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Abstract 

The structural and reactive properties of the acetyl-protected “one-legged” manganese porphyrin 

[SAc]P-Mn(III)Cl on Ag(100) have been studied by NEXAFS, synchrotron XPS and STM. 

Spontaneous surface-mediated de-protection occurs at 300 K accompanied by spreading of the resulting 

thio-tethered porphyrin across the metal surface. Loss of the axial chlorine ligand occurs at 498 K, 

without any de-metallation of the macrocycle, leaving the Mn center in a low co-ordination state. At 

low coverages the macrocycle is markedly tilted towards the silver surface, as is the phenyl group that 

forms part of the tethering “leg”. In the monolayer region a striking transition occurs whereby the 

molecule rolls over, preserving the tilt angle of the phenyl group, strongly increasing that of the 
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macrocycle, decreasing the apparent height of the molecule and decreasing its footprint, thus enabling 

closer packing. These findings are in marked contrast with those previously reported for the 

corresponding more rigidly bound four-legged porphyrin [JACS 2009, 126, 1910] suggesting that the 

physico-chemical properties and potential applications of these versatile systems should be strongly 

dependent on the mode of tethering to the surface.  

Introduction 

Porphyrins tethered to solid surfaces have potential uses in a wide range of applications 1, 2, 3 including 

light-harvesting arrays, 4, 5, 6 optical switches and photonic wires. 2, 3, 7 Supramolecular arrays are of interest 

with respect to the study of energy transfer and photosynthetic mechanisms 7, 8 while two-dimensional 

porphyrin assemblies have attracted attention for possible application as chemical sensors, in molecular 

electronics, or as chemically switchable 2D rotors. 3, 9, 10 Related to this, we recently showed that a 

porphyrin-functionalized silver surface exhibits ligand binding and unbinding reactions characteristic of 

the free metalloporphyrin 11 and showed that a well-chosen ligand can strongly alter the dynamics of 

adsorbed porphyrins. 10 

Porphyrins have been attached to oxide surfaces for use as sensors by means of organophosphonate 

linkers. 12 Our interest, however, lies in attaching metalloporphyrins to chemically active metal surfaces 

and we have reported a viable route for de-protecting and covalently attaching Mn porphyrin molecules 

to silver surfaces by means of four thio tethers. 13 The orientation, surface mobility and degrees of 

freedom of such covalently tethered porphyrins are expected to be important in determining access and 

escape of molecules to/from the porphyrin metal centre and hence their effectiveness in a variety of 

applications. One such application is catalysis, where Hulsken et al. have elegantly demonstrated that a 

Mn metalloporhyrin adsorbed on Au(111) catalyzed the aerobic epoxidation of stilbene in solution. 13 As 

extended Au surfaces cannot dissociatively adsorb oxygen, 15 a necessary precondition for epoxidation 

to occur, 16 the authors suggested that O2 dissociation was a co-operative event involving two adjacent 

porphyrin molecules. Alternatively, by using a silver surface to dissociatively chemisorb dioxygen and 

deliver oxygen adatoms and a -adsorbed alkene to the active metal centre of the porphyrin, one may 
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hope to create a hybrid, low temperature, selective oxidation catalyst. Accordingly, having investigated 

a rigidly tethered “four-legged” Mn porphyrin on Ag(100), 13 we report the properties of the 

corresponding acetyl-protected “one-legged” Mn porphyrin on the same surface. Substantial differences 

in mobility, spatial distribution, acetyl deprotection, dechlorination, flexibility and orientational 

behavior as a function of coverage are found indicating that the physico-chemical properties of 

porphyrin-functionalized surfaces should be markedly dependent on the mode of tethering. We also 

demonstrate that NEXAFS can be used to provide very detailed information about porphyrin adsorption 

geometry and changes in geometry with coverage, key properties in most applications.    

 

In earlier studies, self-assembled porphyrin monolayers have been deposited on gold surfaces from 

solution. 14, 18, 19 Although these results are certainly interesting, the approach is not suited to our 

purpose—a SAM blankets the metal surface and excludes it from adsorbing reactants or participating in 

their further conversion to products. On the other hand deposition by vacuum evaporation allows close 

control of porphyrin coverage from submonolayers into the multilayer regime, making it the method of 

choice for our purposes. Often, porphyrin tilt angles have been inferred by considering factors such as 

packing density and surface periodicity without resort to direct spectroscopic measurements. Although 

infra red spectroscopy 20 does provide a reliable technique for determining porphyrin tilt angles, 

sensitivity is low, again precluding characterization of sub-monolayer coverages, which are the focus of 

our interest. So we have used near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, high 

resolution synchrotron XPS and STM in conjunction with porphyrin deposition carried out under 

conditions of ultra high vacuum. NEXAFS provides extremely high sensitivity thus allowing 

investigation of sub-monolayer coverages, yielding orientational information about both the macrocycle 

and the attached phenyl group that forms part of the tethering leg: the ability to probe both N and C K-

edge transitions is an added bonus.  

 

Experimental Methods 
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The free base acetyl-protected porphyrin [SAc]P was synthesized following the procedure described 

by Ryppa et al. 21 Briefly, the acid-catalyzed condensation of dipyrromethane, pyrrole-2-carbaldehyde, 

and S-acetylthiobenzaldehyde in a “[2+1+1]” approach was used to produce two different meso 

substituted porphyrins: (i) [SAc]P porphyrin which has one substituent at position 5 (9.7 % yield) and 

(ii) [SAc]2P with two substituents at positions 5, 10 (11.4% yield). The two porphyrins were then 

separated by column chromatography. After crystallisation from dichloromethane : methanol, the 

compounds showed no detectable impurities. Metallation of the free-base porphyrin was achieved in a 

mixture of acetic acid : acetic anhydride = 4 : 1 at 110°C using MnCl2.4H2O as the manganese source. 

After completion of the reaction the remaining inorganic salts were filtered off leaving the pure [SAc]P-

Mn(III)Cl porphyrin (Figure 1).  

 

 

Figure 1. Molecular structure and 3D space-filling model for the ‘one-legged’ porphyrin, [SAc]P-

Mn(III)Cl. 

 

High resolution XPS and NEXAFS measurements were carried out on the SuperESCA beamline at 

the ELETTRA synchrotron radiation source in Trieste, Italy. Spectra were collected using a single-pass 

32-channel concentric hemispherical electron analyzer. The excitation energies used for acquisition of 

the C 1s, Ag 3d, Cl 2p, S 2p, Mn 2p and N 1s spectra were 350 eV, 470 eV, 302.5 eV, 251 eV, 720 eV 

and 500 eV, respectively; the dwell time for signal averaging was 0.1 s. The angle between the analyzer 

entrance lens and the incoming photon beam was 70o in the horizontal plane. The Ag(100) crystal was 

attached to a motorized manipulator via a tantalum backplate fitted with a T1T2 thermocouple and 

could be heated resistively to 900 K or cooled to 77 K. STM experiments were carried out in 

Cambridge, UK with an Omicron variable-temperature ultra high vacuum STM operated in constant 
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current mode using etched tungsten tips. The Ag(100) sample was cleaned by repeated cycles of Ar+ 

sputtering (99.999% Messer) followed by annealing at 600 K until a clean, atomically flat surface was 

obtained, as monitored by XPS and LEED (Trieste) or LEED, Auger electron spectroscopy and STM 

(Cambridge). 

[SAc]P-Mn(III)Cl was deposited onto the Ag surface by means of a resistively heated collimated 

evaporation source fitted with a T1T2 thermocouple. The (very small) amounts of porphyrin used were 

injected into the sublimation source as solutions in dichloromethane which were then evaporated to 

dryness before mounting in the vacuum chamber. Calibration of the surface coverage was achieved by 

following the uptake of the porphyrin on Ag(100) using XPS 13 (Trieste) or estimated from STM images 

(Cambridge). Typically, porphyrin was deposited at room temperature followed by annealing at 473 K 

for 15 minutes to disperse initially formed islands and desorb any multilayer material. This method 

provided a convenient and reliable way of preparing any given coverage in the submonolayer to 

monolayer regime. 13 

 

Results and Discussion 

Behavior at low coverage 

Acetyl-protected [SAc]P-Mn(III)Cl was deposited on clean Ag(100) over 20 minutes, yielding an 

estimated sub-monolayer coverage of ~ 0.5 ML. Figure 2 shows N 1s XP spectra acquired (i) 

immediately after dosing and (ii) after annealing to 473 K for 15 min. In both cases only a single N 1s 

peak appeared – characteristic of a metallated porphyrin in which all N atoms in the macrocycle are 

equivalent. This is important because it confirms that no de-metallation occurred upon adsorption or 

heating: the free base porphyrin would exhibit two distinct N 1s signals corresponding to pyrrolic and 

iminic species. 22, 23 The N 1s binding energies of these species are 400 eV and ~ 397 eV respectively so 

that they would have been readily resolved in our experiment. The weak Cl 2p emission and the 

undetectability of Mn 2p emission are consistent with the low number density of Cl and Mn atoms on 

the surface at saturation coverage, even though both were studied at the optimum photon energies that 
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maximized the respective photoionozation cross sections: Cl 2p = 3 Mb at 251 eV, Mn 2p = 1 Mb at 

720 eV. 13 Both spectra in Figure 2 may be fitted with a single Gaussian centred at 397.2 eV (FWHM = 

0.9 eV), assigned to Mn porphyrin molecules at sub-monolayer coverage. Annealing to 473 K caused no 

loss of N 1s intensity, confirming the absence of porphyrin multilayers. This behavior contrasts strongly 

with that of the corresponding four-legged Mn porphyrin which at 300 K form three-dimensional 

aggregates at low coverage, as observed by STM 24 and confirmed by XPS. 13 The implication is that in 

the present case reduced tethering results in increased mobility so that porphyrin spreading over the 

surface occurs even at room temperature.  

 

 

Figure 2. N 1s XP spectrum of a low (sub-monolayer) dose of one-legged porphyrin acquired before 

(left) and after annealing to 473 K (right) for 15 minutes. 

 

The temperature dependence of the Cl 2p emission for the same porphyrin coverage is shown in 

Figure 3: the second and third spectra were obtained after annealing at 473 K and 498 K, respectively, 

for 15 minutes. It is clear that much of the axial chlorine ligand was lost during the first stage of 

annealing with no de-metallation having occurred (N 1s XPS unchanged) and by 498 K chorine loss 

was complete as a result of desorption, 13 perhaps accompanied by some dissolution 25 into the Ag, 

leaving the Mn center in a low-coordination state. 13 This behavior is somewhat different from that of the 

corresponding four-legged porphyrin ([SAc]4P-Mn(III)Cl) 13 which was readily and completely 

dechlorinated on Ag(100) at 473 K.  
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Figure 3. Cl 2p region of the XP spectrum of the one-legged porphyrin after initial dosing (left), after 

annealing to 473 K (center) and after annealing to 498 K (right). 

 

N K-edge NEXAFS spectra acquired at five angles of photon incidence for the same low coverage (~ 

0.5 ML) are shown in Figure 4(a). Clear resonances due to N 1s  π* and N 1s  σ* transitions are 

observed which display pronounced dependence on the photon incidence angle: peak assignments and 

associated transitions are presented in Table 1. 26, 27, 28 
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Figure 4. (a) N K-edge NEXAFS spectra acquired at five angles of photon incidence (θ) for a ~ 0.5 ML 

coverage of [SAc]P-Mn(III)Cl on Ag(100). (b) Curve fitting analysis of the photon angle dependence of 

π* resonances A and C to estimate the corresponding macrocycle tilt angle, α. 
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Table 1. Peak assignments for the N K-edge NEXAFS of [SAc]P-Mn(III)Cl on Ag(100) 

Peak Energy / eV Assignment 

A 398.4 N 1s  π* 

B 400.7 N 1s  π* 

C 401.4 N 1s  π* 

D 406.5 N 1s  σ* 

E 414.8 N 1s  σ* 

 

The principal resonances A and C occur before the step edge and correspond to transitions from N 1s 

to each of the first two available π* orbitals, respectively. Resonance B, also due to a π* transition, 

appears as weak shoulder to C; two broad σ* resonances D and E occur beyond the step edge. A more 

detailed assignment of the final state orbitals and their symmetry would require comparison with 

simulated NEXAFS spectra 29 and is not necessary for our purposes. As expected, both π* and σ* 

resonances display distinct dichroism in their angular dependence. The absence of a strong resonance 

between C and D (at ~ 403 eV, characteristic of pyrrolic N in the metal-free base) confirms that the 

porphyrin is metallated and that the manganese metal centre is fully coordinated by the four central N 

atoms. 

Since the N atoms reside within the center of the macrocycle and are approximately co-planar, the 

angular dependences observed in the N K-edge spectra provide a powerful means of determining the 

orientation of the metalloporphyrin with respect to the surface. Figure 4(b) presents such an analysis for 

the principal π* resonances A and C, the observed normalized intensities being overlaid with best-fit 

theoretical curves for the molecular tilt angle (α) with respect to the surface. 30 (In principle, σ* 

resonances may also be subjected to a similar analysis, but their width and superposition on the step 

background precludes accurate fitting.) A least-squares fit gives macrocycle tilt angles of 29.4° for A 

and 23.5° for C: the values are consistent within experimental error (+/-5°) and indicate that the 

porphyrin is very appreciably inclined with respect to the surface.  
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NEXAFS cannot distinguish between molecular tilt angles towards or away from the surface and 

Figure 5 shows the two possibilities corresponding to the present case. Of these, the second (b) is 

intuitively the more likely as it maximizes molecule-surface interaction.  Taking account of the 

dimensions of the macrocycle and the tethering “leg”, simple trigonometry confirms that a porphyrin 

downward tilt angle of 25° - 30° is possible (5.9 Å leg length, 11.0 Å macrocycle width, ~ 100° angle 

between leg and macrocycle). Moreover, STM data to be presented below are consistent with the 

downward tilt model. 

 

 

Figure 5. Two possible orientations of the one-legged porphyrin tethered to Ag(100) corresponding to 

the same macrocycle tilt angle of ~ 25° - 30°. (a) porphyrin tilted upwards and (b) porphyrin tilted 

downwards. 

Figure 6 shows low coverage (~ 0.5 ML) C K-edge NEXAFS spectra acquired at five photon 

incidence angles. Five resonances are apparent, three C 1s  π* at lower photon energy and two C 1s 

 σ* at higher photon energy, beyond the step edge. (Table 2 lists peak assignments.) The improved 

s/n ratio compared to the N K-edge spectra reflects the ~ 7:1 C:N ratio in the molecule. Unlike the N K-

edge spectrum, the C spectrum contains contributions from the phenyl substituent which forms part of 
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the tethering leg. In free porphyrins with phenyl substituents in the meso position, the latter are 

generally strongly tilted with respect to the central ring, so the angular dependence of the π* resonances 

is more complicated than in the N K-edge spectrum. In the past, this has led many groups to dismiss C 

K-edge spectra for the orientational analysis of phenyl-substituted porphyrins. 26 However careful 

inspection and assignment of each π* resonance does yield orientational information for both ring 

systems. 31, 32  

 

Figure 6. (a) C K-edge NEXAFS spectra acquired at five angles of photon incidence (θ) for a ~ 0.5 ML 

coverage of [SAc]P-Mn(III)Cl on Ag(100). (b) Curve fitting analysis of the photon angle dependence of 

π* resonances a and b to determine the corresponding macrocycle and phenyl tilt angles (α) 

respectively. 
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Table 2. Peak assignments for the C K-edge NEXAFS of [SAc]P-Mn(III)Cl on Ag(100). 

Peak Energy / eV Assignment 

a 283.6 C 1s  π* (porphyrin) 

b 284.8 C 1s π* (phenyl) 

c 287.3 C 1s π* (porphyrin) 

d 293.4 C 1s σ* 

e 300.6 C 1s σ* 

 

Peaks a and c display the same type of angular dependence as the N spectrum π* resonances, and are 

assigned to C 1s  π* transitions involving the porphyrin ring. Peak b clearly exhibits a different 

angular dependence, the signal varying little with θ : it is therefore assigned to C 1s  π* transitions of 

the phenyl substituent. The results of a full analysis of the angular dependence of resonances a and b are 

shown in Figure 6(b). Resonance a corresponds to a porphyrin ring tilt angle of 25.2° – within 

experimental error fully consistent with the value derived from analysis of the N K-edge data. 

Resonance b yields a tilt angle of 50.3° for the phenyl ring – as expected, this indicates significant tilt of 

the phenyl ring with respect to the plane of the porphyrin ring. Taking account of the macrocycle tilt of 

~ 30°, we conclude that the phenyl group lies at ~ 80° to the porphyrin plane – i.e. much as would be 

expected for the free molecule, and consistent with the illustration in Figure 5b.  

STM imaging of 300 K as-deposited submonolayer coverages showed that no morphological changes 

occurred upon annealing to 473 K, in good accord with the corresponding N 1s XPS results, and typical 

images are shown in Figure 7. The lateral dimensions of individual features correspond to those 

expected for porphyrin molecules.  Their apparent height of ~ 1.9 Å is comparable to the apparent 

height of ~ 2.3 Å recorded for the analogous 4-legged porphyrin on Ag(100) 24 — consistent with a 

downward tilted macrocyle ring in the present case. An upwardly tilted molecule would have an 

apparent height of about twice this value. Most molecules are characterized by a bright central spot 

which we associate with the Cl ligand attached to the Mn center, consistent with the Cl XP spectrum 
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shown in Figure 3, and in good accord with the line scans in Figure 7(c) for chlorinated and de-

chlorinated molecules.  Also visible are a number of smaller features (green circles Figures 7(a)) 

identified as acetyl groups 24 resulting from spontaneous surface mediated de-protection of the thiol 

group by cleavage of the acetyl group initially present at the end of the leg. The dimensions of these 

smaller features (~ 4.5 Å lateral, apparent height 0.65 Å) are commensurate with those of an acetyl 

group. 24 Figure 7(a) is a larger scale image of porphyrin molecules in the contact layer and the cleaved 

acetyl groups: examination of several images with a total area of 2760 nm2 showed that the ratio of 

porphyrin molecules to cleaved acetyl groups was ~ 1:1.4 in reasonable accord with the expected value 

of 1:1. Thiol-deprotection was confirmed by the S 2p XP spectrum – a single S 2p3/2 component at a 

binding energy of 162.3 eV appeared, corresponding to deprotected molecules bound to the metal 

surface. 13 

   

 

Figure 7.  STM images and line profiles of a sub-monolayer coverage of the one-legged porphyrin 

acquired after annealing to 473K. (a) (360 x 360 Å2, Vtip= 1.00 V, I = 1.02 nA). Two cleaved acetyl 

groups circled in green. (b) Small scale image showing positions of line scans taken through chlorinated 

and de-chlorinated molecules. (75 x 75 Å2, Vtip= 1.00 V, I = 1.01 nA) (c) Line scans taken at the 

positions indicated in (b). 

Behavior at high coverages 

Behavior at higher coverages was investigated by depositing more porphyrin on top of the 300 K ~ 

0.5 ML deposit and N 1s XP spectra taken before and after annealing to 473 K are shown in Figure 8. 
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Three components may be discerned in the 300 K as-deposited film: one centered at 397.2 eV 

corresponding to the low coverage N 1s spectrum (cf Figure 2); a principal component centered at 397.7 

eV that we assign to a dense monolayer phase in contact with the Ag surface; and one at 398.5 assigned 

to molecules in a multilayer configuration.  Annealing to 473 K resulted in the N 1s spectrum shown in 

the right panel of Figure 8. The multilayer component is strongly attenuated, the sub-monolayer 

contribution is absent, and molecules in the dense contact layer are the predominant species: heating has 

resulted in spreading of the initially inhomogeneous film. This observation is in good agreement with 

the STM image (Figure 9) acquired in Cambridge for a nominal porphyrin coverage of ~ 1.1 ML, 

(estimated by STM). Line scans through molecules in the dense contact layer indicate an apparent 

molecular height of 1.6 Å, which is smaller than that found for molecules in the low coverage regime 

(1.9 Å); as we shall see, this finding assists interpretation of the corresponding NEXAFS results. 

 

 

Figure 8. N 1s XP spectra for a high coverage of porphyrin as deposited (left) and after annealing to 

473 K (right).  
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Figure 9. STM image (300 x 300 Å2, Vtip= 1.21 V, I= 0.84 nA) of the densely packed contact layer of 

the one-legged porphyrin acquired after multilayer deposition and annealing to 473 K. White blobs are 

molecules in the second layer, as judged by apparent height. 

 

N and C K-edge NEXAFS spectra acquired from the as-deposited high coverage film showed no 

energy shifts or changes in peak shape compared to the submonolayer spectra, indicating minimal 

changes in electronic structure with coverage. However, the high coverage spectra exhibit little 

dependence on photon incidence angle, indicating significant disorder in the inhomogeneous as-

deposited porphyrin film (see supplementary information).   
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Figure 10. (a) N K-edge NEXAFS spectra acquired at five angles of photon incidence (θ) for a ~ 1 ML 

coverage of [SAc]P-Mn(III)Cl on Ag(100). (b) Curve fitting analysis of the  dependence of π* 

resonances A and C to estimate the tilt angle (α) of the macrocycle. 

After 473 K annealing both the N K-edge and C K-edge NEXAFS exhibited significant angular 

variation (Figures 10 and 11) consistent with removal of multilayer aggregates and smoothing of the 

contact layer, in line with both the XPS and STM results. XPS data taken before and after the 

acquisition of the NEXAFS spectra indicated no significant beam damage of the ~1 ML porphyrin film. 

Detailed analysis of the N K-edge resonances A and C, (Figure 10) yields estimated macrocycle tilt 

angles of ~ 48° and ~ 51°, respectively, very substantially larger than that found for the low coverage 

case (~ 29.4o and ~ 23.5° respectively). Analysis of the corresponding C K-edge data for resonances a 

and b yields estimated tilt angles of ~ 51° and ~ 53° for the macrocycle and the phenyl group 

respectively, the markedly increased tilt derived for the former being in good agreement with the N 

edge results (Figure 10).  In other words, at high coverage a transition occurs in the contact layer: 

compared to the low coverage case, the tilt of the phenyl group with respect to the surface remains 

unchanged whereas that of the macrocycle increases substantially. This change in adsorption geometry 

may be accounted for by allowing the molecule to roll over, as illustrated in Figure 12, preserving the 

tilt angle of the phenyl group, increasing that of the macrocycle, decreasing the apparent height of the 

molecule and at the same time decreasing its footprint, thus enabling closer packing. Note that the 

increased N 1s XPS binding energy relative to the low coverage value (397.7 eV versus 397.2 eV) may 

also be rationalized in terms of this change in adsorption geometry: at high coverage the nitrogen atom 

ends up further away from the surface resulting in decreased relaxation of the metal’s valence electrons 

around the N core hole. 
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Figure 11. (a) C K-edge NEXAFS spectra acquired at five angles of photon incidence θ for a ~ 1 ML 

coverage of the one-legged porphyrin [SAc]P-Mn(III)Cl on Ag(100). (b) Curve fitting analysis of the 

angle dependence of π* resonances a and b to determine the corresponding π-system tilt angles α. 
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Figure 12. Proposed adsorption geometry of the one-legged porphyrin in the dense contact layer 

tethered to Ag(100). Macrocycle and phenyl tilt angles with respect to the surface are ~ 50° and ~ 53° 

respectively. 

 

Conclusions 

The one-legged acetyl-protected manganese porphyrin [SAc]P-Mn(III)Cl may be deposited without 

decomposition or de-metallation on Ag(100) and subsequently de-protected leading to covalently bound 

thio-porphyrin molecules. These in turn may be de-chlorinated, resulting in formation of stable, surface 

tethered low-coordinate Mn centers. At high coverage an unusual orientational transition occurs 

whereby the molecule rolls over, preserving the tilt angle of the phenyl group towards the surface, 

strongly increasing that of the macrocycle, decreasing the apparent height of the molecule and 

decreasing its footprint.  

 

-  Compared to its more rigidly bound four-legged counterpart, the one-legged porphyrin exhibits 

substantial differences in mobility, spatial distribution, acetyl deprotection, dechlorination, flexibility 

and orientational behavior as a function of coverage. These properties are expected to be important in 

determining access and escape of molecules to/from the porphyrin metal centre and hence their 

effectiveness in a variety of applications. Thus the physico-chemical properties of porphyrin-

functionalized surfaces should be markedly dependent on the mode of tethering of the macrocycle. 

-   
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