internet users are accustomed to the parallel, which is not in the interest of overall efficidimtk
ever increasing data rates offered by the latest geneuwilization nor application performance. Others have psgul
tion wireless access technologies. Many contemporary-wite modify TCP [6], [7], [8] to aggregate capacity on multi-

less networks have already closely approached the Shanhomed devices. In another area of research, the application
limit on channel capacity, leaving complex signal procegsi performance of file transfers is often modeled by Processor
techniques room for only modest improvements in the da&haring (PS)-based models [9], [10], [11] that have shown to
transmission rate [1]. The research efforts on the physidaé applicable to a wide variety of wireless access networks,
layer of wireless systems have matured this field, such thatluding CDMA 1xEV-DO, Wireless LAN (WLAN), and
the theoretical limits are known and are closely approatlyed UMTS-HSDPA. In fact, PS models may accurately predict
practical systems. The data rates available to the apiplitat the performance of file transfers over WLANs [12] by taking
on mobile multi-homed devices may strongly benefit frormto account the complex dynamics of the application and its
the overlapping coverage of a wide range of wireless acceswlerlying protocol-stack. In a queuing-theoretical eant
technologies that operate in different frequency bands atiet distribution and re-assembly of tasks into subtasks are
already achieve very high spectral efficiencies. Using @hetypically modeled by fork-join constructions [13]. In case



where the processing times of the subtasks are independent,
exact or numerical analysis is relatively simple (e.g.,][14
whereas the inclusion of dependent processing times (kig.,
to queuing or job splitting) typically leads to very complex
analysis (e.g., [15], [16]). For PS-based nodes that psoites
tasks of a job in parallel, the complex correlation struetur
between the sojourn times at the PS nodes makes an exac|[Strateg|
detailed mathematical analysis of the model |mp053|bleaAs
result, the available literature on queuing models wnhardg
to traffic-splitting is not widely adopted and hence leaves
gap between theory and practice.

In this paper, we study two strategies that aggregate the
capacity at a wireless, multi-homed device to achieve near-
optimal performance for file transfers. The network setetti Terminal TypeN
strategy dynamically assigns an arriving transfer to the ne ) ] .
work that delivers the best expected performance, whereas Fig. 1. Multi-network environment.
the traffic-splitting strategy actually splits the file tsd@r into
segments and distributes those among the available network
For these two strategies we evaluate their efficiency aB@per the terms jobs, flows and transfers are used interehang
practical usefulness in a mutual comparison. ably.

PS models form an attractive class of models that on theThe decision logic to decide upon the optimum traffic distri-
one hand accurately describe the resource sharing-behagigtion of foreground streams depends on the chosen strategy
among the flows in a network, and on the other hand oft§ge consider the following two strategies. In tliynamic
allow for an exact mathematical analysis. Therefore, we Uggtwork selection strateggreground jobs are assigned to one
PS models to describe the performance of our strategifigiwork, based on the number of foreground and background
to subsequently determine (near-) optimal algorithms, aRgws in each of the networks. In thiynamic traffic-splitting
validate the efficiency and ease-of-use of these algorith@gategy jobs are dynamically split intdv portions, each of
via extensive network simulations and experiments in & reglhich is assigned to one of thé networks, based on statistics

life testbed. The results show that the traffic-splittin@&gy optained from the TCP connections in each of the networks.
leads to a much better performance compared to dynamic

network selection and is easier to embed in multi-homed
devices operating in wireless networking environments.  *+ Pynamic Network-Selection Strategy

The novelty of our study is threefold. First, in the liter- The network selection strategy is modeled by a Markov
ature today there is no satisfactory quantitative modet thHaecision Process (MDP) and allows the formulation of an
accurately describes the traffic-splitting performancelern optimum solution. Itis assumed that the reader is familidin w
practical circumstances for multi-homed devices. The rhod&e basic concepts of MDPs, see [17] for a standard text book
presented here fills the gap between theory and practi8. MDPs. The state space of this modebis- No*", where
Second, a comparison of traffic-splitting against a pradic in s = (b1, f1,b2, fo,...,bn, fn) € S. Here f; denotes the
embedded Markov Decision Process (MDP)-based dynanfiember of foreground transfers in netwarkandb; denotes
network selection scheme is new. Third, we show throughe number of foreground transfers in netwatkFor each
practical experiments that extremely high efficiencies ar@driving foreground flow, a network has to be selected for

network performance can be obtained in a testbed environmg@nsmission. This selection is modeled in the action space
using real networks. a € A=1{1,2,...,N}, representing the index of the PS

node that should be selected. The expected download time can
be derived from the expected number of flows using Little’s
formula \E[S] = E[L] with Ay the (foreground traffic)

In this paper, we consider the multi-network environmerrival rate,E [S] the expected download time, afitiZ] the
in Figure 1, where several wireless access devices may usgiendy state expected number of foreground transfers.
number of networks. We analyze the flow-level performance of Therefore, in the MDP formulation the reward IS chosen
this system and model each of the networks by PS nodes. ®ewial to the number of foreground transfers @@1 1 fi),
model consists ofV parallel PS nodes that represent wirelesp that the total expected reward, denotetto be obtained
access networks. There aré + 1 traffic streams: a single from (1) below), corresponds to the expected number of
stream of foreground jobs (called class-0 jobs) ahdtreams foreground flows in the system. As the average number of
of background jobs (called clagsjobs, fori = 1,...,N). flows should be minimized, the value iteration will become
Classt jobs arrive according to independent Poisson processesninimization problem. This description can be converted
with rates)\;, the service times are exponentially distributethto an MDP. Using value iteration, the backward recursion
with mean3; = 1/u;, and the corresponding load offerecequations can be defined as follows foe S, t = 0,1,---
to the system i; = \;3;, i = 0,1,..., N. Throughout this andr = %:

Il. MODEL



i. At the receiving end, theV parts are reassembled, which

>V A\ concludes the transfer of a file. The objective is to minimize
Vier)r (s) = === + min 2V, (5 + e2a) (1) the expected transfer-and-reassembly time of the files fhem
v acA | Y foreground stream.
[\ We assume that the splitting strategy dynamically spliés th
+ Z 7‘/27 (s +e2i-1) file with infinitely small granularity into parts that are agsed
ieA L to the nodes, such that all nodes finish servicing the tasks
i + belonging to the same job exactly at the same time. We also as-
d i_VT — €2;— . . .
+ ;4 bt vt ([S c2i-1] )} sume that the splitting strategy operates optimally in #rese
- there is no synchronization time needed at the receiving end
+ Z dm@yﬁ ([S _ €2i]+) to reassemble the file, which is a realistic assumption toehod
eal 7 the performance in TCP-based networks. This assumption
r [ 1o allows us to formulate the model as a continuous time Markov
+ Z (1 —dp) o + (1 —dy,) 7] Vi (s),  chain for with anN + 1-dimensional state spac§,= Ny ",
i€A * where a state € S is of the forms = (f,b1,...,bn) € S
with with f the number of foreground flows in the system (which
b, is the same for allN PS nodes) and, is the number of
g — 2 ! if b;+ fi >0 background flows in PS node The transition rates of this
be = it f6 otherwise ’ Markov chain are then as follows:
fi ,
df,i = bz+fz if bt+fl >0 , Q(§7§+éz):>\z (ZZO, aN)v (2)
0 otherwise N ¥
5.5—60)=Y “puo, 3
and al 0) ;diuo (3)
b;
v=Xo+ > [+ (1 + o)l a(5,5 = e) = i (=1, ), )
icA i

In (1), the terms correspond to the number of foregrour‘(}fflth
transfers in states, the event of a foreground transfer ar- f+bi it f+b; >0,
rival transition, a background arrival transition, a backqd ! 1 if otherwise.

transfer completion, a foreground completion and a dumnyere ¢, represents the unit vector that has zeros on all

transition respectively. Furthermore,;; is the unit vector gimensions except the dimension that corresponds to the tot
that has zeros on all dimensions except on the dimension thahper of foreground jobs (by takirig= 0) or to the number
corresponds to the number of background transfers on nietwgg background jobs (foi = 1,..., N). Based on this result

i, e; does the same for foreground traffic. This vector is Usggh jenote the expected number of foreground transfers in our
in the equations for identifying the transitions of the Mark |, 1ti-network environment a& [No] = E [égw( )] whereé?

1 1 b; f7, . e

chain. The fractiong; = and ;- are a result of the fact yapresents the transposed unit vectorégf and «r(.) stands
that the networks are modeled as PS nodes. Each transfer yyjll ihe marginal distribution of our Markov chain. Using

. . . .
receive a fraction——+ of service (the number of transfers in g jje's formula we obtain the expected download time of the
network equals the sum of background and foreground). Frch"reground traffic.

this, the total fraction of service to transfers on nedell be

b‘jrf for background traffic an%ifﬁ for foreground traffic. m
As the total expected rewargl corresponds to the expected We have implemented the dynamic network-selection strat-
number of foreground transfers, Little’s formula can now be P y

applied in order to obtain the expected sojourn time of gy Inan OPNET ne_twork simulation and thetrafflc—splltStra
E[L/] 9 where S, egy in a testbed environment to assess the effectivenessiof b

foreground traffic stream [So] = Y. — Ao strategies in a multi-network environment of two networks
represents the foreground download tinde, is the number i} ; '
P g N = 2. Both strategies are mutually compared against their

of foreground transfers), is the foreground job arrival rate, i . . -

and g is the long-term average expected reward (in this Ca}?hﬁe;r;trﬁi:a?ggsl ggécc;;nsiﬁ;g E;Srzesczst)mglrjr%rgcit:a;gmance

the expected number of foreground flows). to the conditions in [12], where it is validated that the file

download performance in WLAN can be modeled by a PS

B. Dynamic Traffic-Split Strategy model under specific circumstances that were also adopted
In contrast to the network selection strategy, whengire for our experiments in this paper. Due to space constraiats w

files are scheduled for transmission over one specific n&wotefer to [12] for more details. In our experiments we haveduse

the traffic-splitting strategy actually splits a file inté parts, the following parameterization:

based on the total number of foreground and background flows g 4 p1 + p2 1-p B P0

in each of the PS nodes. Theh part is transferred to PS node ~ # ~ 2 T T T T et it

. EXPERIMENTAL SETTING




wherep is the average of all network loads,is the ratio of file size distribution, which is in line with similar obseti@ns
mean unutilized capacity on both networks and the ratio that were made in [12] for single network scenarios.
of foreground load to total traffic load offered to the system

IV. EXPERIMENTAL RESULTS

A. Dynamic Network-Selection Strategy In this section we compare the model, simulation and
Using (1), an optimal assignment strategy for our netwokkperimental outcomes of both strategies and have included

selection problem can be obtained, and used in a netwarkhird strategy, the so-callestatic selection modgeln which

simulation as the policy that should be enforced. Our apgroahe network is selected with the lowest background load to

is based on the PS-model presented in [12] that was usedeapresent a commonly used approach. We have conducted

obtain the decision policies for a number of parameter aad lomany experiments and the results are outlined belowd#6§

combinations and later to parameterize the simulationaseenConfidence Intervals of less than two percent).

ios and the theoretical model. Our simulated network costai Figure 2 plots the mean download times fbe= 1, obtained

two WLAN APs, operating on non-overlapping frequencfrom the models and the experiments (measured download

channels, that serve the download requests arriving freeethtimes are divided by), of the foreground traffic as a function

types of terminal types. There are ten multi-homed termsinadf p for the different network selection and traffic-splitting

of type 0 generating with arrival ratg, the foreground traffic strategies discussed above.

within close 5 meter) range of both available networks and

may use.them simultaneopsly accordingly. In addi;ion there * ﬁéﬁDyn split model

are ten single-homed terminals of typeat an equal distance of n. select model

of fifteen meters from APL1 that generate the backgrounddraffi atlc S1F"Iempmocl i
. X .. . * Dyn select sim.

with rate A; on the first network. The remaining ten single-

homed terminals generate the background traffic atxaten  »

AP2 in a similar fashion. We have parameterized all WLAN —=s-

stations such, that for a mean file size of 200kByte we obtai% L

an expected download time of one such transfer in an empty

network of 3 = 0.36 seconds.

~—~~
[S]
Al

B. Dynamic Traffic-Split Strategy 2p

To evaluate the performance of the dynamic traffic-sptittin =~ -
strategy an application was developed that uses the sthndar | ‘ ‘ ‘ ‘ ‘ ‘ ‘
sockets API to distribute its FTP application traffic amohg t '
multiple networks present in accordance to the Arrivaldimrig. 2: Mean foreground download timE[S,], as a function
matching Load-Balancing (ATLB) method from [8]. In thisof p, for x = 2/3.
method the time of arrival of TCP segments from different
networks is matched at the receiver’s resequencing paiat, a
takes into account the two most important delay factors; theThe results lead to a number of observations. First, the
queuing delay at the sender and the transmission delaydynamic traffic-splitting model consistently outperforrie
the network. The first factor can be obtained by maintainirdynamic network selection strategy, for all values of thadlo
the TCP throughput of each connection over time, whereagth performance improvements typically in the range of
the latter factor the Round Trip Time (RTT) estimation fron30 — 40%. Second, the static selection strategy is strongly
TCP (smoothed RTT) can be used. The effectiveness of autperformed by both dynamic strategies, as expected.
traffic distribution application is subsequently evalgate Figures 3 and 4 show the results (again normalized to
a testbed consisting of two powerful multi-homed PCs that= 1) from the experiments, simulations and those from the
are connected by two independent and identically configuradalytic models. In these figures, the mean download time of
WLAN access networks. Similar to the foreground traffic, thihe foreground traffic is plotted as a function of the asynmnet
background traffic in each network consists of independefactor .

Poisson arrivals of i.i.d. files with a mean size of 2MByte. These results lead to a number of observations. First, the
As our traffic-splitting solution requires some 'warm-uphe dynamic strategies deliver significantly different perf@nce.

to operate effectively, the files that are transferred «insirhe dynamic traffic-split model consistently outperforrhe t

of a fixed portion of 1MByte that is added on top of amynamic network selection strategy for all values:oSecond,
exponentially distributed file with a mean size of 1MBytethe experimental results obtained from our testbed match
The WLAN equipment in our testbed was configured suaxtremely well with the dynamic traffic-splitting model, igh

that we obtain an expected download time for our files in amplies that traffic-splitting can be achieved under piaadti
empty network of = 3.03 seconds. Note that the resultingcircumstances with nearly-optimal performance (diffees

file size distribution does not entirely match the exporantibetween one and three percent). Third, the simulation out-
assumptions in our theoretical model but further experimercomes of the dynamic network selection strategy also match
revealed near-insensitivity of the splitting performancehe very closely to the quantitative model. Fourth, again the




ﬁéﬁ‘Dyn. épllt mode]
— DE/n. select model

[ +Batic. e%lect model
* n. s§|l exg
o2t % Dyn. select sim. |
()
£, |
0?1.8 Bl

embedding dynamic network selection strategies in network
devices involves no sophisticated splitting functioryalitut
does require that there is a front-end router/dispatchat th
has maintains the information on the number of foreground
and background flows in the network. Provided that this is
the case, the traffic load values should be known or estimated
using for example queue-learning techniques.
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Fig. 3: Mean foreground download timE[S,], as a function
of x for a constant total system load= 0.55 andn = 0.09.
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Fig. 4: Mean foreground download timE[Sy], as a function
of k for a constant total system loagd~ 0.75 andn = 0.33.
(8]

static network selection strategy far less effective thia@ t [g)
dynamic strategies, particularly if the network loads aielyf
symmetric (i.ex close to 1). This effect is vanishes for highepo]
asymmetry in the load values (i.e.close t00.1).

Based on the experimental results it can be concludﬁ(ii]
that the dynamic traffic-splitting strategy consistentstivers
better performance in terms of lower mean download response
times when compared to dynamic network selection. Best p&l
formance (twice as fast) is achieved under low load conafitio
and under the least favorable conditions of having extreme
load asymmetries (i.e: = 0) and low foreground traffic loads [13]
(i.,e. n = 0.1) mean download times may still be reduced bm]
more than eightteen percent. This high performance comes
at a cost that primarily lies in the implementation compexi
(see [6]), but need not necessarily imply that this functlan [15]
should be adopted in a TCP-stack replacement [6], [7] or
even in a separate device [8]. In contrast to the proposed
dynamic network selection strategy, there is no need for any
additional network status information, other than what may
be calculated from the TCP connection’s statistics. Cyear!

. , : : [17]
relatively short file transfers may benefit from dynamic serv
selection, as there is no 'warm-up’ period required. Howgeve
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