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Abstract

 

—Inspired by the visual system of many mammals, we consider the construction of—and reconstruc-
tion from—an orientation score of an image, via a wavelet transform corresponding to the left-regular repre-
sentation of the Euclidean motion group in 
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) and oriented wavelet 

 

ψ
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). Because this representation
is reducible, the general wavelet reconstruction theorem does not apply. By means of reproducing kernel theory,
we formulate a new and more general wavelet theory, which is applied to our specific case. As a result we can
quantify the well-posedness of the reconstruction given the wavelet 

 

ψ

 

 and deal with the question of which ori-
ented wavelet 

 

ψ

 

 is practically desirable in the sense that it both allows a stable reconstruction and a proper
detection of local elongated structures. This enables image enhancement by means of left-invariant operators
on orientation scores.
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1. INTRODUCTION

In many medical image applications, it is desirable
to construct a local orientation-score of a grey-value
image. In the case of 2D images 
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, such an
orientation score 
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f
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τ
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), where (

 

b

 

1

 

, 

 

b

 

2

 

) 

 

∈

 

 

 

�

 

2

 

 denote posi-
tion and 
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i

 

θ
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  (cos
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, sin
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 is a local orien-
tation variable. Such an 

 

orientation score

 

 is usually
obtained by means of a convolution with some aniso-
tropic wavelet

 

1

 

 

 

ψ
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), cf. [21]:

(1.1)

U f b eiθ,( ) ψ Rθ
1– x ' b–( )( ) f x '( ) x ',d

�
2

∫=

with Rθ
θcos θsin–

θsin θcos⎝ ⎠
⎜ ⎟
⎛ ⎞

.=

 

This idea is inspired by our own visual system, in
which receptive fields exist that are tuned to various
locations and orientations. A simple cell receptive field
can be parameterized by its position and orientation.
Assemblies of oriented receptive fields are grouped
together on the surface of the primary visual cortex in a
pinwheel-like structure (see Fig. 2).

Perceptual organization on the basis of orientation
similarity on images 

 

f

 

 can be done via their orientation
scores 

 

U

 

f

 

, as long as there exists a linear 

 

well

 

-

 

posed
invertible

 

 transformation 

 

�

 

ψ

 

 from the image 

 

f

 

 to the
orientation score 

 

U

 

f

 

 and vice versa. The domain of 

 

U

 

f

 

 is
the well-known Euclidean motion group 

 

G

 

 = 
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2
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τ

 

 

 

�

 

and the mapping 

 

f
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f

 

 is a wavelet transformation

(1.2)
U f b eiθ,( ) �ψ f[ ]( ) g( ) �gψ f,( )

�2 �
2( )

= =

=  �b�θψ f,( )
�2 �

2( )
, g b eiθ,( ),=

 

¶

 

 The text was submitted by the authors in English.
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 We follow the convention in physics and mathematics to call the
kernel corresponding to a wavelet transformation a wavelet.
However, in ID-signal analysis, people consider wavelet transfor-
mations with respect to representations of the 

 

ax

 

 + 

 

b

 

-group (scal-
ing and translation) onto 

 

�

 

2

 

(�). We stress that the interpretation
of a wavelet as a localized wave in signal processing does not
apply in our case.

(a) (b)

Fig. 1. Example of an orientation score (b) and its corre-
sponding image (a).
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where �b�θψ is the translated and rotated wavelet and
g � �g is the left-regular action of G onto �2(�

2). The
definitions and conventions are explained in Section 2
(see (2.4), (2.6), and (2.7)).

In Section 3 we give a brief overview of the standard
wavelet theory. Although this theory guarantees a per-
fectly well-posed reconstruction of f from its wavelet
transform �ψ[f], in the sense that the quadratic norm
is preserved, it does not apply to our case.

Therefore, in Section 4 we give a brief overview of
our recently developed more general approach to wave-
let theory (by means of reproducing kernel theory),
leading to a more general wavelet reconstruction theo-
rem, which is necessary for the application of our ori-
entation score. This theory (which is put in a much
more general framework) answers the questions that
inevitably arise from the inspiring work of Kalitzin et
al. [21] on invertible orientation scores. For more
detailed in-depth mathematical treatment of this
recently developed theory, we refer to the earlier work
[10].

In Section 5, we consider the practical consequences
of this reconstruction theorem and quantify the well-
posedness of reconstruction by a condition number that
explicitly depends on the wavelet ψ. We follow two dif-
ferent approaches to parameterize classes of wavelets
which allow a stable reconstruction and give some
explicit examples. These examples show that it is pos-
sible to derive wavelets that both allow a well-posed
reconstruction from a single scale orientation score
(which is not possible in the usual wavelet approaches!)

and which are at the same time good line detectors. We
compare these wavelets with the usual line detectors
used in image analysis, which do not allow a stable
reconstruction. In Section 7 we generalize our results to
orientation scores of 3D-images and even obtain well-
posed invertible orientation scores of 3D-images.

In Section 8 we give explicit practical examples of
perceptual organization by means of left-invariant
operations on orientation scores. In these examples we
first construct an orientation score Uf = �ψ[f], then
apply an operation Φ on the orientation score Φ[Uf]
after which we reconstruct to obtain an enhanced image
ϒψ[f] = [  � Φ � �ψ] (f). We show that the concat-
enation

(1.3)

is Euclidean invariant if and only if Φ is left-invariant.

2. PRELIMINARIES AND NOTATION

• Images/signals are assumed to be within L2(�
d).

For signals, d = 1. For images, d = 2, unless explicitly
stated otherwise.

• The Fourier transform �: �2(�
d)  �2(�

d) is
almost everywhere defined by

�ψ*

ϒψ �ψ* � Φ � �ψ=

� f( )[ ] w( ) f̂ w( ) 1

2π( )d /2
----------------- f x( )e iw– x⋅ x.d

�
d

∫= =

1 mm

200 µmLateral

Rostral

V1
V2

1 mm

(a)

(b) (c)

Fig. 2. Left: (a) Parts of visual cortex active under different orientation stimuli. (b) Orientation preference map obtained by vector
summation of data obtained for each angle. Orientation preference is color coded according to the key shown below, replicated with
permission from [7], Copyright 1997 Society of Neuroscience. Right: enlarged section of the rectangular area in the upper figure.
Shaded and unshaded areas denote the left and right eye respectively. Colored lines connect cells with equal orientation sensitivity,
replicated with permission from [28].
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Notice that ||�[f]||2 = ||f ||2 and �[ f ∗ g] =
(2π)d/2�[f]�[g] for all f, g ∈ �2(�

d).

• We use the following notation for Euclidean/polar
coordinates in the spatial and Fourier domains, respec-
tively: x = (x, y) = (rcosφ, rsinφ), w = (ωx, ωy) =
(ρcosϕ, ρsinϕ), with φ, ϕ ∈ [0, 2π), r, ρ > 0. The cor-
responding complex variables will be denoted by z =
x + iy = reiφ and w = ωx + iωy = ρeiϕ.

• We will use short notation for the following
groups:

—Aut(�d) = {A: �d  �d |A linear and A–1 exists}

—dilation group D(d) = {A ∈ Aut(�d)|A = aI,
a > 0}.

—orthogonal group O(d) = {X ∈ Aut(�d)|XT = X–1}

—rotation group SO(d) = {R ∈ O(d)|det(R) = 1}.

—circle group � = {z ∈ � ||z | = 1}, z = eiθ, θ = argz
with group homomorphism τ: �  SO(2) ⊂ Aut( �2):

(2.4)

• Let T and S be locally compact groups and let
τ: T  Aut(S) be a group homomorphism. The semi-
direct product S ×τ T is defined to be the group (which
is again locally compact) with underlying set {(s, t)|s ∈
S, t ∈ T} and group operation

(2.5)

In this article, we mainly consider the group �2 ×τ �,
where τ is given by (2.4). The group product (2.5) is
now given by

This non-commutative group is the Euclidean motion
group.

• With �(H), we denote the space of bounded oper-
ators on H. The range of a linear operator A will be
denoted by �(A) and its nilspace will be denoted by
�(A).

• A representation � of a group G onto a Hilbert
space H is a homomorphism � between G and �(H),
the space of bounded linear operators on H. It satisfies
�gh = �g�h for all g ∈ G, h ∈ G and �e = I. A repre-
sentation � is irreducible if the only closed invariant
subspaces of H are H and {0}; otherwise it is reducible.
We mainly consider unitary representations (i.e.,
||�g ||H = ||ψ||H for all g ∈ G and ψ ∈ H), which will be
denoted by � rather than �. Within the class of unitary

τ z( ) Rθ
θcos θsin–

θsin θcos⎝ ⎠
⎜ ⎟
⎛ ⎞

.= =

s t,( ) s ' t ',( ) sτ t( )s ' tt ',( ).=

gg ' b eiθ,( ) b ' eiθ,( ) b Rθb '+ ei θ θ '+( ),( ),= =

g b eiθ,( ), g ' b ' eiθ ',( ) �
2

 �.×∈= = τ

representations, we are mainly interested in the repre-
sentations of �d ×τ T onto �2(�

d) which are given by

(2.6)

We will call these representations left-regular actions
of G = �d ×τ T in �2(�

d).

• Let b ∈ �d, a > 0 and g ∈ G  τ(G) ⊂ Aut(�d).

Then the unitary operators f � , τb, 	a and �g, b ∈
�

d, a > 0 on �2(�
d) are defined by

(2.7)

which are left regular actions of O(1), �d, D(d), G in
�2(�

d).

• A functional Hilbert space2 is a Hilbert space con-
sisting of complex valued functions on an index set � on
which the point evaluation δa is a continuous/bounded
linear functional for all a ∈ �. Consequently, it has a
Riesz representant Ka ∈ H

The function K: � × �  � given by K(a, b) = (Ka,
Kb)H = Kb(a) is called reproducing kernel. Notice that
the spaces �2(�

d) are not functional Hilbert spaces.
• The d-dimensional Gaussian kernel Gs at scale s is

given by

(2.8)

Occasionally, we will parameterize the Gaussian kernel
by its standard deviation σ and write 
σ = Gs, where we

notice that s = .

• For a given wavelet ψ ∈ �1(�
d) ∩ �2(�

d), we
define  and Mψ almost everywhere by

(2.9)

2 Also known as the reproducing kernel Hilbert space.

�gψ( ) x( ) 1

det τ t( )( )
--------------------------ψ τ 1– t( )( ) x b–( )( ).=

f̌

f x( ) f x–( )= �bψ x( ) ψ x b–( )=

	aψ( ) x( ) = 
1

a
d
2
---

-----ψ x
a
---⎝ ⎠

⎛ ⎞

�gψ x( ) = 
1

detτ g( )
----------------------ψ τ g( )( ) 1– x( ),

ˇ

f a( ) δa f,〈 〉 Ka f,( )H.= =

Gs x( ) 1

4πs( )d /2
-------------------e

x 2

4s
---------–

.=

σ2

2
-----

ψ̃

ψ̃ x( ) �tψ ∗ �tψ( ) x( )dµT t( )
SO d( )
∫=

Mψ w( ) 2π( )d /2 � �tψ( ) w( ) 2
dµT t( ),

SO d( )
∫=

ˇ



PATTERN RECOGNITION AND IMAGE ANALYSIS      Vol. 17      No. 1      2007

INVERTIBLE ORIENTATION SCORES 45

where dµT(t) is the normalized left-invariant Haar-mea-
sure of SO(d). It directly follows from the compactness
of SO(d) and Fubini that Mψ ∈ �1(�

d) and

(2.10)

Consequently, the kernel , which is the inverse Fou-
rier transform of Mψ, is a continuous function vanishing
at infinity. Moreover, Mψ and  are isotropic since
�tMψ = Mψ for all t ∈ SO(d) and ��t = �t�. Con-
versely, by compactness of SO(d) and since a convolu-
tion of two �1(�

d) elements is again within �1(�
d), we

obtain that  ∈ �1(�
d), so Mψ is also a continuous

function vanishing at infinity.

3. WAVELET THEORY

In this Section, we will give a condensed treatment
of continuous wavelet theory. For the sake of illustra-
tion, we will first consider the well-known signal case,
i.e., d = 1 with G = � × D(1) known as the ax + b-group.
Then we give the group theoretic generalization first
formulated by Grossmann et al. [19]. This theorem and
other generalizations of this theorem, such as [29], [17]
are not applicable to the reducible left regular action of
the Euclidean motion group onto �2(�

d) given by (2.6),
which is needed for our orientation score application in
image analysis. Therefore, we give a true generaliza-
tion to the wavelet theorem, where irreducibility is nei-
ther a requirement nor replaced by another require-
ment.

3.1. Continuous Wavelet Theory on 1D-Signals

The continuous wavelet transform �ψ[ f]: �
+ ×

�  � of a signal f ∈ �2(�) with respect to wavelet
ψ ∈ �2(�) is defined by �ψ[ f](a, b) = (�b	a, .
An alternative expression of the continuous wavelet

transform is given by �ψ[ f](a, b) = (f ∗ )(b). We
say ψ ∈ �2(�) is an admissible wavelet if it satisfies the

condition3 

(3.11)

3 If ψ(–x) = eiαψ(x), this expression docs not depend on ω. Then

Cψ < ∞ ⇔ �[ψ] (0) = dx = 0.

Mψ �1 �
d( )

2π( )d /2 � ψ[ ]
�1 �

d( )
2 µT t( )d

SO d( )
∫=

=  2π( )d /2 ψ
�1 �

d( )
2 ∞.<

ψ̃

ψ̃

ψ̃

f )�2 �( )

	aψ̌

ψ x( )
�

∫

0 Cψ< 2π( ) � ψ[ ] aω( ) 2

a
-------------------------------- ad

�
+

∫ ∞<=

for almost all ω �.∈

Notice that �b	a � �b'Da' = �ab' + b	aa' and that
(�b	a)–1 = (�–b/a	1/a) and therefore {�b	a} forms a
2-parameter Lie group G+, known as the ax + b-group,
isomorphic to the matrix group

Let � be the representation of G+ given by

(3.12)

then � is unitary, i.e., (�(a, b)f, �(a, b)g) = (f, g) for all
a > 0 and b ∈ �, and �ψ[f](a, b) = (�(a, b)ψ, .

By straightforward computation, it follows that the
wavelet constant Cψ can be rewritten:

(3.13)

where the measure d (g) = db is the left-invariant

Haar measure of G+.

Theorem 3.1 (Wavelet Reconstruction Theorem
for Signals)

Let ψ ∈ �2(�) be an admissible wavelet, with wave-

let constant4 Cψ = (2π) da < ∞ for almost all

ω ∈ �. Then the mapping Φ which maps f onto

�ψ[f] is a unitary mapping from �2(�) into

�2(� × �+), i.e., ||�ψ[f]  = Cψ||f  for

all f ∈ �2(�) and thereby

4 This is a constant if ψ(–x) = eiαψ(x), for some α ∈ [0, 2π) and
almost every x ∈ �.

a b

0 1⎝ ⎠
⎜ ⎟
⎛ ⎞

a 0> b �∈,
⎩ ⎭
⎨ ⎬
⎧ ⎫

.

� a b,( ) f[ ] x( ) 1

a
------- f

x b–
a

-----------⎝ ⎠
⎛ ⎞ ;=

f )
�2 �

d( )

Cψ
1

ψ ψ,( )
---------------- �gψ ψ,( ) 2

gd

G
+

∫=

=  
1

ψ ψ,( )
---------------- � a b,( )ψ ψ,( ) 2 ad

a2
------ b,d

G
+

∫

µ
G

+

da

a2
------

ψ̂ aω( ) 2

a
---------------------

�
+

∫

1

Cψ

-----------

||
�2 � �

+; db
da

a
2

------×⎝ ⎠
⎛ ⎞

2 ||�2 �( )
2

f x( ) 1

Cψ

-----------�ψ* �ψ f[ ][ ] x( )=

=  
1

Cψ

----------- f  ∗ 	aψ( ) ∗ 	aψ( ) x( ) ad

a2
------,

�
+

∫
for almost every x �.∈

ˇ
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Proof. This follows from the general result in the
next Subsection. Theorem 3.2: Take H = �2(�), G =
G+ = � × D(1) × O(1) and the unitary representation �
of G on �2(�) by

Notice to this end that in contrast to the representa-
tion � given by (3.12), representation � is irreducible.
Suppose there exists a subspace S of H which is invari-
ant under �. In particular, since �(a, b, 1) = �(a, b) it is
also invariant under �. Now we notice that �2(�

d) =
H+ ⊕ H– is an orthogonal decomposition into �-irre-
ducible subspaces, [2]. So either S = {0} or S = H or

S = H+ = {f ∈ �2(�
d)| (ω) = 0 for ω > 0} or S = H– =

{f ∈ �2(�
d)| (ω) = 0 for ω < 0}. But �a, b, –1H+ = H–

and �a, b, –1H– = H+ and therefore S = {0} or S = H. As
a result, by Theorem 3.2 we have

(3.14)

and since it is assumed to be admissible with wavelet
constant Cψ, the left-hand side of equality (3.14) equals
||�ψ[f]||2 and the right-hand side equals Cψ||f ||2.

3.2. Wavelet Transformations Constructed
by Unitary Irreducible Representations 

of Locally Compact Groups

Rather than restricting ourselves to the particular
case of left regular action of the ax + b group represen-
tation on �2(�), we will generalize by defining a wave-
let transform given a Hilbert space H and any unitary
irreducible representation g � �g of any locally com-
pact group G in H. It is well-known that every locally
compact group G has a left-invariant Haar measure,
which we denote by µG. A left-invariant Haar measure
on G is a Radon measure on G such that µG(gE) = µG(E)
for all g ∈ G and Borel sets E. It is uniquely determined
up to a constant multiplicative factor, [26]. A nonzero
vector ψ in H is said to be an admissible vector (or
wavelet) if

Given an admissible vector ψ and a unitary irreduc-
ible representation � of a locally compact group G in a

� a b c, ,( ) f[ ] x( ) 1

a
------- f

c 1– x b–( )
a

-----------------------⎝ ⎠
⎛ ⎞ ,=

c 1– 1,{ }, a 0, b �, f �2 �( ).∈ ∈>∈

f̂

f̂

1
2
--- � a b c, ,( )ψ f,( ) 2

c 1– 1,{ }∈
∑ b

ad

a2
------d

�
+

∫
�

∫

=  
f 2

ψ ψ,( )
---------------- 1

2
--- � a b c, ,( )ψ ψ,( ) 2

c 1– 1,{ }∈
∑ b

ad

a2
------,d

�
+

∫
�

∫

Cψ
�gψ ψ,( ) 2

ψ ψ,( )
----------------------------- µG g( )d

G

∫ ∞.<=

Hilbert space H, the wavelet transform �ψ: H 
�2(G) is defined by

(3.15)

The next Theorem is well-known in mathematical
physics [29] and was first formulated and proven by
Grossmann et al. [19]. For a simple alternative and self-
contained proof, see [10] p. 20, which uses a topologi-
cal version of Schur’s lemma; for a proof, see [9] p. 86.

Theorem 3.2 (The Wavelet Reconstruction Theo-
rem)

Let � be irreducible; then, the wavelet transform
given by (3.15) is a linear isometry (up to a constant)

from the Hilbert space H onto a closed subspace 

of �2(G, dµ):

(3.16)

The space  is the unique functional Hilbert

space with reproducing kernel Kψ(g, g') = (�gψ,

�g'ψ). The corresponding orthogonal projection �ψ:

�2(G, dµ)   is given by

(3.17)

Furthermore, �ψ intertwines the representation �
and the left regular representation � (given by �g(Φ) =
(h � Φ(g–1h))) on �2(G), that is �ψ�g = �g�ψ  for
all g ∈ G''.

Of course, we would like to apply Theorem 3.2 to
the wavelet transformation that maps an image to its
orientation score (see (1.2)), since this would imply that
the reconstruction of an image from its orientation
score is perfectly well-posed in the sense that (just like
Fourier transform) the quadratic norm is preserved. It
follows by the next lemma that we are not allowed to
apply Theorem 3.2 to our case. Therefore, in Section 4
we generalize the standard wavelet theory where irre-
ducibility is neither a requirement nor replaced by a
requirement.

Lemma 3.1. The left-regular action � of the
Euclidean motion group in �2(�

2), given by (2.6), is a
reducible representation.

Proof. Consider the set of �2 functions whose Fou-
rier transforms have a support inside a given disk

around the origin with radius, say ρ > 0; i.e., (�2): =

{f ∈ �2(�
2)|supp(�[f]) ⊂ B0, ρ}; then obviously this is

a non-trivial vector-space unequal �2(�
2), which is

�ψ f[ ] g( ) �gψ f,( )H.=

�Kψ

G

�ψ f[ ] �2 G( )
2

Cψ f 2.=

�Kψ

G

1
Cψ
------

�Kψ

G

�ψΦ( ) g( ) Kψ g g ',( )Φ g '( ) µG g '( )d

G

∫=

Φ �2 G dµ,( ).∈

�2
ρ
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invariant under �, which directly follows by

�[�gψ] = eiw · b�θ�[ψ] for all ψ ∈ (�2).

Analogously to the example in Section 3.1, where
we had to take an extra semi-direct product with O(1),
we could consider the similitude group SIM(2) = �2 ×τ
� × D(1) with representation

which is irreducible; for proof, see [23] pp. 51–52. This
brings us within the standard wavelet framework of
(and in particular to 2D Gabor wavelets, [22], or
Cauchy-wavelets [3]) in 2D-image analysis. But from
the implementation/practical point of view, we do not
want to consider multiple scales, but stick to a single
one. This coincides with Euclidean coherent states
from mathematical physics, [20], which should not be
mistaken for the more familiar Euclidean coherent
states constructed from the irreducible5 (representa-
tions of the Euclidean motion group onto �2(S1) given
by

(see [2] p. 219–220). Further, we notice that the gener-
alization of the wavelet reconstruction theorem to
reducible representations of quotient groups [29],
inducing vector coherent states rather than coherent
states, is also too restrictive to be applied to our case, as
there is no (finite dimensional) dilation invariant sub-
space in �2(�

2).
From an image analysis point of view, omitting the

dilation group poses an important question. For exam-
ple, in scale space theory [13], it is a well-known prob-
lem that the reconstruction of a sharp image f from its
(e.g., Gaussian) blurred version f ∗ Gs is extremely ill-
posed. Is it possible to get around this ill-posedness by
considering all rotated versions of linear combinations

5 They are in fact, up to equivalence, the only irreducible represen-
tations of the Euclidean Motion group, cf. [27].

�2
ρ

�
b e

iθ
a, , ψ x( ) 1

a
-------ψ

Rθ
1– x b–( )

a
-------------------------⎝ ⎠

⎛ ⎞ ,=

a 0, θ [0, 2π ), b �
2
,∈ ∈>

�
e

iθ b,
p ψ( ) eiα( ) eip b

1 αcos b
2 αsin+( )ψ ei α θ–( )( ),=

p 0, ψ �2 S1( )∈>

of Gaussian derivatives f ∗ (∂x)p(∂y)qGs? Before we give
an affirmative answer to this question and deal with the
issue of well-posed reconstruction of images from ori-
entation scores, we give an illustration by means of an
extremely simplified discrete example, where recon-
struction is done by integration over discrete orienta-
tions, rather than inverse convolution.

Example. Suppose we construct a discrete orienta-
tion score with only four orientations—up, down, left,
and right—constructed with the following discrete ori-
ented wavelet ψ: � × �  �, given by

This wavelet detects a direction at a width of 2 pix-
els. Then reconstruction of the original discrete image
f: � × �  � from its orientation score is done by
integration over all directions

since the right-hand side is in fact a convolution with a
discrete δ spike (see Fig. 3).

4. A FUNCTIONAL HILBERT SPACE 
APPROACH TO WAVELET THEORY

In this section, we will put the theory of wavelets
into a more generic framework. First we construct uni-
tary maps from a Hilbert space H into a functional Hil-

bert space , which is a vector subspace of ��, the
vector space of all complex valued functions on a set �
(not necessarily a group). In Subsection 4.2, we con-
sider a special case and obtain a generalization of the
standard wavelet theory for affine groups. The main
strength of this generalization is that we will not
assume the representation to be irreducible, which by
Lemma 3.1 is necessary for our application.

Recall from Section 2 that a functional Hilbert space
is a Hilbert space such that point evaluation is continu-

ψ x1 x2,[ ]

=  

1 if x1 x2,( ) 0 0,( ) 0 1,( ),{ }∈

1/3 if x1 x2,( )– 0 1,( ) 0 1–,( ) 1– 0,( ), ,{ }∈
0 else.⎩

⎪
⎨
⎪
⎧

f x1 x2,[ ] 1
4
--- U f

4 x1 x2 eiκπ/2, ,[ ],
k 1=

4
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Fig. 3. Integrating the rotated kernel ψ (left) over four discrete orientations gives a discrete spike δ.
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ous, so by the Riesz representation theorem there exists
a set {Km |m ∈ �} with

The span of the set {Km |m ∈ �} is dense in the func-
tional Hilbert space. Indeed, if f ∈ H is orthogonal to all
Km, then f = 0 on �.

Then define K(m, m') = Km'(m) = (Km, Km')H, for m,
m' ∈ �. K is called the reproducing kernel and it is a
function of positive type on �, i.e.,

So to every functional Hilbert space there belongs a
reproducing kernel, which is a function of positive type.
Conversely, as Aronszajn pointed out in his paper [4], a
function K of positive type on a set � uniquely induces
a functional Hilbert space consisting of functions on �
with reproducing kernel K. We denote this space by

. Before briefly discussing the construction of this
space, we give an illustrative example.

Example. Consider the first order Sobolev space
	

1(�), � = �, with

(4.18)

where f ' and g' are the generalized first order derivatives
of resp. f and g. Then, δa is a bounded (i.e., continuous)
linear functional on 	1(�). This follows by the esti-
mate

Km f,( )H f m( ),=

for all m � and f H .∈ ∈

K mi, m j( )cic j

j 1=

n

∑
i 1=

n

∑ 0,≥

for all n 
, c1 … cn �, m1∈ … mn �.∈, , , ,∈

�K
�

f g,( )
	

1
�( )

f g,( )�2 �( ) f ' g ',( )�2 �( ),+=

f a( ) 2 x a 1–( )–( ) f x( ) f x( ){ } ' xd

a 1–

a

∫=

=  f x( ) 2 x a 1–( )–( )+{
a 1–

a

∫

× f ' x( ) f x( ) f x( ) f ' x( )+[ ] }dx

≤ f x( ) 2 2 f ' x( ) f x( )+{ } xd

a 1–

a

∫

≤ 2 f x( ) 2 f ' x( ) 2+{ } xd

a 1–

a

∫ 2 f
	

1
�( )

2 .≤

So, by the Riesz representation theorem, the repro-
ducing kernel exists and by Fourier transformation it
follows that the reproducing kernel is given by

(4.19)

and  =  = (1/2) . So if K is given

by (4.19), then  = 	1(�).

Next we give a brief overview of how to construct

 given the index set � and the function of positive
type K : � × �  �. The span 〈{Km |m ∈ �}〉 is a pre-
Hilbert space with respect to the inner product

By taking the completion we get . The norm

||Φ|| =  on the space  is given by

(4.20)

(see [24] Lemma 1.7, p. 31). We highly stress that this

abstract construction of  may not be satisfactory in
many cases. Recall for example the example of the first
order Sobolev space 	1(�). In this case, the norm is
both given by (4.18) and by (4.20), but clearly (4.18) is
a much more tangible characterization of the norm than
(4.20).

4.1. The Construction of a Unitary Map 

from H to  

Let V = {φm |m ∈ �} be a subset of H such that its lin-
ear span is dense in H. Define the function K: � × � 
� by K(m, m') = (φm, )H. Given such a function, we
define the function Km: �  � as Km(m') = K(m, m').
In earlier work [10], we obtained the following funda-
mental result:

K a x,( ) � 1–
eiωa 1

1 ω 2+
------------------ x( ) 1/2( )e x a–– ,= =

a x, �∈

δa 	
1–

�( )
Ka 	

1
�( )

2

�K
� �=

�K
�

αiKmi

i 1=

l

∑ β jKm j

i 1=

n

∑,
⎝ ⎠
⎜ ⎟
⎛ ⎞

αiβ jK mi m j,( ).
j 1=

l

∑
i 1=

n

∑=

�K
�

Φ Φ,( ) �K
�

Φ
�K

� sup
Φ G,( )

�K
�

2

G
�K

�

2
-------------------------- G Km m �∈{ }〈 〉∈

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

=  sup α jΦ m j( )
j 1=

l

∑
2

αkα jK mk m j,( )
k j, 1=

l

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

1–

⎩
⎨
⎧

----- l 
 α j, � m j, �∈ ∈ ∈ αkα jK mk m j,( ) 0≠
k j, 1=

l

∑,
⎭
⎬
⎫

�K
�

�K
�

φm'
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Theorem 4.3. If the span of V = {φm |m ∈ �} is dense

in H, then the transform �: H �  defined by

(4.21)

is a unitary mapping; i.e.,  = ||f ||H.

Proof. See Appendix B.
From the applied mathematical point of view, this

result in itself may not be satisfactory, since the norm

on  given by (4.20), is rather intangible. Neverthe-
less, in some special cases, this norm has a simpler
explicit form.

Special Cases:
• Wavelet transforms: Let � = G for some locally

compact group G. Let ψ ∈ H (the wavelet). Let g � �g

fig be a representation of G into H such that

(4.22)

is dense in H and K(g, g') = (�gψ, Rg'ψ)H; then by The-
orem 4.3, the generalized Wavelet Transform given by

(4.23)

is a unitary mapping from H onto . Notice that it
immediately follows by the Cauchy-Schwarz inequal-

ity that δg is indeed continuous on :

• Discrete frames: Let {ψi |i ∈ N} be a frame within
some Hilbert space H with frame bounds m > 0 and
M > 0, i.e.,

(4.24)

for all f ∈ H = . The orthogonal projection
onto H is given by

in which  = 
–1ψj is the reciprocal frame, where 
–1

is the bounded inverse6 of the bounded operator7 
ψ =

ψi. Now set � = 
, V = {ψi}, K(i, j) = (ψi,

ψj), and H = ; then from Theorem 4.3 we

6 This directly follows from the frame-bound m > 0 in (4.24) and
the Lax-Milgram theorem.

7 This directly follows by the frame bound M > 0 in (4.24).

�K
�

� f[ ]( ) m( ) φm f,( )H=

� f[ ]
�K

�

�K
�

Vψ �gψ g G∈{ }=

�ψ f[ ]( ) g( ) �gψ f,( )H=

�K
G

�K
G

δg �ψ f[ ],〈 〉 �ψ f[ ] g( ) �gψ H f H,≤=

for all g G, f H .∈ ∈

m f 2 ψi f,( ) 2

j 1=

∞

∑ M f 2,≤ ≤

span ψi{ }

�H f ψ j f( )ψ̃ j

j 1=

∞

∑ ψ̃ j f,( )ψ j, f
j 1=

∞

∑ Ĥ ,∈= =

ψ̃ j

ψi ψ,( )H

i 
∈
∑

span ψi{ }

deduce that �: H   given by (�f)(i) = (ψi, f)H

is a unitary mapping.
If {ψi} are linear independent, the Gramm-matrix gij

is invertible and it follows that  equals the reciprocal

basis  = gjkψk, where gjk are the matrix elements of

the inverse of the Gramm-matrix. In this case,  is a

subspace of �2(
) = {a = (ak)k ∈ 
 ∈ �N |  < ∞}

equipped with inner product

The reproducing kernel is given by Km(k) = K(m,
k) = gmk = (ψm, ψk):

If m = M = 1 then  is an orthogonal base

(see [8] p. 57) and 
 = 
–1 = I, and thereby  = �2(
)
equipped with a standard �2-inner product.

If  is a Riesz basis in H, i.e., there exist c,
C > 0 such that

then there exists a bounded invertible linear operator �
on H such that {�ψn} is an orthonormal basis in H.
Then it follows by (ψi, f) = (�ψi, (�*)–1f) and the pre-

vious case, that  = �2(
) equipped with inner prod-

uct: (a,  = bl , where  = (ψk, �*ψn).

Next, we give an explicit characterization of  in

the case G = �d ×τ T and � the left-regular action of G
onto H = �2(�

d) and thereby formulate a generalization
of the wavelet reconstruction theorem for affine groups.

4.2. Generalization of Wavelet Reconstruction 
Theorem for Affine Groups

Inspired by Section 3.2, we call ψ ∈ �2(�
d) an

admissible wavelet if

�K
�

ψ̃i

ψ̃ j

�K
�
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2

k 
∈
∑

a b,( ) gknak

k 
∈
∑

⎩ ⎭
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⎧ ⎫
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∈
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a ak{ }k 
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Km b,( ) gkngmk
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∈
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⎩ ⎭
⎨ ⎬
⎧ ⎫
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∈
∑ δm

n bn
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∑ bm,= = =

for all b l2 
( ), m 
.∈ ∈

ψi{ }i 1=
∞

�K
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ψi{ }i 1=
∞

c a �2
anψn
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C a �2
,≤ ≤

for all a �2 
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∑ un
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(4.25)

where we recall that �t is given by (2.7) and where we
notice that the function Mψ for the special case G =

�
2 × � indeed corresponds to definition (2.9) in Sec-

tion 2.

Lemma 4.2 Let ψ be an admissible Wavelet. Then
the span of Vψ (for definition see (4.22)) is dense in

�2(�
d), i.e.,  = �2(�

d).

Proof.

Let f ∈ 〈Vψ〉⊥. Then

Because ψ is an admissible wavelet, Mψ > 0 a.e. ⇒
|�f |2 = 0 ⇒ f = 0.

Corollary 1. If the wavelet ψ is admissible, then the

corresponding wavelet transform �ψ: �2(�
d)  

is unitary.
Proof. This follows from Lemma 4.2 and Theo-

rem 4.3.

Define the linear operator  on  by

Operator , is well-defined since Mψ > 0 a.e. on

�
d and �[Φ(·, t)] ∈ �2(�

d) for all t ∈ T.

Theorem 4.4. Let G = �d ×τ T. Let ψ be an admis-
sible wavelet. Then Φ ∈ �2(G, dµG(g)) for all Φ ∈

. Therefore, : ( )2  � defined by

(4.26)

is an explicit characterization of the inner product on

, which is the unique functional Hilbert space with
reproducing kernel K: G × G  � given by

(4.27)

The Wavelet transformation �ψ defined by

(4.28)

is a unitary mapping from �2(�
d) to .

The space  is a closed subspace of the Hilbert

space 	ψ ⊗ �2 , where 	ψ = {f ∈

�2(�
d)| �[f] ∈ �2(�

d)} is equipped with inner
product

The orthogonal projection �ψ, of 	ψ ⊗

�2 , onto  is given by �ψ[Φ] =

(K(·, g), .

Proof. See8 [10] p. 27–30.
Remarks.

(1) Since �ψ: �2(�
d)   is unitary, the inverse

equals the adjoint and as a result image f can be recon-
structed from its orientation score �ψ[f] by

8 Here, the result is generalized to semi-direct products of a locally
compact group T and any commutative group S. Here, we only
consider S = �d.

0 Mψ := 2π( )d /2 � �tψ[ ]
detτ t( )

---------------------
2

µT t( )d

T

∫ ∞< <

a.e. on �
d
,

Vψ〈 〉

f Vψ〈 〉⊥∈ ⇔ ∀
b �
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∀t T∈ �b t, ψ f,( )
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⇒ w t,( ) � ��tψ w( )� f w( )( ) = 0 a.e. on �
d

 T×

⇒ w t,( ) � ��tψ w( )� f w( ) 2( ) = 0 a.e. on �
d

 T×
τ

τ

Mψ w( ) � f( ) w( ) 2

=  2π( )d /2 � �tψ[ ] w( )� f w( )
detτ t( )
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2

µT t( )d
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d
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(4.29)

(2) If Mψ = (2π)d/2, then  is a closed subspace

of �2(G) = �2(�
d ×τ T). Then, as in the irreducible case,

Theorem 3.2, the quadratic norm is preserved.
(3) It is easily verified that �(�tψ)(w) =

[�ψ](τ(t)Tw), for all w ∈ �d and t ∈ T. As a
result, �ψ can be rewritten as

From this expression (and the left invariance of Haar
measure), we conclude that

(4.30)

Now assume that t � (τ(t))Tw acts transitively on
�

d; then it follows by (4.30) that Mψ is constant and the

space , G = �d ×τ T, is a closed subspace of �2(G).

Example in the case of T = 	(1) × SO(2), which
acts transitively on �2, we get the similitude group G =
�

2 ×τ T = �2 × 	(1) × SO(2). So the functional Hilbert

space  is indeed a closed subspace of �2(G) and the
corresponding wavelet transform preserves the qua-
dratic norm.

(4) If T is a compact group (for example �) then it
follows by interchanging the order of summation and
integration (Fubini) that Mψ ∈ �1(�

d). As a result, the
desirable case Mψ = (2π)d/2 cannot be achieved.

(5) The transform �ψ can be rewritten as

f �ψ* �ψ f[ ][ ]=

=  � 1– w � � �ψ f[ ] · t,( )[ ] w( )
T

∫

× � �tψ[ ] w( )
dµT t( )

det τ t( )( )
------------------------Mψ

1– w( ) .

�K
�

d   T× τ

detτ t( )

Mψ w( ) 2π( )
d
2
---

�ψ[ ] τ t( )( )Tw( ) 2 µT t( ),d

T

∫=

w �
d
.∈

Mψ τ t( )( )Tw( ) Mψ w( ),=

for all w �
d

and t T .∈ ∈

�K
G

�K
G

�ψ f( ) b t,( )

=  � b t,( )ψ f,( ) ��b�tψ � f,( )=

=  detτ t( ) ei ω b,( ) � τ t( )( ) T– �ψ( ) ω( )� f ω( )dω
�

d

∫

=  2π( )d detτ t( ) �* � τ t( )( ) T– �ψ� f( )( ) b( ),

This provides the backbone of the proof of Theo-
rem 4.4, which is the following Parceval equality:

that holds for all f ∈ �2(�d).

Definition 4.1. The inner product on 	ψ ⊗

�2  induces a norm : 	ψ ⊗

�2   �+, which is given by

which we will call the Mψ-norm.

Theorem 4.4 has the following important conse-
quence for our application of orientation scores in
image analysis:

Corollary 2. The space of orientation scores is a

reproducing kernel Hilbert space  which is a

closed subspace of 	ψ ⊗ �2 , which is a

vector subspace9 of �2(G). The inner product on

 is given by (4.26) and is explicitly characterized
by means of the function Mψ given in (2.9). The wavelet
transformation which maps an image f ∈ �2(�

2) onto

its orientation score Uf ∈  is a unitary mapping:

 = .

9 I.e., a subspace like a vector space, but equipped with a different
norm.
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As a result, the image f can be reconstructed from its
orientation score Uf = �ψ[f] by means of the adjoint

wavelet transformation :

(4.31)

Proof. Take d = 2, T = �, and τ: �  Aut(�2)
given by τ(eiθ)x = Rθx in Theorem 4.4.

4.2.1. The discrete analogue. Since the general the-
ory deals with G = T × �d, with T locally compact, we
may as well choose T a finite rotation group (equipped
with discrete topology) which is locally compact. So
consider G = �N × �2, where

(4.32)

The discrete version of Corollary 2 is then straight-
forward, where we notice that the discrete orientation

score (b, eik∆) of an image f ∈ �2(�
2) is given by

and the discrete version of the function Mψ is Mψ(w) =

.

5. STABILITY
OF THE IMAGE RECONSTRUCTION

The usual way to quantify the well-posedness/sta-
bility of an invertible linear transformation A: V  W
from a normed space (V, ||· ||V) to a normed space (W,
||· ||W) is by means of the condition number

(5.33)

The closer it approximates 1, the more stable the
operator and its inverse are. Notice that the condition
number depends on the norms imposed on V and W. We
want to apply this general concept to the wavelet trans-

�ψ*

f �ψ*�ψ f[ ]=

=  � 1– w � � U f · eiθ,( )[ ] w( )
0

2π

∫

∫ × � �
e

iθψ[ ] w( ) θMψ
1– w( )d .

�N eik∆ k 0 1 … N 1–, , ,{ }∈ ∆, 2π
N
------=

⎩ ⎭
⎨ ⎬
⎧ ⎫

,=

for N 
.∈

U f
N

U f
N b eik∆,( ) �b�k∆ψ f,( )

�2 �
2( )

,=

k 0 1 … N 1–, , ,{ }, ∆∈ 2π
N
------,=

1
N
---- � �k∆ψ( ) w( ) 2

k 0=

N 1–

∑

cond A( ) A 1– A=

=  
x V

Ax W

---------------
x V∈
sup⎝ ⎠

⎛ ⎞ Ax W

x V

---------------
x V∈
sup⎝ ⎠

⎛ ⎞ 1.≥

formation which maps image f to its orientation score10

Uf . In the previous section, we considered the wavelet
transform as a unitary mapping from the space �2(�

2)

to the space  equipped with �2-norm and Mψ-norm
respectively. Consequently, with these chosen norms,
the condition number becomes 1. However, from a
practical and numerical point of view it is much more
reasonable to impose the �2(G)-norm on the orientation
score, since this norm does not depend on the wavelet
ψ and is in general not sensitive to noise. Moreover, it
seems consistent, with the �2-norm imposed on the

space of images11.
Furthermore, we assume that our images f are band-

limited12, i.e., the support of their Fourier transform is
bounded, by, e.g., a sphere with radius r. The space of
these images is given by

(5.34)

The reason for this assumption is the well-known
Nyquist theorem, which states that every band-limited
function is determined by its values on a discrete grid.
For example, if uB: �  � is bandlimited on a square,
supp(�[uB]) ⊂ [–l/2, l/2] × [–l/2, l/2], then

where the cutoff frequency r = l/2 is called the Nyquist
frequency.

Actually, the Nyquist Theorem is another direct
consequence of Theorem 4.3: take H = �2([–r, r] ×

[−r, r]), take � = �
2, and take ψx = , x =

(x, y) ∈ �; then, �ψ is the inverse Fourier transform

10 In image analysis, orientation scores are sometimes called orien-
tation bundles, but that name seems rather inappropriate. It is
rather the domain of an orientation score, which is the Euclidean
motion group, that can be considered as a principal fiber bundle
over structure group �, with respect to the left or right action of �
on G. In these fibrations, the fibers are right cosets and left cosets,
which are, respectively, the spirals [g] = [(b, eiθ)] = {(Rθ'b,

ei(θ + θ'))|eiθ' ∈ �} and the straight lines [g] = {(b, eiθ – θ')|eiθ' ∈
�}.

11 For example, in the discrete framework, the trivial case ψ = δ

gives �ψ[f](·, ) = f for k = 1, …, N with preservation of norm
and thereby condition number 1.

12 Notice that the left-regular action of G onto (�2) is well-

defined: if f ∈ (�2), then �gf ∈ (�2) for all g ∈ G.
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restricted to �2([–r, r] × [–r, r]) and thereby its range
is the space {f ∈ �2|supp�[f] ⊂ [–r, r] × [–r, r]}, which
is the subspace of �2(�

2) consisting of bandlimited
images, which is indeed a reproducing kernel Hilbert
space with reproducing kernel  =

sinc(r(x – x'))sinc(r(y – y')). By Theorem 4.3,

operator �ψ is unitary, so it maps the orthonormal base

{x � }m, n ∈ � to the orthonormal base
{sinc(rx – mπ)sinc(ry – nπ)} in the functional Hilbert
space {f ∈ �2 |supp(�[f]) ⊂ [–r, r] × [–r, r]}, and the
result follows.

By (5.34), we consider images which are bandlim-
ited on a disk rather than on a square, but this is just a

subtlety as the reproducing kernel sinc(r(x –

x'))sinc(r(y – y')) = �–1[w � eiw · (x – x')1[–r, r] × [–r, r]] is
replaced by the kernel

(5.35)

Finally, we notice that from the practical point of
view it does not make sense to store frequencies of
order greater than >l/2 if the signal contains l sam-
ples, which is captured by the fact that a discrete
Fourier transform of a discrete image f : {1, …, n} ×
{1, …, n}  � is again of the form �f: {1, …, n} ×
{1, …, n}  �. So a finite sample width puts an
upper bound on the domain of the Fourier transform.

Definition 5.2. Let ψ be an admissible wavelet.

Then the wavelet transform : (�2)  �2(G) is
given by

for almost every g ∈ G.
Theorem 5.5. Let ψ be an admissible wavelet, with

Mψ(w) > 0 for all w ∈ �2. Then the condition number

cond ( ) of the wavelet transformation :

(�2)  �2(G) is defined by

and satisfies

ψx ψx ',( )�2 r– r,[ ] r– r,[ ]×( )

1
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e
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Proof. The proof is straightforward, for details see
[12] p. 16.

Corollary 3. The stability of the (inverse) wavelet

transformation : (�2)  �2(G) is optimal if

(w) = constant for all w ∈ �, with ||w|| ≤ r.

So in general, the more closely the function Mψ
approximates the constant function, say 1, on B0, r, the

better the norm on  approximates the �2(G)-norm,
and the better the stability of reconstruction. In case of
a good approximation, one may use the following
approximate reconstruction of the image:

(5.36)

with the numerical benefit that in contrast to the true
reconstruction (4.31), it does not use divisions in the
Fourier domain.

In the theoretic case where the pixel size of our
image f converges to 0 and thereby the Nyquist fre-
quency r  ∞, the upper bound for stability tends to
infinity. Since by ψ ∈ �1(�

2) ∩ �2(�
2) ⇒ Mψ ∈ �1(�

2),

the continuous function  is unbounded on the

whole �2. Relaxing the demand13 that ψ ∈ �2(�
2), by

constructing a Gelfand Triple 	2k(�2)  �2(�
2) 

	
–2k(�2), k ∈ 
 (for details see [11]), leads to an iso-

metric wavelet transform from �2(�
2) to �2(G), with

the condition number equal to 1.

6. CLASSES OF WAVELETS THAT ALLOW 
WELL-POSED RECONSTRUCTION

By Corollary 3, wavelets ψ with Mψ =  induce
optimal stability of the (inverse) wavelet transform.
Because of the discontinuity at ρ = ||w|| = r, in practice
this choice causes numerical problems with the discrete
inverse Fourier transform.

To avoid this practical problem, we mainly focus on
wavelets ψ, with either Mψ(ρ) = 
σ(||w||), a Gaussian
kernel with standard deviation σ ≈ r/2, or Mψ(ρ) =
�N(σ2ρ2), N ∈ 
, σ > 0, ρ = ||w||, where

(6.37)

13 Similar to the Fourier transformation on �2(�d).
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In both cases, the function Mψ smoothly approxi-
mates , and thereby guarantees a stable reconstruc-
tion. In what follows we will call a wavelet ψ ∈
�2(�

2) ∩ �1(�
2), with such a Mψ, a proper wavelet.

For more analysis on �N given by (6.37), we refer
to [12] p. 18, where it is shown that the condition num-

ber of wavelets ψ with Mψ(ρ) = �N  satisfies

(cond( ))2 ≤ 1 · (N + 1) = 2 + O , which

is indeed close to optimal stability, which coincides
with Fig. 4.

6.1. A Simple Approach to Parameterization 
of Proper Wavelet Classes

The following lemma shows us a simple but practi-
cal approach to obtaining proper wavelets ψ with the
same Mψ(w) = �(ρ), ρ = ||w||, where � ensures a sta-
ble reconstruction.

Lemma 6.3. Let A: S1  �\�– be such that

(6.38)

1B0 r,

ρN
r

-------⎝ ⎠
⎛ ⎞

�ψ
r �N

1– 1

N
--------⎝ ⎠

⎛ ⎞

1
2π
------ A ϕ( ) ϕd

0

2π

∫ 1,=

then the wavelet ψ = �–1[w � ] has

Mψ(w) = �(ρ) for all w ∈ �2.
Proof.

Mψ(w) = dθ =

dθ = �(ρ), for all w ∈ �2,

||w|| = ρ.
Lemma 6.3 is easily translated to the discrete frame-

work �2 × �N; see (4.32), where condition (6.38) must
be replaced by

(6.39)

If, moreover, dφ ≈ 1, we have a

fast/simple approximate reconstruction:

(6.40)

which coincides with the exact reconstruction in the
simple example of Section 3 (see Fig. 6).

On the one hand, the class of proper wavelets
induced by Lemma 6.3 is fairly wide, which allows us
to select a proper wavelet that is a good detector of
elongated structures (like blood vessels or catheters in
medical images). On the other hand, this class of wave-
lets seems rather restrictive, as the Fourier transform of
the wavelet, �[ψ], is assumed to be polar-separable,
with a (more or less) fixed radial component R. The
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Fig. 5. Left: Plots of A(φ – k∆) (see (6.41)), with ∆ = , k = –2, –1, 0, 1, 2. Notice that it follows by the point-symmetries at

 that  = 1. Right: Graph of φ �  ≈ 1.
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20, 40, 60, 80, 100.
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separability restriction is not harmful in practice since

(�2) = �2(S1) ⊗ �2((0, r), ρdρ), so by choosing a
basis in �2(S1) and �2((0, r), ρdρ), the Fourier trans-
form �[ψ] of a line detector wavelet is always a super-
position of separable wavelets.

The restriction of the radial component(s) is a more
serious problem. Mostly, typical line detecting convo-
lution kernels have a radial component with a much
smaller width than �(ρ). Therefore, replacement of the
radial component R by �(ρ) will affect the radial shape
of the wavelet, but preserve the angular part of the
wavelet.

Example 1. Consider N = 18 discrete orientations,

so that ∆ = . The idea is to “fill a cake by pieces of

cake” in the Fourier domain. In order to avoid high fre-
quencies in the spatial domain, these pieces must be
smooth, and therefore they must overlap.

Let ψ = �–1[w �  and let A: S1 

�
+ be given by

�2
r

2π
N
------

A ϕ( )� ρ( )

(6.41)

then it is easily checked that Mψ(w) = �(ρ), ρ = ||w||
(see (6.39) and Fig. 5). Now we have

 ≈ 1 (again see Fig. 5), which allows

us to use the practical approximative reconstruction
given by (6.40). Moreover, the real valued part of the
wavelet is useful for line detection and the imaginary
part of the kernel is appropriate for edge detection (see
Fig. 6). For line enhancement (with comparison to the
usual line detection) via orientation score, see Fig. 7.
Notice that if A1: S1  �+ and A2: S1  �+, Ai ∈
�1(S1) ∩ �2(S1) satisfy condition (6.38), then so does

A ϕ( )
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Fig. 6. Upper row: Plots of the graph of the real and imaginary part of ψ = �–1[w � , with A(ϕ) given by (6.41) and

�(ρ) = Gs(ρ), s = 800, determined by the discrete inverse Fourier transform of w �  sampled on a 256 × 256 equi-
distant grid. From left to right: Density plots (grey-values have been mapped to full range and inverted for the sake of clarity) of
�(ψ) at true size, �(ψ) and �(ψ) with 2 times zoom, and finally two SD plots of the graphs of �(ψ) and �(ψ). Second row: From
left to right: plots of Mψ and Fourier inverse  = �–1[Mψ], sum of all rotated kernels in Fourier and spatial domain. Third row:

MRI-image of the retina, three slices (eik∆, ·), k = 0, 2, 4 of the discrete orientation score  and fast approximative recon-

struction, (6.40) which is close to the exact reconstruction.
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the periodic convolution A1 ∗ A2: S1  �+ given by

(A1 ∗ A2)(φ) = (φ – ψ)A2(ψ)dψ. This enables us to

generate explicit examples, which are similar to the
wavelet in Example 1 in the same sense of splitting a
cake into equal and smooth overlapping pieces. For

example, take Ai(φ) = (φ), i = 1, 2, where χx(φ) =

(τk∆χ0)(φ) = χ0(φ – k∆) and χ(φ) = 1–∆/2, ∆/2(φ); then by
χi ∗ χj = τ(i + j)∆(χ0 ∗ χ0), we obtain a first order B-spine
representation of . If we repeat this process n times,

we obtain a n + 1-th order B-spline representation of

(φ) =  ∗(n) χ0)(φ – k∆).

Example 2. The most common method of line
detection in image analysis is by means of the largest
eigenvalue λ1(b) of the Hessian matrix Hu(b) of second
order Gaussian derivatives

A10

2π∫

χk

k 0=

N

∑

1
S

1

1
S

1 χ0(
k 0=

N 1–

∑

where u(b, s) = (Gs ∗ f)(b), and s = σ2 > 0 is the so-

called scale space representation of image f ∈ �2(�
2).

We notice that

(6.42)

so the usual method in image analysis is in fact a max-
imum intensity projection of an orientation score with
a second order derivative of the Gaussian kernel. Such
a second order derivative of a Gaussian clearly distin-

Hu b( ) uxx b( ) uxy b( )
uxy b( ) uyy b( )⎝ ⎠
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θ [0 2π ),∈

max=

Fig. 7. Top row, from left to right, a proper wavelet ψ = �–1[w � ] as shown in the previous figure, second order
derivatives of anisotropic Gaussian kernel γ = 1, γ = 4, γ = 7 (see (6.43)). For the sake of illustration, we zoomed in by a factor of 2
in all cases. Middle row: detection of elongated structures via orientation scores constructed by wavelet,

 and comparison with the usual line detection in image analysis with second order Gaussian

kernel, for γ = 1, γ = 4 and γ = 7 (see (6.42)). Bottom row: enlarged small fragment of images. This figure shows us that there exist
proper wavelets (with the advantage of a stable reconstruction) that can be used for line detection, which is at least as good as the
usual approach. In fact, when a stable reconstruction is demanded, the tail of a proper wavelet typically spreads out more naturally.
Therefore proper wavelets, which look locally at the center like the usual line detectors, deal better with elongated lines which are
slightly curved, which is usually the case in practical applications such as catheter, guide wire, and blood vessel detection.
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guishes lines from edges and it can easily be stretched
by replacing the Gaussian kernel by an anisotropic
Gaussian kernel:

(6.43)

Its Fourier transform is given by

(6.44)

from which we immediately deduce that Mψ, for ψ =

 is not at all desirable; a well-posed reconstruc-
tion is not possible. Therefore, we will construct new

wavelets that are locally similar to ψ =  but that
do allow a well-posed reconstruction. In [12] p. 23, we

decomposed ψ =  into steerable components,
which is less trivial than it seems for γ ≠ 1. Instead of

using  as a line detector wavelet, we propose the
wavelets ψγ, β, whose Fourier transforms are given by

(6.45)

which is locally similar to , with the same angular
components, but which has the following practical

advantages over :

(1) It allows a well-posed approximate reconstruc-
tion.

(2) It is a simple steerable filter, in the sense that its
expansion in {cosmϕ} (in the Fourier domain) is sim-
ple and can be truncated at low m, (m = 16).

(3) Its shape is more natural for line detection, since
the objective elongated structures may have some cur-
vature.

See Fig. 6.5 in our technical report [12]. In the next
subsection, we consider a more general, but also more
difficult approach to obtaining (parameterizations of)
proper wavelets.

6.2. A General Approach to Parameterization 
of Proper Wavelet Classes

We will derive ψ and Mψ explicitly in a Fourier
invariant orthonormal base. Some (classes of) proper
wavelets pop up in a very natural way and they are
essentially different from the ones in the previous sec-
tion.
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Notice that �2(�
2) = �2(S1) ⊗ �2((0, ∞), rdr).

Decompose the angular part �2(S1) into irreducible rep-

resentations14:

Let {γmn}n ∈ N in �2((0, ∞), rdr) be an orthonormal base
for each m ∈ �; then (γmn ⊗ Ym)(r, φ) = γml(r)Ym(φ) is an
orthonormal base in �2(�

2; rdr). As a result, we can
expand any wavelet ψ ∈ �2(�

d) in terms of this basis:

(6.46)

By the Bochner-Hecke Theorem (see Appendix A),
the Fourier Transform �[ψ] of the wavelet ψ ∈ �2(�

d)
is given by

with  ∈ �2(�
2; rdr) given by (ρ) =

ρ1/2�m[r1/2gm(r)](ρ), where the unitary Hankel Trans-
form �m: �2((0, ∞))  �2((0, ∞)) is given by (A.83).
Given such a wavelet ψ ∈ �2(�

d), the orientation score
Uf can be written

If the radial functions do not depend strongly on m,
the wavelet will be directed along φ = 0 (and thereby the
rotated kernel will be directed along φ = θ). The real
part of the orientation score (constructed by a real val-
ued wavelet which is even around φ = 0) reveals elon-
gated line structures, whereas the imaginary part (con-
structed by a real valued wavelet which is odd around
φ = 0) reveals elongated edge structures.

The function Mψ: �d  �, which by Theorem 5.5
completely determines the well-posedness of f  Uf ,
is now given by

(6.47)

14 The irreducible representations of commutative groups are
always defined on one dimensional subspace.
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6.2.1. Expansion of y and My in a Fourier Invari-
ant polar base. Although Eq. (6.47) is of rather simple
form, it still includes the operator ρ–1/2�mr1/2. This uni-
tary operator on �2((0, ∞); rdr) has the following com-

plete set of orthonormal eigenfunctions  (for details
see Appendix A):

(6.48)

For m < 0, we define  = . Therefore, we
expand ψ and express Mψ in this angular-irreducible
radially Fourier invariant basis, which are also the eigen
functions of the 2D-Harmonic oscillator15:

(6.49)

In the rest of this section, we will construct wavelets

, with coefficients  = 0, for |m | > N1 and n >
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, i.e.,

such that
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where we recall that �N is given by (6.37). We consider
(6.50) as an equation in variable ψ, determined by its

coefficients  =  and thereby

15 The self-adjoint operators �, �R and the harmonic oscillator ∆ –
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we obtain (w) = �N(ρ) for almost every ρ = ||w|| >
0, if and only if

(6.51)

where the (N2 + 1) × (N2 + 1) positive symmetric matri-

ces  are given by  = , with

where  =  equals the coefficient

of ρ2k in (ρ2), cf. [1].

Now in the left hand side of (6.50), we introduce the
summation index q = |m | + k and assume a–m = am ∈

 for all m, (i.e., the wavelet is symmetric around
its direction); then we obtain

which are N + 1 = N1 + 2N2 + 1 equations for (N1 +
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Example. The special case  = αmδn0. In this case,

N = N1, N2 = 0 and  = . The function Mψ equals

�N (recall (6.37)),

(6.52)

The (up to phase factors unique) solution  of
(6.50) is now given by (αm = 1 for all m)

αm
n

A0
q 1

q!
-----

Mψ w( ) αm 2
hn

m ρ( )( )2

m 0=

N

∑ �N ρ( ),= =

ρ w .=

ψN
0

(6.53)

This series converges uniformly on compacta, but

not in the �2-sense. The real part of this wavelet cor-
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Fig. 8. Top row left: two different viewpoint plots of graphs . Top row right: two different viewpoint plots of graphs

. Bottom row left: three plots of graph �( ). Bottom row right: 100 × 100-pixel grey-value plots of �( )

and Gaussian blurred (with σ = 0.8 pixels). Notice that the kernel becomes sharper and the wiggle-ring vanishes as N increases. The

locally highly oscillatory behavior within �( ), which may seem awkward, is not really harmful since it disappears imme-

diately by convolution with Gaussian kernel with tiny scale (see also (6.54)).
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Fig. 9. Left: The graphs of the kernel (x) cut off at N = 10, 20, 30, 40, 50 with σ = 1/8, restricted to its main direction φ = 0.

Notice that the peaks move out as m increases. Notice that the asymptotic formula derived for (r, φ = 0) =

(8π)1/4  = (8π)1/4  + O  (see Appendix C in [12]) is a good approximation (we included the graph of

r � (8π)1/4 ). Middle: The corresponding functions  = �N, which indeed approximate 1 as N  ∞. Right: Angular vari-

ance of  plotted as a function in N.

ψN
0

ψ∞
0

r 1 1

16r
2

-----------– O
1

r
4

----⎝ ⎠
⎛ ⎞+⎝ ⎠

⎛ ⎞ r r

3
2
---–

⎝ ⎠
⎜ ⎟
⎛ ⎞

r �
ψN

0

ψN
0



60

PATTERN RECOGNITION AND IMAGE ANALYSIS      Vol. 17      No. 1      2007

DUITS et al.

responds to the wavelet first proposed by Kalitzin
[21] as a line detector in medical images. The imag-
inary part is a good edge detector. For plots of the
graph of wavelet ψN for several values of N, see

Fig. 6.2.1 and Fig. 10. The wavelets  have mini-

mal uncertainty in the spatial and frequency domain,
in the sense that

holds with equality. The basis functions z � 

are 2D-minimal uncertainty states with E(w) = 0 anal-
ogously to the Gabor filters in ID-signal analysis. For
details, we refer to our technical report [11] Section 7.5,
pp. 225–228, where we considered minimal uncertainty
states with respect to the Heisenberg group (which is
mentioned above and which is most common in image
analysis), the Euclidean motion group and the simili-
tude group (which are actually more relevant for wave-
let transformations including orientation).

Practical Aspects:
The cutoff index N has a practical upper bound

because of sampling. If N increases, the reconstruction
will become better, but if we choose N too large, the
wavelet behaves badly along φ = 0 (see Fig. 9).

We stress that  is essentially different than the
proper wavelets constructed in the previous subsection:

The wavelet  is clearly not an approximation of the

ψN
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x 2 ψN
0 2
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0

�2 �
2( )

2
----------------------- xd

�
2

∫

× w 2 �ψN
0 w( ) 2
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�2 �
2( )

2
--------------------------------- wd

�
2

∫ 1
4
--- for all N 
∈≥

zm

m!
----------e

z
2

2
-------–

ψN
0

ψN
0

identity as N  ∞, whereas the wavelets constructed
in the previous section are approximations of the iden-
tity as r  ∞. Therefore, the simple approximative
reconstruction from an orientation score Uf constructed

by  to image f, by integration over the angles only
(see (6.40)), is not possible. Thus, we must use the
exact inverse given by (4.31) or (5.36) as a close

approximative reconstruction, where we notice that 

in contrast to  is an approximation of the identity.

The size of the wavelet  can be controlled by

dilation, x � (	σ )(x) = (x/σ). This does effect

�ψ, since 	σ� = 	1/σ�, but, for N sufficiently large,
stability remains guaranteed. Moreover, for large N, the
wavelet can be smoothed by convolving the wavelet
with a relatively small Gaussian kernel:

(6.54)

where α(r, s) = 1 +  ≈ 1 and β(r, s) =  =

O  and  � 1. It is easily verified that ψ � Gs ∗

ψ implies  � G2s ∗ ; so as long as the scale s is rel-
atively small, the Gaussian convolution of the wavelet
is harmless for the stability of the (re)construction.

For more examples of proper wavelets expanded in
eigen functions of the Harmonic oscillator, we refer to
[11] Section 7.5, pp. 223–225.
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Fig. 10. Top row: 1–3; example of line-detector wavelets ψ in practice (discrete impulse response at θ = (13/20)π) at different scales.
For the sake of illustration, the plots of the kernels are zoomed in by a factor of 2. Example of kernel developed for catheter endpoint
detection. Bottom row: the corresponding functions Mψ. Notice that the line detectors have better Mψ and thereby induce a more
stable exact reconstruction than the catheter endpoint detector.
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7. ORIENTATION SCORES ON 3D IMAGES

In this section, we generalize our results on the con-
struction of and reconstruction from orientation scores

of 3D-images f ∈ (�3). Although some generaliza-
tions are straightforward, there arise some difficulties
that did not arise in the 2D case. First of all, SO(3) is not
commutative, so the SO(3)-irreducible representations
are not one dimensional. Secondly, in practice, one is
mainly interested in constructing orientation scores by
“cigar-shaped” wavelets, i.e., wavelets that are invari-
ant under the stabilizer of the north pole, which brings

us to the 2-sphere S2 = . Thirdly, it is not obvious

which discrete subgroup of SO(3) to take and thus the
question arises of how to store the orientation score,
since an equidistant sampling in spherical coordinates
does not make sense.

Let f ∈ (�3) be a band-limited 3D image; then we

define its wavelet transform �ψ[f] ∈  by

We restrict ourselves to the case where the wavelet
ψ is invariant under the stabilizer of the north pole ez,
which is the subgroup of SO(3) consisting of all rota-
tions around the z-axis. So we assume

(7.55)

On SO(3), we define the following equivalence rela-
tion:

The equivalence classes are the left cosets [R] =
RStab(ez), R ∈ SO(3). The partition of all equivalence
classes will be denoted by SO(3)/SO(2), which is iso-
morphic to S2 and therefore not a group. Rather than
using the canonical parameterization given by

(7.56)

of SO(3), we will use the well-known Euler angle
parameterization Y: B0, 2π  SO(3):

(7.57)

which gives us directly an explicit isomorphism

between S2 and :

�2
r

SO 3( )
SO 2( )
---------------

�2
r

�K
G

�ψ f[ ] g( ) ψ R 1– x b–( )( ) f x( ) x,d

�
3

∫=

g b R,( ) G∈ �
3

SO 3( ).×= =

ψ Rx( ) ψ x( ), for all R Stab ez( ).∈=

R1 R2∼ R2( ) 1– R1 Stab ez( )∈⇔ SO 2( ).≡

Ra φ, x( ) φcos( )x 1 φcos–( ) a x,( )a+=

+ φ a x×( ), x a,sin �
3
, φ 0 2π ),[∈ ∈

Y x( ) Rez γ, Rey β, Rez α, ,=

x α γ βsincos α γ βsinsin α βcos, ,( )T ,=

SO 3( )
SO 2( )
---------------

Because of our assumption (7.55), we can define the
orientation score Uf: �

3 × S2  � corresponding to
image f ∈ �2(�

3) by means of

7.1. A Simple Approach
of Constructing 3D Proper Wavelets

To generalize the idea of constructing proper wave-
lets by means of suitable decompositions of the unity as
illustrated in Example 1 in Section 6.1 to the 3D case,
we must discretize S2 in disjoint and equal pieces. To
this end, we consider an icosahedron I, which is the pla-
tonic solid with the most16 faces F = 20. It is dual to the
dodecahedron and has V = 12 vertices and E = V + F –
2 = 30 edges. Let SI be the discrete subgroup of SO(3)
consisting only of rotations that keep I invariant. Let v
be a vertex of I; then |SI ∗ v | = 12 as SI acts transitively

on I. Moreover, StabSI(v) = { : βk = , k = 0,

1, …, 4}, so we have |SI | = |StabSI(v)||SI ∗ v | = 5 ∗ 12 =
60. So the elements of SI are:

• The 24 rotations by , k = 1, …, 4 about the line

passing through a vertex and its opposite.

• The 20 rotations by , k = 1, 2 about the line

passing through the center cj , j = 1, …, 12 of a face and
its opposite.

• The 15 rotations by π about the center of an edge.
• The identity.
Recall that by our assumption (7.55), we are more

interested in a discretization of the two sphere S2 =

 than in a discrete subgroup of SO(3). Rather

than taking all rotation axes of all elements in SI, we
consider all (normalized) center points , i = 1, …,

12 ∗ 2q of the triangles { , , } in a q-th order
(in our example, q = 2) regular tessellation of each face,
which are more uniformly distributed over a sphere. For
every i ∈ {1, …, n}, we define Vi as the unique finite

16 The platonic solids are the tetrahedron, cube, octahedron,
dodecahedron, and icosahedron. Notice to this end that in a con-
vex regular solid in �3 with regular n-gon faces, we have r(n –
2)π/n < 2π, where r is the number of faces meeting at every ver-
tex.

S2 � n β γ,( ) γ βsincos γ βsinsin βcos, ,( )T=

Rez γ, Rey β,[ ] SO 3( )
SO 2( )
---------------.∈

U f b n β γ,( ),( ) �ψ f[ ] b Rez γ, Rey β,[ ],( )=
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Rv βi,
2kπ

5
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2πk
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SO 3( )
SO 2( )
---------------
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volume bounded by the polygons {O, , },

{O, , }, and {O, , } and the unit sphere.
Notice that the unit ball is the disjoint union of these

volumes, so  = . We now define the

smooth wavelets

(7.58)

which typically detect 2D ridges/planes (see Fig. 11).
They allow a stable (re)construction as �ψ �  and
a good approximative reconstruction

since we have (w) = (Gs ∗ )(w), for all

w ∈ �2. Notice that for a sufficiently large s, the iso-
surfaces of Gs ∗ Vi approach a circular cone, which
implies that ψi is nearly symmetric around the z-axis,
i.e., nearly satisfies (7.55). Clearly, the wavelet ψi is the
SD-analogue to the 2D wavelet in example 1 in Sec-

Pi1
Pi2

Pi1
Pi3

Pi2
Pi3

1Vi

i 1=

12 ∗ 2q

∑ 1B0 1,

ψi
r � 1– w � Gs ∗ 1Vi

( ) 1
r
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r 0, s 0,> >

1B0 1,

f b( ) U f b c̃i,( ),
i 1=

12 ∗ 2q

∑≈

� ψi
r[ ]

i 1=

12 ∗ 2q

∑ 1B0 r,

tion 6.1. However, if one wants to obtain a line detector
in �3, one must decompose the unit ball in the Fourier
domain with planar structures rather than line struc-
tures.

7.2. General Approach to Constructing 3D Proper 
Wavelets

Notice that �2(�
3) = �2(S2) ⊗ �2((0, ∞), r2dr).

Decompose the angular part �2(S2) into irreducible rep-
resentations:

where the 3D spherical harmonics  ∈ �2(S2) are
given by

(7.59)

�2 S2( ) 	 l( )

l 
 0{ }∪∈
⊕=

=  θ φ,( ) � Yl
m θ φ,( )〈 〉m l … l, ,–= ,

l 
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× 2l 1+( ) l m–( )!
4π l m+( )!

-----------------------------------------Pl
m θcos( )eimφ

l 
, m∈ l– … l., ,=

x
y

z

Fig. 11. Top row: Icosahedron, spherical projection of second order tessellated icosahedron, volume Vi . Bottom row: (for the sake

of illustration we zoomed in by factor of 2.5) density plots through XOZ-plane and YOZ-plane of the wavelet ψi: �
3  � (ψi

sampled at 128 × 128 × 128 pixels, s = (1/2)σ2 = 6, 2 ∗ r = 80 pixels) given by (7.58), joint contour plot of isosurfaces and ψi(x) =
+0.02 and ψi(x) = –0.02.
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The orthonormal base  ⊗ , for definition 
(see (A.87) in Appendix A), is Fourier invariant (see
(A.88)), so we have

with  = (ψ,  ⊗ . It follows from Weyl’s

Theorem for compact groups (applied to the case
SO(3)) that

and changing the order of integration and summation
(Fubini), that

(7.60)

now it follows from the fact that

Yl
m gn

l gn
l

ψ αml
n Yl

m

m l–=

l

∑
l 0=

∞

∑
n 0=

∞

∑ gn
l ,⊗=

� ψ[ ] αml
n il 1–( )n l+ Yl

m

m l–=

l

∑
l 0=

∞

∑
n 0=

∞

∑ gn
l ,⊗=

� ψ[ ] R 1– w( ) αml
n il 1–( )n l+

m ' l–=

l

∑
m l–=

l

∑
l 0=

∞

∑
n 0=

∞

∑=

× 	 l( )
R( )( )m '

m
Yl

m '( gn
l ) ϕ p,( ),⊗

αml
n Yl

m gn
l )

�2 �
3( )

	 l( )
R( )( )m '

m
	 l̃( )

R( )( )m̃ '
m̃

Rd

SO 3( )
∫

=  
1

2l 1+
--------------δl l̃δmm̃δm 'm̃ '8π2;

�ψ w( ) 4π
αml
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that (7.60) can be simplified to

The only spherical harmonics  which are
invariant under Stab(ez) are the ones with m = 0,

since  =  = ; so under assump-

tion (7.55), the expansion of ψ simplifies to

(7.61)

for almost every x ∈ �3 and w ∈ �3, where we notice
that

(7.62)
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Fig. 12. The wavelet  given by (7.64). From left to right: plots of (x, 0, z), for N = 10, 20, 40 and Gs ∗  = 40(x,

0, z), for tiny scale s, and finally a joined 3D plot of the iso-intensity contours of the rotated 3D kernel ψi(( )–1x) = 0.5,

–0.5, (φ ≈ –  and θ ≈ ).
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The expansion of Mψ now simplifies to

(7.63)

which is the direct equivalent to the third equality of

(6.49)! Again we consider the case  = αlδn0, and

�ψ(w) given by (6.37); then following by ( (r))2 =

 and the Taylor expansion of , we

find the solutions |αl | = . In particular, αl =

 gives the wavelet

(7.64)
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where (θ, φ) = (cosθ)  is independent of

φ. So we have found the SD analogue of the 2D line-
detecting wavelet (6.53) (compare Fig. 12 to Fig. 10).
We stress the practical advantage of the steerability
property of our basis functions (7.61) for computing the
orientation score:

(7.65)

which is of course useful, since once coefficients (  ⊗

,  are computed it is easy to compute Uf(b,

n(β, γ)) for a large number of angles γ, β. For elongated
structure detection via 3D orientation scores, see
Figs. 13 and 14. Another practical advantage of the
decomposition in spherical harmonics is that it
becomes fairly easy to compute the α-scale spaces

(b, n(β, γ), s) [13] of the spherical functions

Uf(b, ·): S2  � for all b ∈ �3 fixed; i.e., (b, n(β,
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Fig. 13. Left: First row N = 8, second row N = 16. From left to right: plots of the wavelet restricted to y = 0: (x, 0, z); the

wavelet restricted to y = 0, x = 0: (0, 0, z); and the restriction of the corresponding �–1(Mψ) =  to y = 0, computed by only

20 sampling points, which are the centers ci of the triangular faces of icosahedron. Right: example of medical application, enhance-
ment of Adam-Kiewicz vessel, in 3D MRI-image by means of power enhancement on the orientation score (see (8.79)) constructed
with wavelet, N = 8, illustrated in the left (upper row).

ψN
0 3D,

ψN
0 3D, ψ̃



PATTERN RECOGNITION AND IMAGE ANALYSIS      Vol. 17      No. 1      2007

INVERTIBLE ORIENTATION SCORES 65

γ), s) is the unique solution (b, n(β, γ), s) of the evo-
lution (diffusion iff α = 1) system

W f
α

∂Wα

∂s
----------- ∆LB–( )αW , α–

1
2
--- 1,∈=

Wα b · s, ,( )
s↓0
lim U f b ·,( ) in �2 S2( )-sense,=⎩

⎪
⎨
⎪
⎧

where ∆LB =  +  +  is the

Laplace–Beltrami operator on S2. The unique solution

(recall (7.62)) of this evolution problem is simply given

by

∂2

∂β2
-------- βcos

βsin
------------ ∂

∂β
------ 1

βsin( )2
------------------ ∂2

∂γ 2
--------

Fig. 14. Illustration of robust line enhancement in 3D images via orientation scores. SD images (64 × 64 × 64) illustrated only by

three different 2D cuts (along xy plane, on z = 2, 12, 22). Orientation scores are constructed with proper wavelet  illustrated

in Figs. 12 and 13. First three rows: first column original image of a straight line and two circular spirals. Parameterized by, respec-

tively, (10 + (0.2)t, 20 + (0.2)t, t), (32 + 10cos , 32 + 10sin , t), and (20 + 12cos , 20 + 12sin , t). In the

second column we added other geometrical structures, some spots and a cube. In the third column, we obtained f1 by adding strong
Gaussian distributed noise on the grey values and in the fourth column the approximative reconstruction. In the bottom three rows,
we added strongly correlated noise, with the following (from left to right): 2D cuts of original SD image f2 = f1 + noise, two elements

(which are SD images) in its orientation score (·, ) = �ψ[f2] (·, ), with  ≈ (–0.19, 0.58, 0.79),  ≈ (–0.30, 0.93, 0.19),

the approximative reconstruction f2 ∗ , and the processed image after simple power enhancement (see (8.79)) in score. We did
not use any thresholding on the grey values (which is by definition an ill-posed operation).
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8. IMAGE ENHANCEMENT BY MEANS 
OF LEFT-INVARIANT OPERATIONS

ON ORIENTATION SCORES

Now that we have constructed an orientation score
Uf from image f, such that it allows a well-posed recon-
struction of f from orientation score Uf , one can think
of suitable operations on the orientation scores.

Let ψ be a proper wavelet; then there exists a 1-to-1
correspondence between bounded operators Φ ∈
�( ) on orientation scores and bounded operators

ϒ ∈ �(�2(�
d)) on band-limited images,

(8.66)

which allows us to relate operations on orientation
scores to operations on images in a robust manner17.

Recall (Theorem 4.4) and Corollary 2 that  is the
space of orientation scores as a closed linear subspace
of 	ψ, which is a vector subspace of �2(G). For proper
wavelets, we have (approximate) �2-norm preservation,
and thus we have �2(G) ≅ 	ψ. In this section, we set
	ψ = �2(G) to avoid technical (irrelevant) subtleties
concerning approximations.

Let Φ: �2(G)  �2(G) be some bounded operator
on �2(G); then the range of the restriction of this oper-

ator to the subspace  of orientation scores need not

be contained in , i.e., Φ(Uf) need not be the orienta-

tion score of an image. The adjoint mapping of :

�2(�
d)  �2(G) (recall definition 5.2) is given by

17 This can be compared with image processing via the Fourier

domain. By the Plancherel Formula  = ,

the Fourier transform �: �2(�2)  �2(�2) has a stable inverse

�–1 = �*, allowing image processing via the Fourier domain.
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G

∫=

U �2 G( ).∈

The operator �ψ = ( )* is the orthogonal

projection on the space of orientation scores . This
projection can be used to decompose the manipulated
orientation score:

Notice that the orthogonal complement ( )⊥,
which equals �(I – �ψ), is exactly the nil-space of

( )*, so

(8.67)

Definition 8.3. An operator Φ: �2(G)  �2(G) is
left-invariant iff

(8.68)

where the left regular action �g (also known as the
shift-twist transformation [30]) of g ∈ G onto �2(G) is
given by

(8.69)

Theorem 8.6. Let Φ be a bounded operator on .

Then the unique corresponding operator ϒ on �2(�
d),

which is given by ϒ[f] = ( )* � Φ � [f] is Euclid-
ean invariant, i.e., �gϒ = ϒ�g for all g ∈ G if and only
if Φ is left-invariant, i.e., �gΦ = Φ�g for all g ∈ G.

Proof. First, we note that

(8.70)

since [�g[f]](h) = (�hψ, �g  =

 = �g[ [f]](h). Moreover,

for all U ∈ �2(G), f ∈ (�d), g ∈ G, and thus we have

(8.71)

Now suppose Φ is left-invariant; then it follows by
(8.70) and (8.71) that
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(8.72)

for all f ∈ �2(�
2) and g ∈ G. So we indeed obtain

ϒ�g = �gϒ for all g ∈ G.
Now suppose Φ is left-invariant. Then we again

have by (8.70) and (8.71) that

for all f ∈ �2(�
2) and g ∈ G. Now, since the range of

 and the range of Φ are contained in  and

since  = ( )–1, we obtain �g � Φ �  =

Φ � �g � . Now the final result follows from the fact

that the range of  equals : �g � Φ = Φ � �g for
all g ∈ G.

Practical Consequences: The euclidean invariance
of γ is of great practical importance since the result
should not be different if the original image is rotated
or translated. So by Theorem 8.6, the only reasonable
operations on orientation scores are left-invariant.
Moreover, by (8.67) it follows that is not a problem

when the mapping Φ:   �2(G) maps an orienta-

tion score to an element in �2(G)\  as long one is

aware of the effect that �ψΦ:    yields the
same result. One can always compute the angle

between Φ(Uf) and  to see how effective the opera-
tion Φ is (In most of our applications the angle was
small).

All linear left-invariant kernel operators Φ:
�2(G)  �2(G) are G-convolution operators. They are
given by

(8.73)

for almost every g = (b, θ) ∈ G. From the practical point
of view (speed), these can be implemented via impulse
response followed by taking the G-convolution. Before
we propose left-invariant operators on orientation
scores, we give a brief overview of the interesting
geometry within the domain G of orientation scores,
which is the Euclidean Motion Group.
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2π

∫
�

2

∫

8.1. Geometry of the Euclidean Motion Group

For any Lie group G, the tangent space Te(G) at the
unity element equipped with the product

where t � a(t) resp. t � b(t) are any smooth curves in
G with a(0) = b(0) = e and a'(0) = A and b'(0) = B, is
isomorphic to �(G). �(G) is the Lie algebra of left-

invariant vector fields on G, i.e., all vector fields  on
G such that

equipped with product

The isomorphism is given by A   ⇔ (φ) =
A(φ � Lg) = A(h � φ(g h)) for all smooth φ: G ⊃ Og 
� and all g, h in G.

In our case, of the Euclidean motion group we have
that Te(G) is spanned by {A1 = eθ, A2 = eξ, A3 = eη} with

(8.74)

(in the spatial plane along the measured orientation)
and

(8.75)

(in the spatial plane orthogonal to the measured orien-
tation). The corresponding left (or shift-twist) invariant
vector fields are given by

(8.76)

It is easily verified that

which coincides with A  . For dimensional con-

sistency, define X1 = A1, X2 = A2, and X3 = A3,

where Z is the width of the image domain (so b1, b2 ∈
[0, Z]). A group element g = (b, θ) can then be parame-
terized using either coordinates of the first {αi}i = 1, 2, 3,
or of the second kind {βi}i = 1, 2, 3:
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Ã
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(8.77)

(8.78)

The coordinates of the second kind correspond to
(θ, ξ, η), since by (8.78): (β1Z, β2, β3) = (θ, R–θb) =
(θ, ξ, η).

8.2. Basic Left-invariant Operations
on Orientation Scores

In image analysis it is well-known that differential
operators used for corner/line/edge/blob detection must
be Euclidean invariant. Mostly, such differential invari-
ants are easily expressed in a local coordinate system
(gauge coordinates) where in 2D one coordinate axis
(say v) is along the isoline/isophote and the other along
the gradient direction (say w) [18].

Rather than putting these gauge coordinates along
isophotes, we propose a local coordinate system along
the measured orientation. Note to this end that in some
medical image applications, the elongated structures
are not along isophotes. So in our orientation scores, ξ
and η play the role of v and w. Moreover, we can dif-
ferentiate along the direction θ and obtain directional
frequencies.

Besides these local left-invariant operators, we can
think of more global left-invariant operators, such as
normalization or grey-value transformations to enhance
certain elongated structures.

Overview of left-invariant operations on orienta-
tion scores:

• Monotonic Grey-value transformations. For exam-
ple

(8.79)

This can be used to enhance the strongly oriented
spots in the score and reduce the noise or weakly ori-
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ented spots in the score (see Fig. 8.2). Note that it does
not correspond to a simple grey-value transformation of
the original image, since in general we have fq ≠
( )*[(�ψ[f])q].

• Normalization. [Φ(Uf)](b, eiθ) = Uf(b,

eiθ)/ , p > 1. See Fig. 8.1.

• Differential operators constructed from left-invari-
ant vector fields. For example, enhancement of elon-
gated structures via Φ(Uf) = ∂ηηUf∂θθUfUf .

• Left-invariant evolution equations generated by
left-invariant vector fields. For examples see Subsec-
tion 8.3.

8.3. Evolution Equations Corresponding 
to Left-Invariant Stochastic Processes 

on the Euclidean Motion Group

Just like the well-known Gaussian scale space satis-
fies the translation and rotation invariance axiom [2],
the following linear evolutions on orientation scores are
left invariant:

(8.80)

where the generator A acting on �2(G) is given by (the
closure of)

(8.81)

The first order derivatives take care of transport
(convection) and the second order derivatives give dif-
fusion. We first consider the case where all Dii’s are
zero and the initial condition is a spike-bundle 
(i.e., one oriented particle). This spike will move over
time along exponential curves, which are straight-lines
in a spatial plane, spirals through G, and straight lines
along the θ direction. By introducing the variables t =

s , λ2 = Z, λ3 = Z, Eq. (8.80) reduces to

Notice that indeed [s] = 1  [t] = 1 and [a1] =
[a2] = [a3] = [length]  [λ2] = [λ3] = [length]. It fol-
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lows by equality (8.78) that the orbit of the Dirac distri-

bution at the initial position (b0, ) is given by

which is for a1 ≠ 0 a circular spiral with radius 

around central point (–λ3cosθ0 + λ2sinθ0 + ,

−λ2cosθ0 – λ3sinθ0 + ), which exactly corresponds to
the results from our numerical implementation. The
solution of the diffusion problem, i.e., a1 = a2 = a3 = 0
in (8.81) is a G-convolution kernel operator with some
positive kernel Ks ∈ �1(G), which can be sharply esti-
mated from above and below by Gaussian kernels on G
(for details see [14]). In the degenerate case a1 = a2 = a3 =
D11 = 0, the diffusion boils down to an ordinary spatial
convolution for each fixed θ with an anisotropic Gaussian
kernel where the fraction of D22 and D33 gives the anisot-
ropy factor of Gaussian convolution along eξ and eη.

The evolution equations given by (8.80) correspond
to stochastic processes. For example, the case a1 = a3 = 0

e
iθ0

b0
1 λ3 t θ0+( )cos θ0( )cos–( )+(

+ λ2 t θ0+( )sin θ0( )sin–( ),    

b0
2 λ3 t θ0+( )sin θ0( )sin–( ) λ2 t θ0+( )cos(–+

– θ0( )cos ),  e
i t θ0+( )

),

λ1
2 λ2

2+

b0
1

b0
2

and D22 = D33 = 0 is the Forward Kolmogorov equation
corresponding to the stochastic process known as the
direction process18 [25]: 

which is the limit of the following discrete stochastic
process:

18 In many later works, Mumford’s final Fokker–Plank equation,
which is physically correct as long as σ2 is the variance in aver-
age curvature , is often misformulated in literature, introduc-
ing dimensional inconsistencies. For example, [30] and [6],
where σ2/2 must be σ.
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Fig. 15. Illustration of image processing via elementary operation on orientation score. Modeling the visual illusion: normalization
of the orientation layers in the orientation scores reveals the most contrasting lines in the triangles.

Fig. 16. Illustration of image processing via elementary operation on orientation score. From left to right: 1, noisy medical image

with guide wire; 2–3, small oriented wavelet ψ with corresponding processed image  = [ ], with  =

; and 4–5, same as 2–3 with relatively larger kernel , where we recall that  was

given by (6.53). For the sake of clarity, the wavelet plots (2, 4) are zoomed in with a factor of 2.
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Just like scale space theory19, a scale space repre-
sentation u(x, s) = Gs ∗ f can be regarded as an isotropic

19 In a scale space representation u(x, s) = Gs ∗ f, the evolution

parameter/scale s =  inherits the physical dimension of the

generator ∆ of the corresponding evolution equation us = ∆u.

Scale can be related to time a diffusion constant D: Dt = s = σ2.

σ2

2
------

1
2
---

stochastic process where the distribution of positions of
grey-value particles (photons) evolves over time (the
well-known Wiener process), evolutions on orientation
scores can be considered as stochastic processes where
the distribution of positions of oriented photons evolves
over time.

The lifetime T of a particle traveling with unit speed
(so T = L) through G is assumed to be negative expo-
nentially distributed (T ~ NE(α), i.e., p(T = t) = αe–αt),

Fig. 17. Example of perceptual organization. From left to right: 1, Original image; 2, detection of elongated structures via orienta-

tion scores Uf:  = [ ] with  = ; 3, inverse transformation of evolved orientation score

[Φ[ ]], where Φ denotes the shooting process by maintaining curvature and direction; and 4, inverse transformation of prob-

ability density of collision of forward and backward process on orientation score (see (8.82)). In contrast to related work [30], we
do not put sources and sinks by hand, but use our orientation scores instead. The only parameters involved are the range of wavelet
t, decay time α, and the stochastic process parameters b1, b2, b3 in (8.81).
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Fig. 18. Top row: Illustrations of output W (equidistantly sampled over 64 × 64 × 64 grid) of directional process (i.e., ai = δi2, Dii =
σδi1), with α = 0.125, σ = 0.08, applied on, from left to right, (slightly blurred) initial 64 × 64 × 64 score δ12δ32δ32, δ26δ32δ32,

δ32δ32δ32, δ32δ45δ45. For the sake of illustration, we integrated over the 64 orientations θ: (b, θk) ≈ (b, θ)dθ, and

thereby showed 2D visualizations of the 3D-impulse responses, which are the Green’s functions of the evolution process. Shift-twist
invariance of the transformation on the orientation score indeed corresponds to Euclidean invariance of the corresponding transfor-
mation on image. Bottom row: impulse responses of δ32δ32δ32 impulse with, from left to right, parameter values a = (a1, a2, a3) =

(4, 1, 0), (4, 0, 1), (4 , 1, 1), and with α = 0.125, applied on initial 64 × 64 × 64 bundle δ32δ32δ32. For the sake of clarity, grey
values have been scaled to full range.
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with expected lifetime E(T) = , because it is memory-

less P(S ≤ τ + s |S > τ) =  = P(S ≤ s),

which must be the case in a Markov process. The prob-
ability density of finding an eiθ oriented particle at posi-
tion b is given by

Consider two independent stochastic processes gen-
erated by A = Conv + Diff, where Conv, resp. Diff
stands for the convection resp. diffusion part of A, given
by (8.81), and its adjoint A* = –Conv + Diff. So the
direction of shooting particles is opposite and the sto-
chastic behavior is similar in the two processes. The
probability-density of collision of particles from these
two processes yields the following left-invariant opera-
tion (see Fig. 17):

(8.82)

9. CONCLUSIONS

Given an image f ∈ �2(�
d), we construct a local ori-

entation score Uf , which is a complex-valued function
on the Euclidean motion group G. The corresponding
transformation f � Uf is a wavelet transform con-
structed from an oriented wavelet and a representation
of the Euclidean motion group onto �2(�

2). Since this
representation � is reducible, the well-known wavelet
reconstruction theorem, which allows perfectly well-
posed reconstruction, does not apply.

Therefore, we generalized standard wavelet theory
by means of reproducing kernel theory. From this gen-
eralization, it followed that our wavelet transformation
is a unitary mapping between the space of bandlimited

images, modeled by � (�2) and the functional Hilbert

space  of orientation scores, which is explicitly

characterized. The norm on  explicitly depends on
the oriented wavelet ψ via a function Mψ, which thereby
characterizes the stability of the explicitly described
inverse wavelet transformation. As a result, by proper
choice of the wavelet ψ, the image f can be recon-
structed from Uf in a robust way. We developed and
implemented several approaches to obtaining proper

1
α
---

P τ S τ S+≤<( )
P S τ>( )

--------------------------------------

p g( ) p b θ,( ) p b θ T, t=( ) p T t=( ) td

0

∞

∫= =

=  α etAU f[ ] b θ,( )e tα– td

0

∞

∫  = α A αI–( ) 1– U f[ ] b θ,( ).–

Φ U f[ ]( ) g( ) A αI–( ) 1– U f[ ] g( )=

× A* αI–( ) 1– U f[ ] g( ).

2
ρ

�K
G

�K
G

wavelets (which are also good line detectors in prac-
tice) in the 2-dimensional case, d = 2. These results are
also explicitly generalized to (and implemented in) the
3-dimensional case, d = 3. These proper wavelets give
rise to a stable transformation from image to orientation
score and vice versa, allowing us to relate operations Φ
on orientation scores to operations ϒ on images in a
robust way. Finally, we show that operations Φ must be
left-invariant in order to obtain a Euclidean invariant
transformation ϒ on images. As an example, we
observe the probability of collision of particles from
two stochastic processes on the Euclidean motion
group, which is used to automatically detect elongated
structures and to close gaps between them.

APPENDICES

APPENDIX A

THE BOCHINER-HECKE THEOREM 
AND THE SPECTRAL DECOMPOSITION

OF THE HANKEL TRANSFORM

Theorem A. 7 Let H be a harmonic homogeneous
polynomial of degree m in d variables. Let F be an ele-
ment of �2((0, r); rd + 2m – 1dr); then the Fourier trans-
form of their direct product (r, x) � F(r)H(x), which is
in �2(�

d), is given by

where ρ = ||w|| and  the Hankel Transform

given by

(A.83)

The proof can be found in [16] pp. 24–25. The Han-

kel Transform �µ, µ =  + m, is a unitary map on

�2((0, ∞), dr) and has a complete set of orthonormal

eigen functions { } given by

(A.84)
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where  is the n-th generalized Laguerrre polyno-
mial of type µ > –1,

with corresponding eigen values (–1)n: (�µφ) =

. The functions  are

also eigen functions of the operator

with eigen value 4n + 2, cf. [15] p. 79, which coincides
with the fact that the Harmonic oscillator ||x ||2 – ∆ com-
mutes with the Fourier transform.

For d = 2, we have �2(�
2) = �2(S1) ⊗ �2((0, ∞); rdr)

and a Fourier invariant orthonormal base is given by

{Ym ⊗ , where

(A.85)

and Ym(φ) = . It now follows by the Bochner-

Hecke Theorem that:

   

        (A.86)

For d = 3, we have �2(�
2) = �2(S1) ⊗ �2((0, ∞); rdr).

All l homogeneous harmonic polynomials are spanned

by {x � rl (θ, φ)}l = 0…∞; m = –l, …, l. Define

(A.87)

then  ∈ �2((0, ∞); rdr) are eigen functions of

ρ−1 r1 with corresponding eigenvalues (–1)n.

Therefore, it follows by the Bochner–Hecke Theorem
that

(A.88)
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APPENDIX B

PROOF OF THEOREM 4.3

We will use the following lemma, which gives a use-

ful characterization of the elements of :

Lemma B.4 Let K be a function of positive type on
� and F a complex-valued function on �. Then the func-

tion F belongs to  if and only if there exists a con-
stant γ > 0 such that

(B.89)

for all l ∈ 
 and αj ∈ �, mj ∈ �, 1 ≤ j ≤ l.
Proof. See [24, Lemma 1.7, p. 31].
From this lemma, it indeed follows that the norm on

 is given by (4.20).

Proof of Theorem 4.3:

First we show that �f ∈  for any element f ∈
H = 〈 〉 and that � is bounded (and therefore continu-
ous). If f ∈ H then

for all l ∈ 
, α1, …, αl ∈ �, and m1, …, mn ∈ �. So

�f ∈  by Lemma B.4 and  ≤ , by

(4.20). Next we prove that � is an isometry. Because
(φm, φm') = K(m, m'), � maps a linear combination

 onto the linear combination K(·, mi). So

�(〈V〉) = 〈{K(·, m)|m ∈ �}〉. Moreover, it maps 〈V〉 iso-
metrically onto 〈{K(·, m)|m ∈ �}), because
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Since 〈V〉 is dense in  and � is bounded on H =

 it follows that � is an isometry. Furthermore,

�[〈V〉] is dense in . So � is also surjective and
therefore unitary.

APPENDIX C

NUMERICAL SCHEME FOR COMPUTING 
RESOLVENT OF EVOLUTIONS

ON ORIENTATION SCORES

We will first explain the numerical scheme for com-
puting W = –(A – αI)–1Uf , with A given by (8.81). This
scheme (which we used in our experiments) is a gener-
alization of the scheme proposed by Jonas August [5]
for the directional process. This scheme is certainly
preferable over the more usual finite difference
approach as, we showed in [12 Appendix G1, pp. 54–
55]. For the sake of clarity in this Appendix, we use the
symbols x = (x, y) rather than b = (b1, b2) for the spatial
variables in G in this Appendix section. Moreover, for
the sake of simplicity, in this section we will write
U(b, θ) rather than U(b, eiθ). Consider the (discrete
Fourier transform) basis functions

j ∈ {0, …, N1}, k ∈ {0, …, N2}, l ∈ {0, …, N3}. Since
the spatial variables in our orientation bundles have the
same dimensions as the spatial variables in the given
X × Y image, we have N1 = X and N2 = Y. Define the

complex-valued constants  by

Notice that by integration by parts

(C.90)

now use the Euler formula cosθ = , and we see

that
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It now directly follows by (C.90) and (C.91) that

(C.92)

with βj, k = π , where the shift operator Sabc, a,

b, c ∈ � is given by Sabc  = . In an
analogous manner, one can verify that

(C.93)

with γj, k = π . By (C.93) and (C.92), it now fol-

lows that

Moreover, it follows by integration by parts that

Notice that the operator A leaves the spaces
{ηj, k, l}l ∈ Z for fixed j, k invariant and thereby the corre-
sponding matrix is a block matrix:

It is now straightforward to compute the matrix αI –
Aj, k with respect to basis , which is a
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5-band sparse matrix. The overall time complexity of
computing W from Uf is O(nlogn), where n = N1N2N3.
In practice, we often first compute the impulse
response/Green function by means of the above algorithm
and then compute the G-convolution20 (8.73).
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