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ABSTRACT 
While methods 1'or vehicle modeling are well established for 

simulation of handling behavior, there is still a lack of driver 
models, which are important R)r the realization of closed-loop 
maneuvers in a virtual environment. 

This paper will present preliminary considerations for the 
development of such a driver model. First, trajectory planning 
strategies have to be generated and evaluated. To achieve this, a 
method will be deduced, which calculates the maximum velocity 
at each point of an arbitrary trajectory, taking into account sim- 
plified vehicle characteristics in terms of maximum longitudinal 
and lateral accelerations and considering the frictional ellipse. 

Thus, the minimum necessm-y time for each trajectory can 
be calculated, this being a possible parameter to rate the quality 
of a trajectory for a given course. The feasibility of the method 
is demonstrated with the Nuerburgring race track. 
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Radius of a curve. 
Time. 
Speed. 

• Curvature 
Longitudinal acceleration 
Lateral acceleration 
Traveled distance 
Number of sampling points 
Coordinates of left road boarder at 
i-th ,;ampling point 
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Wi 
Si 
L ( s i , S i + l )  

Coordinates of right road boarder at 
i-th sampling point 
Coordinates of middle of the at 
i-th sampling point 
Width of road at i-th sampling point 
Sampling point number i 
Distance between sampling points 
number i and number i + 1 

INTRODUCTION 
Since the invention of the automobile in the 18th century, 

there has been a continuous urge tot its improvement. First, 
open-loop test maneuvers like step-steer, ramp-steer etc. have 
been defined in order to rate and compare the dynamic behavior 
of different vehicle configurations objectively. Next, closed-loop 
maneuvers like double.-lane change were defined, which included 
the driver behavior in testing, thus leading to subjective evalua- 
tion of the vehicle behavior. Soon it became obvious that it is not 
sufficient to rely on hardware testing. 

Therefore, mathematical descriptions (i.e. vehicle models) 
of this dynamic system have been developed, which were able 
to predict the handling behavior depending on different vehicle 
setups. These vehicle models became more and more success- 
ful after enough computing power became available to perform 
complex calculations. 

Nowadays, vehicle development relics increasingly on com- 
puter simulation. Whereas open-loop testing in the virtual envi- 
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ronment is well established, there is still a demand R)r improving 
closed-loop simulation, which necessarily requires driver model- 
ing. 

These controllers, also named ' d r i v e r  models', were sup- 
posed to reproduce the driving behavior of human drivers in 
a virtual world. The first approach was presented by McRuer 
(McRuer and Krendel, 1959) with the "quasilincar model", 
which described the human action as a transfer function (follow- 
up controller). Further improvement was introduced by Donges 
(Donges, 1978), who added an anticipatory unit, when he pre- 
sented the "Two-Level Model of Driving Steering Behavior". 

Over the yeal's, more and more sophisticated models were 
created, also using modern modelling techniques, like neural net- 
works, Fuzzy Models, etc. They emerged due to the large variety 
of al'eas they were applied to. For a complete survey of driver 
models please refer to Juergensohn (Jtirgensohn, 1997). 

The operation mode of all these driver models is basically 
the same: they manipulate the control inputs of the vehicle, forc- 
ing it to follow a predetermined path. This path is mostly defined 
a-priori and no interaction with the handling characteristics of 
the vehicle is considered. Consequently that path will not be 
optimal. 

A new approach to a driver model which overcomes this 
drawback was recently presented by Pmkop (Prokop, 2001), who 
implemented a short term path planning strategy in addition to 

the conventional PID controller. He also takes into account the 
actual position of the cm: on the road and the vehicle character- 
istics. Still, this short term path planning unit does not consider 
the whole geometry of the track. 

A further improvement to driver modelling can be achieved 
generating an optimal path for the entire track. Themlbrc, it is 
essential to consider the whole track geometry and the vehicle's 
handling capabilities. But, a method for the evaluation of the 
optimal path has not been established yet. 

This paper is going to present an approach to evaluate the 
quality of a given path. The goal is to calculate the minimum 
necessary time a cal" needs through a given path, them[bre using 
the lap time as a rating function. 

METHODOLOGY 
A method to calculate the minimum time through a given 

path is now going to be described, Some preliminary considera- 
tions have to be made in advance. 

Travel Time Through a Curve 
If the path through a track is a straight line, then the cal- 

culation of travel time is trivial. If we are considering a curve, 
then the radius and the maximal lateral acceleration (atat_,nax) in- 
fluence the result. An example is shown in tigure 1, where two 
different trajectories through a semi-circle are depicted. 
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Figure 1, PATH THROUGH A CURVE 

The travel time on each trajectory can be calculated with: 

s 
= - ( 1 )  

v 

and 

VF : - = -- with 1< = (2) 12 
F 

The length of each trajectory from figure I can be defined as 

s = xr  (3) 

Thus, two different travel times for the inner and the outer 
radius rj and r2 m'e obtained: 

gt't g r 2  
tl . . . .  and t 2 = - -  (4) 

v1 1'2 

Using equations 1 and 4. we get: 

t t -  and t 2 - - -  (5) 
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Choosing r2 = Cry, where C is a constant stretch parameter, 
we lind: 

2=V'ev T 
12 = " 

v~lat_max 

and using t[ from equation 5 we get: 

(6) 

*2 = vCC • t, (7 )  

As we can s e e  from the last equation it is advantageous to 
choose a tighter path through a semi-circle. This simple result 
will be extended in the following sections to curves with variable 
radii 1 

Discretization of the Track 
For a numerical treatment a discrctization of  the U'ack is ne- 

cessary. Therefore a one dimensional vector Si : ( X m i , Y m i )  is 
used, which in this case describes the middle of  the road. For 
visualization purposes a left and right border (xli,Yli and XrhYri) 
are added. The borders arc placed at a constant distance perpen- 
dicular to the middle line, as shown in figure 2. Thus, the width 

of  the road is: 

Wi = (8) 
2 

' F .... . . . . . .  / ~Xm7, Ym7) 

°2t  " ..... : .... )~  . . . .  i i ; '  7 ....... j> ( x r 7  ,YrT) 

°so ...... s ,  ........... s .  ............ - /  

o .o5~  . . . . . . . . . .  ; / "  : . . . .  
z / _ : - f  

' (l 0,1 0,~ 0,`3 0.4 0.5 0.6 07  O,t~ 

Figure 2. DISCRI=TISED LEFT AND RIGHT B O R D E R  OF T H E  T R A C K  

AND MIDDLE OF T H E  ROAD 

l i t  also has to bc noted that this  result  is a ch i eved  u s i n g  a m a s s  l)oint as vehic le  

m o d e l .  
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U sing the previously introduced discretization, the curvature 

of the trajectory (middle of  the road) is calculated at each sam- 
pling point, as shown in figure 3: 

1 
(9) 

~i = Radius (Si_ 1, Si, Si+ t) 

Si-1 

Si 

Si+ 1 

Figure 3, CURVATURE AT SAMPLING POINTS 

This yields a vector ~i E [0, ,~] which defines the path and 
its curvature. 

Instabi l i ty  Z o n e s  
In figure 4 a short artificial test track is presented, it is 

assembled of three straight lines and two curves with different 
radii. 
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Figure 4. ARTIF IC IAL  T E S T  T R A C K  
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Having defined the curvature of the path, the maximum ve- 
locity at the limit of  adhesion of  the car is calculated. Therefore 
we use again equation 2 (Mitschke, 1990), which gives us a ve- 
locity vector at each sampling point: 

The limit of adhesion at,~o,,,x will be chosen here to be 10 "~. 

The corresponding velocity profile is depicted in figure 5. 
The hatched areas are regions where the lateral acceleration is 
greater than alaf_~x = 10 m from now on called instability 7 ,  
zones. Thus, the possible velocity zone for the ca" is outside 
the hatched area. 

20  

5 10 15 20 25 30 :{5 40 

Sampling points 

Figure 5. INSTABILITY ZONES 

Acceleration and Deceleration 
A car in motion can be subjected to acceleration or deceler- 

ation. Its velocity history can be calculated using the following 
equation: 

v(s) = ~ 2"along" S (11) 

with: vo • initial velocity 
a l o n g  " acceleration of thecar  (const.) 
s • traveled distance 
4 
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where alo,~g can either be positive (acceleration) or negative (de- 
celeration). 

A typical example is shown in figure 6, where we can see 
how a car accelerates from vo = 0 ~ at along ---- 10 ~ and decel- 

erates front vo = 100 ~ at alo,,g - - 1 0  m j .  
The graphs resulting from equation 11 will be called accel- 

erat ion / decelerat ion g raphs  fro m now on. 
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Figure 6. ACCELERATION AND DECELERATION DIAGRAM 

To achieve the shortest time lor the track 2 from figure 4, we 
must keep the car going as last as possible. A possible approach 
would be the concatenation of  acceleration / deceleration graphs 
(Dom figure 6) and placing them outside the hatched areas (in- 
stability zones) of  figure 5. 

This works well on straight lines, but cannot be applied to 
curves. The reason is that it is not possible to apply the full 
brake force (along -- - 10 ~)  while cornering, because the wheels 
would lock up and the car would become unstable. To solve this 
problem, equation [ 1 must be enhanced: 

v(s) = ~/v 2 + 2.alo~g(S).S (12) 

where along(S) is now a function of the distance s. The value of  
along (s) depends on the position of  the car in the track and varies 
depending on the actual curvature and velocity: 

along (s) "-' .f(n(,), v(,)) 

2 driving on lhc middle of' the road 
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This dependency can be expressed mathematically with the 
frictional ellipse as described in the following section. 

Adhesion 

The re lat ionship between lateral and long i tud ina l  forces p lay 
an important role, Therefore the fi%tional ellipse has to be con- 
sidereal, which is related to the adhesion between the tire and the 
ground, 

maximum deceleralio# due 
to braking capat?ilil ie.r 10- 
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ma3fiJ~;lam acceleration 
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Figure 7. THE FRICTIONAL ELLIPSE DIAGRAM 

The diagram shown in figure 7 describes the distribution 
between the lateral and the longitudinal component of the tire 
forces, 

Introducing the mass of the cat" as constant, i.e. neglecting 
the inlluence of the dynamic load shifts, leads to the acceleration- 
based f'1ictional ellipse (figure 7), Typical values are al.~_~.~ = 
8,~ for maximum lateral acceleration and along~ax -= 107~ for 
maximum longitudinal acceleration. 

However, these values only describe the possible accelera- 
tions, the achievable accelerations are restricted by the charac- 
teristics of the tires and the car, as there are engine power and 
braking capabilities. Thus, the hatched areas of the ellipse are 
physically not reachable, 
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The dependency between longitudinal and lateral accelera- 
tion is determined by the frictional ellipse from figure 7, yielding: 

an d: 

( '  ) doM,, , )  : = ~ a l . , 0 % ) , " ( . l )  
6 2 " alonganax 
liar_max 

(14) 

( m ~ , with: a:o.g ~ [ - ) ( 7 )  4(~-)] 
~8 rn a~., ~ [ - s ( O  (r.)] 

alat onax 

along.~nax 

(llal 

along 

maximum lateral acceleration 
maximum longitudinal acceleration 
actual lateral acceleration 
resulting longitudinal acceleration 

By using equation 14 it is possible to calculate the maximum 
velocity at each sampling point ot' the track, taking into account 
the vehicle characteristics i,e, alatm, ax and along.max: 

The calculation has to be recursive, since at each sampling 
point a new deceleration graph has to be calculated, as shown in 
figure 8 .  
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Figure 8. DECELERATION GRAPHS BEFORE CURVE 
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total time: 16.06998 sec 

~ ( 1 -  ......... I::~//) ~.*;)~F i )~,,> . . . . . . .  , 

,° i i . . . . . .  . . . . . . .  : . . . .  

6. . . . . . .  . . . . . . . .  - "" I 

_,° ........ . :I < ,//, i j.; 

.~";--~ " :  V/C ; / / / / / I  I ~ "/Y// 
: " "  : "'//'" : /" : "/ //',/'A 

m a x i m n m  v e l o c i t y  p r o f i l 8  

6 : i 

(1 - -L - - - -  [ i i ~ • 1 

5 10 15 2(1 25 30 35 40 

S a m p l i n g  p o i n t s  

Figure 9. VELOCITY PROFILE 

From equation 15 we obtain a vector, from now on called 
m a x i m u m  velocity profile, describing the fastest possible speed 
at each (sampling) point of the track (figure 9): 

vm) = [vm), V(s~),..., V(s,,)] (16) 

where n is the total number of sampling points over the test track. 

Examples 
This methodology is going to be demonstrated in the follow- 

ing example, which is depicted in figure 8. It shows a cutout of 
figure 5, where the first instability zone is again marked as the 
hatched area. 

An accelerating car (small crosses) approaches the curve 
from the left. From each position a deceleration graph is cal- 
culated, checking if the graph violates the instability zones. As 
we can see in the figure, the car has to start braking at position 
s = 94 m in order not to exceed the maximum speed at the be- 
ginning of  the curve. We can also observe (in the deceleration 
diagram) an important reduction of deceleration of the car at po- 
sition s = 121 m. This is due to the fact that the car would be 
now traveling neat" the limit of  lateral adhesion and wouldn' t  be 
able to brake as strongly as on the straight line (this results from 
equation 14). From this position on (s = 94 m) the velocity of 
the car (following crosses) will be on the last possible velocity 
diagram and then continue under the hatched area. 

The example from figure 8 has been created artificially and 
usually does not occur in reality, since them are no such sud- 
6 
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Figure 10. A CLOTHOID 

don changes in curvature. Therefore a second example is pre- 
sented. In this case a smooth transition between a straight line 
and a curve is achieved via a clothoid, as shown in figure 10. 
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Figure 11. INSTABILITY ZONES AND DECELERATION GRAPHS AT A 

CLOTHOID 

In figure 11 the instability zones and the deceleration graphs 
are presented. As we (:an see again, the car approaches the curve 
accelerating. At each position deceleration graphs are calculated. 
Due to the lact that the curve has a variable curvature and gets 
Copyright © 2002 by ASME 
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narrower towards the end, the car has to start braking earlier. In 
figure 12 the complete velocity profile of the car (crosses on the 
last allowed acceleration / deceleration graph) is shown. The 

m at position s = car slows down until its speed reaches v =: 15 3:. 
126 m, then stm'ts accelerating again. 

• , / -  / / y /  ,: / / 
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Figure 12. MAXIMUM VELOCITY PROFILE OF THE CAR 

C a l c u l a t i o n  o f  N e c e s s a r y  T i m e  
Having determined the maximum velocity profile of the car, 

it is now easy to calculate the total time. First the distance be- 
tween the sampling points is determined, generating a vector: 

L(S i ,S i+I )  = dist [(Xmi,Ymi), (Xrn i+1 ,Ym i+1 )] (17) 

with: i = 1..u 

With vectors t!rom equation 16, 17 and adding up over all 
sampling points using 

leads to a total time: 

As' 
At = - -  (18) 

Av 

£ L(si,si+t) (19) 
t to  I ~ 

,=1 ~'(.~'~) 
7 

loaded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use: h
From a pure mathematical point of view, this calculated trot 
is the shortest possible time, which a car would need for the given 
path, considering the given constraJ nts. 

RESULTS 
Race Track: Nuerburgring 

The presented procedure is now going to be applied on a real 
racing track. For this purpose one lap of the "Nordschleife" on 
the Nuerburgring (Germany) is going to be calculated. Figure 1.3 
shows the geometry of the track. 
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X (m I 
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Figure13. THENUERBURGRING 

The car properties are described by the fi'ictional ellipse 
fi:om figure 7 and equation 14. The car starts with a initial speed 
of vo = 10 [~.] and drives in the middle of the road (no corner- 
cutting). The track: is assumed to be flat. 

Due to the length of the course only the magnified section 
will be shown in detail. In figure 14, the instability zones and the 
max. velocity profile of the car are presented. We can clearly see 
how the cat" slows down while approaching the oncoming corners 
and how it accelerates afterwards. 
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Total Lap Time - 599,8754. sec 
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Figure 14. THE VELOCITY PROFILE 

Discussion 
For 1 lap of the entire race track, the calculation of the nec- 

essary time gives a result of 599 sec (equivalent to 10 rain). 
This time is comparable to the time professional drivers 

need ['or one lap driving a high powered car. Nevertheless, 
this calculated time is only an approximation el' the achievable 
value, due to the various constraints and simplitications. They 
influence the lap time in both directions, making it shorter or 
longer. 

Lap time is increased due to: 

1. The trajectory, which is chosen to be the middle of the lane; 
this greatly increases the lap time, since the corners cannot 
be cut to reduce lateral acceleration and increase speed. 

2. Missing aerodynamic considerations; a race car would pro- 
duce down-R)rce, increasing cornering speeds. 

Lap time is reduced due to: 

3. Reduction of the vehicle to a mass point; thus the dynamic 
load trm]sfer, as well as the pitch and roll behavior, are ne- 
glected. 

4. The neglect of tire properties and slip angles. 
5. Missing aerodynamic drag, which plays an important role at 

high speeds. 
6. The travelling of the vehicle model on a flat road, without 

elevations; at the Nuerburgring the elevation profile of the 
track inltuences the run significantly. 
8 
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7. The assumption that the adhesion between ear and ground is 
,u = 1; on a real track it varies :significantly. 

8. The instant acceleration capabilities, without a time lag of 
the engine and power train; it is assumed to have the same 
acceleration capabilities over the whole speed range. 

9. The acceleration R)rces, which m'e calculated directly and 
are applied very precisely; in a real car there must be a map- 
ping to brake and throttle. 

10. The fact that between quick left-right turns the car is accel- 
erated; a real driver wouldn't do that. 

Future work 
Future work will be mainly concerned with the elimination 

of the shortcomings mentioned in the previous section. The most 
important changes or enhancements will be: 

1. Introduction of a vehicle mode[ to replace the mass-point 
simplification, in order to eliminate restrictions hr. 3, 4, 5, 
6, 7 and 8. 

2. Extension of the frictional ellipse to an ellipsoid by inclusion 
of the elevation profile, thus eliminating restriction nr. 6. 

3. Inclusion of corner-cutting strategies (restriction nr. 1). 

SUMMARY 
In this paper a method to calculate the minimal lap time is 

presented. It is based on the assamption that a driver always 
drives close to the physical limit of adhesion. Velocity profiles 
of this car on a racing track am generated, froin which a lap time 
can be deduced. The results of this calculation show a good ap- 
proximation of real measured lap times. With a further refine- 
ment of the modelling it is expected to increase the accuracy of 
the results. 
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