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Abstract

Experiments in this article test the hypothesis that formal direction
models used in artificial intelligence correspond to intuitive direction con-
cepts of humans. Cognitively adequate formal models of spatial relations
are important for information retrieval tasks, cognitive robotics, and mul-
tiple spatial reasoning applications. We detail two experiments using two
objects (airplanes) systematically located in relation to each other. Partic-
ipants performed a grouping task to make their intuitive direction concepts
explicit. The results reveal an important, so far insufficiently discussed as-
pect of cognitive direction concepts: Intuitive (natural) direction concepts
do not follow a one-size-fits-all strategy. The behavioral data only forms
a clear picture after participants’ competing strategies are identified and
separated into categories (groups) themselves. The results are important
for researchers and designers of spatial formalisms as they demonstrate
that modeling cognitive direction concepts formally requires a flexible ap-
proach to capture group differences.

1 Introduction

Direction relations between locations or objects in space are considered fun-
damental to human spatial cognition (e.g., [65]). It is not surprising that the
community of spatial researchers has responded with numerous studies, both
formal and behavioral, to understand cognitive direction concepts and has pro-
vided models that capture the nature of how humans make sense of direction
information (e.g., [12]). While precise information in the form of coordinates and
derived angles may be available to specify the relation between objects in space,
it has been established that humans naturally do not use this level of precision
[43]. To enable a seamless integration of cognitive and artificial systems, for ex-
ample in geospatial information retrieval tasks, qualitative strategies employed
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by humans need to be captured formally in such a way that computational sys-
tems are able to communicate with natural cognitive systems. However, despite
enormous research efforts there are still unanswered questions regarding what
intuitive direction concepts are and which levels of granularity humans use to
understand direction information; which factors change concepts and intuitive
levels of granularity; how formal models can be designed such that they capture
intuitive direction concepts adequately; and, how linguistic expressions map
onto concepts.

In this article, we focus on symbolic (qualitative) approaches as they have
the potential to be a bridge between the spatial information considered essential
for natural and for artificial cognitive agents [23]. Symbolic approaches are on-
mipresent in spatial applications such as query and retrieval scenarios [1, 3, 6, 9],
tasks involving the formalization of (geo)spatial concepts, change, and processes
[10, 36, 32, 18], and in spatial database applications to specify spatial knowl-
edge and integrity constraints [50, 33, 55, 52]. Acquiring a better understanding
of human conceptualization and usage of direction relations and evaluating the
suitability of different formalisms to capture humans’ intuitive understanding of
direction are crucial to improve the performance of symbolic approaches in the
application areas mentioned above. To this end, we conducted two experiments
to test the hypothesis that proposed direction calculi (see Section 2) correspond
to the intuitive direction concepts of humans. The results allow for a deeper un-
derstanding of how humans make sense of direction information revealing that
competing strategies are an essential cognitive reality that should be reflected
in formal characterizations too. In other words, just like other areas of spatial
cognition, such as wayfinding, are acknowledging that humans differ with re-
spect to strategies they use to understand space [60], it is important to extend
this line of thought to spatial (direction) concepts.

The remainder of the article is structured as follows: First, we briefly review
literature on direction concepts in Section 2. Section 3 details two behavioral
experiments we conducted to shed light on cognitive direction concepts in two
different yet related scenarios (airplanes from a bird’s eye and side view per-
spective). We discuss visualizations we developed to reveal participants’ com-
peting strategies and show that only acknowledging different strategies provides
a sound (analytical) explanation of human behavior. We discuss the results in
the light of existing literature and formal models in Section 4 and provide a
general reflection and future avenues of research in the conclusions.

2 Background

One of the first things we can observe about cognitive direction concepts is that
humans do not conceptualize (i.e., use individual concepts) for every potential
direction that can possibly be perceived. That is, humans do not demonstrate
natural and intuitive capacity dealing with infinitely precise directional infor-
mation. For most situations, qualitative information about directions—in the
sense of a fairly small number of equivalence classes—seems to be sufficient for
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natural cognitive agents. The way these equivalence classes capture continuous
information about directions in a qualitative way has been referred to as qual-
itative metrics [21, 44]. Various studies show that even though humans may
perceive angular information more precisely, humans conceptualize and remem-
ber it with limited precision (e.g., [7, 22, 42, 58, 63]).

Inspired by the idea of qualitative metrics, spatial information science has
developed numerous approaches to formalizing direction concepts. We cannot
review all of them here but will summarize the main contributions (see also
Figure 1 and [40]). Qualitative direction calculi either deal with absolute or
relative directions. Absolute direction calculi are typically developed as binary
calculi specifying the relation between two objects, referred to as the reference
object (RO) and the located object (LO), with respect to an absolute reference
direction. The main examples of this class are cardinal direction calculi in which
the direction of the located objects is determined in relation to, for example,
the straight north direction. An important distinction for cardinal direction
calculi has been proposed by Frank [19]: projection-based (Fig. 1(a)) versus
cone-shaped (Fig. 1(b)). In projection-based calculi, the main directions N,
W, S, E form the linear axes, while NW, SW, SE, NE are planar sectors. In
cone-based approaches, the sector boundaries of the main directions are shifted
by 45 degree such that N, W, S, E become planar sectors. An example of
the projection-based approach is the well-studied point-based cardinal direction
calculus by [39] (Fig. 1(a)). It uses nine basic relations to locate RO and LO. The
cardinal direction calculus by Goyal and Egenhofer [29, 28] (Fig. 1(c)) deals with
extended objects by using the minimum bounding rectangle around the reference
object to form the frame of reference for determining the direction of the located
object. Since the calculus deals with extended objects, the located object can
overlap several direction sectors such that relations need to be represented as
binary matrices. Renz and Mitra [54] describe an absolute direction calculus,
the Star calculus, in which the sector boundaries can be adapted allowing for
the representation of direction information at different levels of granularity.

Relative direction calculi do not require a reference direction. They either
are ternary calculi dealing with three objects (origin, referent, and located ob-
ject) as in Ligozat’s FlipFlop calculus [38] and Freksa’s Doublecross calculus
[24] (Fig. 1(d)); or, binary calculi that involve basic entities with an intrinsic
direction. Examples for the latter are the dipole and OPRA calculus families:
Calculi from the dipole family [47] (Fig. 1(e)) define relations for the relative
orientation of two line segments. In the OPRA calculus [45] (Fig. 1(f)), di-
rected points are used and each point is relatively located to the other point
based on a locally instantiated reference system (within each point). The level
of granularity can be adapted using a special parameter.

The psychological and linguistic literature offers a substantial amount of in-
sights into the conceptualization of directions and the relation between cognitive
representations of directions and their linguistic descriptions. There are a num-
ber of excellent overview publications [37, 65, 17, 61]. Due to space limitations,
it is not possible to provide a comprehensive review. More importantly, most
of the existing research focuses on evaluating and specifying the semantics of
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Figure 1: Overview of direction calculi. (a) projection-based cardinal direc-
tion calculus; (b) cone-shaped cardinal direction calculus; (c) cardinal direction
for extended objects; (d) doublecross calculus; (e) dipole calculus; (f) OPRA
calculus.
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particular spatial prepositions, that is, research is targeting the question: what
are possible interpretation of prepositions such as on, under, or above [16]. Our
research approach is different: it addresses whether any of the proposed direc-
tion formalisms discussed above reflects intuitive (human) direction concepts.
We will make connections to existing behavioral research results in Section 4.

3 Experimental evaluation of direction concepts

To be able to efficiently analyze humans’ intuitive concepts of space, time, and
space-time, and to test the hypothesis that a proposed formal model is cog-
nitively adequate, we have developed a framework that combines experiment
design, data collection, and data analysis [35, 34]. The central component is
CatScan, a software we designed to administer free-classification (also referred
to as category construction or grouping) experiments. The software is designed
to be compatible with the Amazon Mechanical Turk’s (AMT)1 crowdsourcing
environment. By employing AMT, the challenge of recruiting an adequate par-
ticipant pool is reduced significantly. AMT has gained widespread recognition
in the scientific community with its demonstrated reliability, efficiency, and va-
lidity. For instance, it has been shown that results obtained from AMT are
largely comparable with lab experiments [49, 8]. Additionally, research on the
demographics of Turkers (i.e., participants recruited to perform the Human In-
telligence Tasks on AMT) has shown that general population characteristics are
better reflected compared to classic on-campus lab experiments [56]. In the fol-
lowing, we describe two experiments we performed with CatScan via AMT in
order to investigate human conceptualizations of direction relations with respect
to both direction concepts and their linguistic descriptions. We will demonstrate
that investigating group strategies of participants is essential for fundamental
spatial concepts such as directions, not just for more complex cognitive processes
such as wayfinding.

3.1 Experiment 1 - Bird’s Eye View

We selected a two-airplane scenario to elicit intuitive direction. A similar sce-
nario has recently been employed by Holmes and Wolff [31] to evaluate the
relation between linguistic expressions and concepts. All formal approaches for
absolute direction information discussed in Section 2 are potentially suitable for
modeling cognitive direction concepts in these scenarios. Our experiment tests
the hypothesis that at least one of the formal models proposed captures the
intuitive direction concepts of humans. Our results will thereby provide guid-
ance on selecting an appropriate formalism. Lack of such guidance has been
identified as one major drawback in promoting qualiative formalisms [59].

Material

We created a set of 72 icons for this experiment showing two airplanes from a
bird’s eye perspective (see Figure 2). The icons were generated as follows: Two
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Figure 2: Four examples of icons that were created showing two airplanes.
Angles between the big plane (RO) and the small plane (LO) in counterclockwise
order are: 0, 90, 180, and 270 degree.

differently scaled versions of the same airplane image from a bird’s eye perspec-
tive were combined to form individual icons. The smaller plane was placed along
a circle around the larger plane located in the center of the icon. Placement was
based on the center points of the minimum bounding boxes around each plane.
The placement started with an angle of 0 degrees corresponding to the straight
up position and was then increased in 5 degree steps counterclockwise. This
resulted in 360/5 = 72 icons for this experiment. Figure 2 shows four examples
at 0, 90, 180, and 270 degrees.

Participants

Through AMT, we recruited 37 participants for this experiment. We excluded
seven based on obvious and repeated errors they made in creating direction
categories. We considered directions as outliers if they were 15 or more degrees
apart from the main group. Participants’ had to have at least two such outliers
to be excluded. Most participants who were excluded made several obvious
mistakes. 13 of the remaining 30 participants were female and the average age
of all 30 participants was 30.53 (max: 64, min: 19).

Procedure

Individual experiments were posted to AMT’s website as HITs (Human Intel-
ligence Tasks). Once a HIT was accepted by a worker, s/he was instructed to
download the stand-alone Java version of CatScan and work on the experiment
with a unique participant number assigned to her/him. At the beginning of the
experiment, participants were required to enter their demographic information
such as age, gender, native language, and educational background. After that,
participants were asked to read the experiment instructions which introduced
the basics of the experiment. Participants were only allowed to proceed after a
certain time and had to enter text into a box to ensure that they read and un-
derstood the instructions. A warm-up task was set up to acquaint participants
with the interface and the idea of category construction by sorting animals into
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groups. In the main experiment, all 72 icons were initially displayed on the
left panel of the screen. Participants were asked to sort icons into categories
they had to create on the right panel of the screen (see Figure 3 for a mock-up
experiment). They were given the following instructions: In the following ex-
periment we will show you icons depicting two airplanes. Your task is to sort
the icons that we will present you with on the left side of the screen into groups
on the right. Please sort them based on how similar the icons are. [] You decide
which icons belong together. There is no right or wrong group for the icons.
You can create as many groups as you think are appropriate but do not simply
put all icons into a single group. Once all icons were sorted into the categories
created by the participants, they were able to proceed to the second part of the
experiment. Here they were presented with the groups they created, one group
at a time, and asked to provide a short label (no more than five words) and a
detailed description to articulate the rationale(s) of their category construction
behavior. Upon the completion of the second part, CatScan generated a zip file
that participants then had to upload to AMT. The zip file contains log files,
grouping behavior, as well as the linguistic descriptions.

Results

During the experiment, the number of groups created by each participant and
the time (in seconds) each participant spent on the grouping task were automat-
ically recorded by CatScan. Participants created 4.80 groups on average with a
standard deviation of 1.76, and they spent 515.18 seconds on the grouping task
on average with a standard deviation of 319.61 seconds. In the following, we
describe the most important results of our analysis of the collected data.

Cluster analyses The category construction behavior of each participant was
recorded by CatScan in individual similarity matrices (ISMs). An ISM is a
72 × 72 binary matrix that encodes the similarity rating between all pairs of
icons (72 is the total number of icons used in the experiment). For each pair
of icons in the experiment, the corresponding similarity rating is 1 if they are
placed into the same group by that participant, and 0 if not. By summing up all
30 ISMs in the experiment, an overall similarity matrix (OSM) is obtained. In
the OSM, the similarity rating for a pair of icons ranges from 0 (lowest similarity
possible) to 30 (highest similarity possible).

To reveal the category construction behavior of all participants, we per-
formed cluster analyses based on the OSM. Following a suggestion from Clat-
worthy and colleagues [11], we used three different clustering methods (average
linkage, complete linkage, and Ward’s method) and compared the clustering
structure to validate the results. Regardless of the cluster level we chose, that
is, the number of clusters we assumed as a result, the composition of clusters
(icons belonging to ’the same’ cluster) was never consistent. In other words, in
strong contrast to essentially all previous experiments on topological concepts
[35] and recommendations in the literature on number of participants needed
for cluster analysis [62], the cluster validation method failed to reveal the dom-
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Figure 3: Top: Screenshot of the CatScan interface at the beginning of the
main experiment. Bottom: Screenshot of the interface of an ongoing mock-up
experiment.
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Figure 4: Participant similarity analysis.

inant clustering structure; individual/group direction concepts seem to be so
diverse that no uniquely agreed upon conceptualization of direction concepts is
emerging.

Participant similarity analysis Intrigued by the fact that the cluster val-
idation method failed, that is, that it did not produce consistent results at
any clustering level, we focused on analyzing strategies and similarities between
participants. Participant similarity analysis measures the similarity between
participants based on individual similarity matrices (ISMs). To this end, a 30-
by-30 between-participant similarity matrix (BSM) was constructed to encode
the similarity of category construction behavior for each pair of participants. In
the BSM, the similarity between a pair of participants is determined by comput-
ing the Hamming distance between the ISMs of two participants. The Hamming
distance is calculated by counting the total number of cells that differ between
two ISMs. Since ISMs are binary-coded matrices (i.e., only contain values 0
and 1), the larger the Hamming distance is, the less similar two participants
are in terms of their overall category construction behavior. Cluster analysis
using Ward’s method performed on the BSM (see Figure 4 for the resulting
dendrogram) allowed us to identify participants who employed similar category
construction strategies.

To better understand individual differences as well as group-strategies, we
visualized individual participant data using star plots (Figure 5). Each star plot
visualizes the category construction behavior of one participant. In each star
plot, every icon (from the original stimulus) in the experiment is symbolized as a
single line (ray) that corresponds to the direction/angle from the larger airplane
to the smaller airplane. The color of each line in each individual star plot is
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Figure 5: This visualization shows individual star plots for all 30 participants.
The star plots are ordered by results from the participant similarity analysis
using Hamming distance. Clusters of similar participants are indicated by dif-
ferent colors of the bounding box. The visual inspection of this visualization
corroborates the identification of three distinct category construction strategies.

assigned based on category membership assigned by the participant. Hence,
lines with the same color indicate that the icons represented by these lines were
placed into the same category in the experiment.

From the star plot figure it is possible to infer which icons were placed into
the same category and observe the size (total number of icons) of each category
as well as the overall number of categories by inspecting the lines. In addition,
we also added the results from the participant similarity analysis (see above)
to the star plot figure. The star plots are ordered and marked with bounding
boxes in distinct colors based on one of the three clusters that participants fall
into based on participant similarity analysis (Figure 4).

Figure 5 shows that the four participants in the green category (participants
whose star plots are surrounded by green bounding boxes) employed a half-plane

10



categorization approach. All participants within this category distinguished be-
tween west and east (left and right, respectively; to avoid terminological confu-
sion we will use cardinal directions to refer to participants direction concepts)
spanning almost entire half-planes. Additionally, participants singled out direc-
tion concepts along the north-south axis. They differ, however, with respect to
their conceptualization of this important axis: some focus on alignment and do
not distinguish between north and south, others make this distinction explicitly.

The ten participants in the black category either used a four or three category
cone-shape approach. The defining characteristic of this group is that all partic-
ipants used cone-shaped direction concepts spanning 35 degrees to 130 degrees;
no axes are singled out. Participants who created four groups used north, east,
south, and west directions. Participants who created three groups distinguished
between the north and south directions, keeping the east and west directions
categorized together (airplanes were next to each other with no distinction on
which side the smaller airplane was).

The sixteen participants in the red category (as identified through the par-
ticipant similarity analysis) are more varied than the other two categories and
exhibit a wider range of strategies. These strategies include quadrants, which
create distinguishable borders along the north-south and east-west axis; quad-
rants plus explicit axes; finer cone-shaped categories with eight categories, some
of which may be axes; and a combination of quadrants and cones.

We ran our cluster validation approach (comparing three different clustering
methods) on the sub-groups. Green and black both yielded high agreements.
The green three cluster solution was a perfect match, while the four cluster
solution singled out the straight back/south icons. The four cluster solution for
the black group had four icons that were assigned to different clusters. These
were icons at the border of the cone-shaped direction categories. The red group
showed the most disagreements, as expected giving their diverse nature. The
most agreement yielded a four cluster solution with five icons (direction) being
”misclassified”. All five icons are at the boundary of the four main quadrants.

3.2 Experiment 2 - Side View

The important finding of experiment 1 was that after taking into account group
differences, the analysis is making more sense. To corroborate this finding, we
conducted a second experiment. To introduce a different scenario that nonethe-
less could be modeled in a similar way to experiment 1, we used again two
airplanes but this time presented them from the side. We will refer to this
experiment as the side-view experiment.

Participants

We recruited 45 new participants. Of these 45 participants 15 were excluded
based on the same criteria we applied to exclude participants from the bird’s eye
experiment. Of the remaining 30 participants 12 were female and the average
age was 32.38 (max: 19, min: 58).
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Figure 6: Stimuli from the side-view experiment. Shown are four angles between
two airplanes: 0, 90, 180, and 270 degree (ordered counterclockwise in the
image).

Materials

72 icons were created in the same way as in experiment 1. The difference
was that the two airplanes were shown from a side-view. Figure 6 shows four
examples.

Procedure

The procedure was the same as in experiment 1.

3.2.1 Results

Participants created 4.73 groups on average with a standard deviation of 2.28,
and they spent 521.16 seconds on the grouping task on average with a standard
deviation of 478.84 seconds. We performed two two-tailed t-tests to compare
the bird’s eye experiment with the side-view experiment. The results show that
there is no significant difference comparing the number of groups created (t(58)
= -0.12, p = 0.91) or the amount of time spent on grouping task (t(58) = 0.05,
p = 0.96).

Cluster analyses Slightly more consistent compared to results from exper-
iment 1, the different cluster analyses (average linkage, complete linkage, and
Ward’s method) agreed on a three cluster solution with the exception of five
icons (directions). The three clusters are above, below, and in-line (not axes but
narrow sectors). The five inconsistently classified directions were at category
boundaries.

Participant similarity analysis We followed the strategy we developed to
analyze the experiment 1 data and performed a participant similarity analysis
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using Hamming distance and visualized the category construction behavior of
each participant in the form of star plots.

Category construction strategies Figure 7 shows the star plots visualizing
the ISMs of the individual participants. The five participants in the green group
sorted directions into three or four cone-shaped categories only with slightly
varying cone sizes. Participants who created three groups distinguished be-
tween in-front-of and behind, with above and below being in the same category.
Participants who created four groups distinguished four cone-shaped direction
categories.

The thirteen participants in the black group created cone-shaped direction
concepts but with smaller categories for airplanes being in-line. They predomi-
nantly distinguished three categories (above, below, and in-front-of and behind
together) or four (separating in-front-of and behind).

The twelve participants in the red group (similar to the bird’s eye experi-
ment) are more diverse than the other two groups, that is, they employed a wider
range of category construction strategies. Category construction strategies var-
ied between finer cone-shaped categories and quadrants. Two participants in the
red group created ’only’ four groups and both generally employed quadrants.
Two participants created five groups: One used a cone-shape categorization
method but added two distinctions of ”in-front-of and below” and ”in-front-
of and above” while the other three categories distinguished between ”above”,
”below”, and ”behind”. The second participant with five groups was slightly
less consistent in his/her categorization behavior. The rest of the group created
six or more categories; a majority created fine-grained cone-shaped groups.

Performing cluster validation on the identified sub-groups led to better vali-
dated clustering structures: three inconsistent icons in a four cluster solution in
the green group; the black group also had three inconsistent icons but for the
three cluster solution (above, below, and in-line); the red group also has three
inconsistent direction icons assuming an eight cluster solution.

Linguistic analysis The main focus of this article has been on the analysis
of direction concepts. However, we are collecting linguistic descriptions at the
end of each category construction task by asking participants to provide a short
label and a longer description. With this combination we are in the position of
adding to central questions in the cognitive and spatial sciences, that is, what is
the relation between spatial concepts, their linguistic descriptions, their formal
representation, and the stimulus (as a representation of real world scenarios).
While we do not claim to provide a conclusive answer, we can add valuable
insights into the many-to-many [65] relationship between linguistic expressions
and cognitive concepts.

Figures 8 and 9 show a visualization we developed and that we applied to
the subsets of participants identified in both experiments discussed above. The
figures show the grouping behavior of all participants in each of the subgroups
(green, black, and red for both birds-eye and side-view). Each ray corresponds
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Figure 7: This visualization shows individual star plots of all 30 participants
in the side-view experiment. The star plots are ordered by results from the
participant similarity analysis using Hamming distance. Clusters of similar
participants are indicated by different colors of the bounding boxes. The visual
inspection of this visualization corroborates the distinction of three distinct
category construction strategies.
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to one direction category a participant created; its angle is the bisecting line
of the angle interval covered by the icons from that category. The length of a
ray is indicative of the size (in degrees) of a direction category: the longer the
ray the larger the direction category. Hence, half-planes are represented by long
rays, axes by short ones. At the end of each ray, loosely associated with its
end point, we placed the short linguistic descriptions participants provided (re-
duced to the linguistic expression of the direction relation). This combination
allows for associating direction concepts with their corresponding linguistic de-
scriptions. To avoid confusion, we excluded from this visualization cases where
participants joined opposite directions into the same category (e.g., side-by-
side, in-line). Additionally, we scaled linguistic expressions according to their
frequency (higher frequency = larger font size) which allowed us to summarize
descriptions in case participants provided the same term.

Some observations regarding the linguistic expressions are: Corresponding
to the conceptual diversity found in the red groups of both experiments, the
linguistic expressions are also more diverse in these groups. A finer level of gran-
ularity (as found in the red groups) leads to a more varied linguistic repertoire.
Linguistic description are more diverse at secondary (diagonal) compared to
primary (horizontal and vertical) axes. Absolute and relative reference frames
as well as alternative reference frames (e.g. clock, numbering quadrants) are
used. Certain linguistic expressions (e.g., East, West) seem to have a more nar-
row interpretation than others (e.g., left, right). While almost all participants
used the larger airplane as the reference object, in the sideview experiment
some participants reversed the airplanes’ roles (or even mixed them) resulting
in linguistic labels such as below in the same quadrant as above.

4 Discussion

The results reveal several important aspects of cognitive direction concepts. To
structure the discussion, we will first look into the role invariants play in spatial
concepts that are considered to be fundamental. For the purpose of this dis-
cussion we distinguish three different types of spatial concepts that differ with
respect to how salient transitions are between individual relations/concepts,
that is, information considered as being invariant. Example, if topology is a
type of a spatial concepts, disconnected and externally connected would be indi-
vidual relations. Galton [26] pointed out that qualitative spatial and temporal
formalisms gain their power by identifying salient discontinuities between oth-
erwise invariant equivalence classes and that these discontinuities have a cog-
nitive reality, too (potentially). This case can be made for temporal calculi
such as Allen’s interval algebra [2] as well as prominent topological formalisms
[14]. However, while the salience of individual relations in these calculi is often
intimately linked to perceptual salience, not all transitions between individual
relations within these calculi have to be salient to the same degree. For example,
while distance is often considered a fundamental concept of spatial information
[27, 48], individual cognitive distance concepts such as near or far are not asso-
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Figure 8: Birdseye direction concepts separated by group (green, black, red, see
Figure 5). Rays are summaries of a direction concept; numbers and font size
correspond to term frequencies.
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Figure 9: Sideview direction concepts separated by group (green, black, red, see
Figure 7). Rays are summaries of a direction concept; numbers and font size
correspond to term frequencies.

17



ciated with salient discontinuities in the world that can be perceived directly and
unambiguously (maybe with the exception of comparing two directly perceiv-
able distances) (e.g., [25]). If we allow topology (transitions between relations
are perceptually salient and defined) and distance as being two ends of a spec-
trum of how well transitions between individual relations can be perceived, we
can place the direction concepts we addressed here somewhere in-between. The
reason why we consider directions as being in-between is that characteristics of
objects and corresponding reference frames are often salient perceptually, al-
though they might not be as prominent as, for example, topological transitions.
Following Bryant [5], up-and-down distinctions are strongest, followed by front-
and-back, with left-and-right being the least prominent. Intrinsic properties
such as the distinguishable front side of an object or the direction of movement
allow for establishing direction concepts such as front-and-back as well as left-
and-right (to a lesser extend) and are tied to perceivable object/environmental
characteristics [64]. It is important to note, though, that in case of directions
prototypical relations (e.g., of in-front-of) are potentially very salient, but that
boundaries of concepts, especially at finer levels of granularity, are often vague
[66].

A topic less prominently featured in recent research on directions is the
existence of competing individual or group strategies. In our experiments, a
more consistent pattern only emerged after participants’ strategies were taken
into account by performing similarity analyses on the participants (see Figure
4). Participant similarity analysis was taken as a basis for splitting participants
into distinct subgroups. After the subgroups were identified, cluster validation
techniques indicated a more stable conceptual structure within subgroups. The
category construction behaviors observed in the subgroups correspond to formal
qualitative calculi. The behavioral results reflect the broad distinctions that are
made by [20] into cone-shaped direction concepts and those based on half-planes
(here referred to as quadrants), as well as the acknowledgment of different levels
of granularity [30]. Given that these strategies are largely mutually exclusive,
only a parameterized calculus such as the Star calculus [54] would be able to
handle these differences.

Our results also add to recent discussions in the cognitive sciences on the
relation between direction concepts, linguistic descriptions, the perception of
categories, intuitive concepts, and how to formalize cognitive processes. For
example, [31] proposed the so called semantic clusters hypothesis. It addresses
the challenge many researchers feel with respect to characterizing the relation
of individual words (e.g., prepositions) and cognitive concepts. This hypothesis
asserts that ”Language may be a better reflection of the conceptual system at
the level of clusters of words than at the level of individual words. According
to the semantic clusters hypothesis, clusters of words capture salient concep-
tual distinctions.” [31]. Our linguistic analysis supports the semantic cluster
hypothesis but also adds to it: For individual direction concepts we can indeed
find that participants referred to them in the same way and that different terms
are used for almost identical concepts. Interestingly, the diversity of linguistic
expressions is different for primary and secondary axes and dependent on the
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reference inducing qualities of the reference object (comparing birdseye against
sideview with the latter being more diverse).

Additionally, the intuitiveness of concepts has been recently discussed [51].
The question of how may concepts people use intuitively, how they are communi-
cated through language, or how they can be formally modeled are core questions
in the cognitive sciences (both natural and artificial). Many unsupervised learn-
ing approaches take inspiration from human conceptualization processes. Medin
and collaborators [41] make the point that humans normally use and create only
a tiny subset of the many ways that information could be partitioned, and that
a central question in the cognitive sciences is to reveal principles that underlie
category construction behavior. Pothos and collaborators [51] point out that
the purpose of many models which are built around unsupervised learning is
to provide hypotheses about the computational principles associated with cate-
gory construction. Our research results clearly demonstrate that there is not a
one-size-fits-all approach to determine intuitive direction concepts. Participants
used different strategies to construct direction categories as revealed through the
participant similarity analysis. This has important consequences for modeling
approaches as it will be important to take alternative views explicitly into ac-
count for designing efficient interfaces at the human-machine-interface [46, 13]
or to develop and assess unsupervised learning approaches.

5 Conclusions and outlook

In addition to many research efforts on the relation between direction concepts,
their linguistic representation, and formal specifications of direction categories
our research shows the importance of acknowledging group differences in the way
that direction categories are intuitively constructed. As briefly discussed, this
has far-reaching consequences for suggesting appropriate formal calculi, an issue
that has been identified as being critical for increasing their applicability [59].
Individual strategies have gained widespread attention in several areas of spatial
cognition (e.g., wayfinding) but are less prominently discussed when it comes to
spatial knowledge considered to be fundamental. Our results clearly show that
there is no one-size-fits-all approach to modeling direction concepts and that in
addition to external contextual factors, group and individual strategies require
more attention.

There are several avenues for future research: First, symbolic representations
of spatio-temporal information are omnipresent in the spatial sciences and re-
lated fields. These approaches are often built around a relatively small number
of relations; an implicit or explicit assumptions is frequently made that these
relations correspond to human spatial information processing. It is therefore
self-evident that these proposals should be evaluated. The framework we have
developed is ideally suited for this task and can be applied to essentially all
approaches built on calculi using JEPD (jointly exhaustive and pairwise dis-
joint) relations. Examples are Renolen’s basic types of change [53], approaches
to defining perceptual topology (e.g., perceived connectedness such as a set-
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tlement, see [15]), or Brunet’s chorematic modeling [4]. This would allow for
responding to the call by Schultz and collegues [59] to provide guidance on
when to use a certain calculus (and when not to). Second, while category con-
struction tasks are acknowledged in many research areas within and outside the
cognitive sciences, they are certainly not mainstream [57, 34]. We have shown
that by combining category construction tasks with cluster validation and visual
analytics approaches they are a valuable tool for gaining critical insights into
cognitive conceptualization processes. Besides developing specific visualization
approaches for specific experiments (e.g., the star visualizations for directions)
we are also working on including recent approaches to sequence analysis and es-
pecially to the analysis of the linguistic descriptions as well as cluster validation.
Last but not least, it would be intriguing to scale up the data collection and
repeat the experiments with larger numbers of participants in order to further
substantiate our findings on individual and group strategies.
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