
Abstract

As design processes continue to increase in
complexity, it is important to base process improvements
on quantitative analysis. In this paper we develop an
analytical approach to analyze sequential design
processes using sensitivity analysis. Two applications
illustrate this approach, one involving a Pareto analysis of
an ASIC design process and the other an optimization of a
software design process to determine the lower bound of
the process completion time.

1: Introduction

In order to remain competitive, it is critical for design
houses to be able to continuously monitor and improve
their design processes. Typically, suggestions for process
improvements have been based upon anecdotal data and
designers’ perceptions of process bottlenecks. The danger
of such an ad hoc approach is that costly process changes
can be mistargetted, resulting in little or no improvement.
To avoid such problems, process improvement decisions
should ideally be based upon solid, quantitative analysis.
One source of difficulty, however, is a lack of analytical
tools. In [2], a methodology was presented for monitoring,
modeling, and simulating sequential, iterative design
processes. In this paper, we extend the analytic component
of that work with the development of an efficient approach
to sensitivity analysis. Through sensitivity analysis, it is
possible to identify those features of a design process that
have the greatest impact on overall process completion
time which in turn can assist in making informed decisions
regarding changes.

2: Modeling Process Completion Time

A design process may be defined as a set of activities
that take a design problem from an initial specification to a

finished artifact that meets those specifications. In
between, the design process may be broken down into a
sequence of fundamental, atomic operations ortasks. The
coupling ortransitions that occur between tasks represent
the flow of information that occurs as the process is
executed. These transitions can either push the design
further toward the final state or cause the design to iterate
back toward the initial state to repeat a task or set of tasks.
To quantify design process time, two sets of parameters
are needed: the amount of time spent in each of the
individual tasks, and the likelihood that tasks will be
repeated [2]. Graphically, the design process can be
represented using a directed graph where the nodes
correspond to the tasks and the arcs signify the transitions
between tasks which is illustrated in the example below.

Given both the process structure and the parameter values,
completion time can be estimated either using systems that
employ Monte Carlo simulations [4][5] or through
analytical methods [6]. The analytic completion time
model in [6] serves as a basis for this work, and is
summarized below.

The analytical technique in [6] utilizes the fact that
design process execution can be represented as a reward
Markov chain where each state in the chain represents an
instance when a task is executed. If the reward for each
state is the amount of time needed to perform the task,
then the overall process time can be found by determining
the reward for the overall process execution. An efficient
technique for finding the overall reward involves breaking
the chain into a series of stages where the boundaries of
each stage correspond to the location in the chain when

B

0.3

0.6

tB=5
A

tA=4
C

tC=3
0.71.0 0.4

S F

Figure 1. Example Design Process

Sensitivity Analysis of Iterative Design Processes

E. W. Johnson and J. B. Brockman
Department of Computer Science and Engineering

University of Notre Dame

R. Vigeland
Mentor Graphics Corporation

ICCAD ’96
1063-6757/96 $5.00 1996 ΙΕΕΕ

each task is executed for the first time. The overall process
time is then computed by summing the time remaining
from the beginning task in each stage. For the example in
Fig. 1, this means taking the sum of the remaining time in
Stage 1 from Task A, Stage 2 from Task B, and Stage 3
from Task C. Algebraically, the remaining time spent in a
stage from each task can be represented as a set of linear
equations. For the process shown in Fig. 1, the set of linear
equations for Stage 3 are:

.

In general, the equations can be rewritten in matrix form,
, (EQ. 1)

where is a matrix describing the transition
probabilities in the stage, is the duration of each task
executed in the stage and is the vector of remaining
times in the stage from each task. For our example, the
matrix format for the third stage is

.

Once in this format, Gaussian elimination can be used to
compute the remaining time from the beginning task in the
each stage. The overall process time is then found by
taking the sum of those results.

In some design processes there may be tasks that are
not a part of the main information flow but that are
executed only if an iteration is taken. For example, when a
design error occurs, an extra task might be placed in the
process to analyze or correct that error. We define these
type of tasks asconditional tasks, while the tasks that are a
part of the main information flow will be calledrequired
tasks. The previously described analytic model can be
extended to processes that include these conditional tasks
by modifying how the tasks and transitions are placed in
matrix. Conditional tasks appear first in the matrix
followed by the required tasks as shown in Fig. 2,

where of separate tasks, are conditional and
are required. The off-diagonal elements, , have non-

zero values where coupling between tasks occurs. When a
process contains both conditional and required tasks,
completion time can be calculated using the same
algorithm as outlined earlier. It is important to note,
however, that stage boundaries in the Markov chain occur
only when required tasks are executed for the first time.

3: Calculating Process Time Sensitivities

In general, sensitivities provide an understanding of
how variations in system parameters influence system
performance, and therefore can be used to find optimal
systems. One of the main advantages of analytical
solutions over simulation is that they provide closed-form
expressions for subsequent sensitivity analysis which
represents a substantial savings over sensitivities
computed via finite-differences.

Given the analytical solution for calculating process
completion time, we can efficiently determine how
sensitive the overall time is to changes in the individual
task durations, , and transition probabilities, .
Consider the system of linear equations that describe the
expected time remaining in a stage as shown in Eq. 1. A
direct method for computing the sensitivity of all
components of with respect to a specific parameter is
to differentiate the equation with respect to ,

, (EQ. 2)

rearrange,

, (EQ. 3)

and then solve for the sensitivities, .
To compute the process completion time sensitivities,

the direct method is first applied with the performance
parameters which yields the following equations,

. (EQ. 4)

Then, the overall sensitivity with respect to each parameter
is determined by the summation of the stage sensitivities.

When the sensitivity of one performance output with
respect to various parameters is of interest, theadjoint
sensitivity method [1] can be used to calculate sensitivities
in a more computationally efficient manner. Computing
process completion time sensitivities using the adjoint
method is presented in [3].

4: Pareto Analysis on an ASIC Design Process

One method for identifying areas of improvement is

r3A r3B 4.0+=

r3B 0.3r3A 0.7r3C 5.0+ +=

r3C 0.6r3B 3.0+=

PR T=
P n x n

T
R

1.0 1.0– 0.0

0.3– 1.0 0.7–

0.0 0.6– 1.0

r3A

r3B

r3C

4.0

5.0

3.0

=

Figure 2. General Equation Format

1.0

1.0

.........

1.0

1.0

.........

r1

rn

rm

rm+1

t1

tn

tm
tm+1

Conditional

Required

.......
........

........
.......-pij

-pij -pij

-pij

-pij

-pij

=

 Tasks

 Tasks

n m n m–
pij–

ti pij

R h
h

P
h∂

∂R
h∂

∂P
R+

h∂
∂T=

T
h∂

∂R
h∂

∂T
R

h∂
∂W–

 –=

R/ h∂∂

pij∂
∂R

P
1–

pij∂
∂P

R–=

ti∂
∂R

P
1–

ti∂
∂T

–=

through Pareto analysis. A Pareto analysis ranks the
sensitivities to determine which parameters have the
greatest impact on a specified performance. For design
processes, a Pareto analysis is useful because it determines
which transitions and individual task durations have the
most influence on overall process completion time.

Consider an ASIC design process employed by an
actual design house as illustrated in Fig. 3. Prior to
analysis, a group of designers was surveyed to determine
their design experiences over a dozen different projects.
The information was then normalized to obtain the
average task duration times and transition probabilities.
Using the methods described in Section 2, the completion
time for this process was estimated at 156.2 days or 7.1
months, assuming 8 hour days and 22 working days per
month. Performing a Pareto analysis of the ASIC process
reveals which transitions and task durations have the
largest affect on process time. The five transition
probabilities and task durations with the largest effect are
shown in Table 1 and Table 2.

Table 1 shows that the transition , which occurs after
the “Simulation and Static Timing” task, has the largest
effect on the overall process time. Changing this
probability by one percent would cause the overall process
time to change by almost 12 hours. This iteration loop is
the innermost of the three iteration loops. Intuitively, since
more tasks would have to be repeated, one would suspect

that the outermost loop, caused by the transition,
would have the largest impact on the overall process time.
The larger probability associated with , however,
causes the larger sensitivity. In fact, the structure of the
matrix alone is not sufficient to determine which task or
transition has the greatest impact on the process time. The
dominant sensitivity is highly dependent on the task
durations and transition probabilities themselves. It is also
important to note that transition probabilities continually
change between projects and that the transition may
not always have the most affect on the overall process
time. This illustrates the importance of sensitivity analysis
in helping to identify which tasks and transitions are
critical to the overall process time and that re-employing
sensitivity analysis is necessary for continuous process
improvement.

5: Optimization of a Software Design Process

In general, iteration is required in a process when an
error introduced in one task is not detected until a later
task, causing a task or set of tasks to be repeated until the
error is removed, at least to a degree sufficient for the
quality and performance of the artifact being designed.
The sources of error in design vary widely between design
processes. Errors may result from improper
implementation or interpretation of design specifications.

Table 1. Pareto Analysis of Transitions

Transition Sensitivity

From Task 5 to Task 12 1.43

From Task 7 to Task 12 0.84

From Task 8 to Task 12 0.81

From Task 3 to Task 2 0.66

From Task 11 to Task 13 0.49

p5 12,

Table 2. Pareto Analysis of Tasks

Duration Sensitivity

Task 4 2.34

Task 5 2.34

Task 2 2.00

Task 3 2.00

Task 12 1.34

p7 12,

p5 12,

p5 12,

Figure 3. ASIC Design Process

Partition Write RTL
Code

Simulate
VHDL OK? Synthesize/

Optimize

Simulation
& Static
Timing

Gate-Level
Translation

Gate-Level
Simulation

Vendor
Checks

Fix RTL
Code

Design Transfer
Vendor Layout

and Test
ReSimulate Compare

Results

Correct
Schematic (Done)

Yes

Yes

Yes

Yes

Yes

No

No
No

No

No

(1) (2) (3) (4)

(5)(6)(7)

(8) (9) (10) (11)

(12)

(13)

Correct?

Design

OK?

OK?

OK?

It is possible, in many cases, to reduce the likelihood that
tasks need be repeated by spending additional resources
when they are originally performed. For example,
spending more time up front in the conceptual design of an
artifact can reduce the chances of rework at many stages of
the process. There reaches a point, however, when more
resources may not decrease and in fact cause an increase in
process completion time. An optimization, based on
sensitivity analysis, may help determine this point.

As an example, a group of student designers were
asked to create a software program that met a given set of
specifications (postfix calculator) [2]. The students were
asked to perform the experiment through a common
environment consisting of passive monitors which
monitored their design activities. The software design
process associated with the experiment is shown in Fig. 4.

The two transitions that cause iteration, and ,
occur because of errors introduced in the “Coding” task by
the designer. It was assumed in this experiment that the
conceptual design of the problem was completed before
any coding was started. Therefore no transitions causing
iteration back to the conceptual design task existed. For
this optimization problem, the transition probabilities
due to the error, were assumed to be of the form,

,

where summarizes the design factors and represents
the duration of the task that introduced the error. This form
was determined intuitively based on the observation that
the more time spent in a task, the less likely an error will
be introduced.

Given the functional form for relating task duration to
transition probability, the value of the parameters for
individual designers calculated from design process
metadata were:

An optimization of the form,

(EQ. 5)

where is the total process time,
 is the individual task times and,

 is the probability between tasks ,
was then performed to determine the amount of time that

the designer should have spent in each task in order to
minimize the overall completion time. Because the code
and compile tasks did not introduce errors and the
conceptual design task was first completed, their durations
remained unchanged. The coding task duration, however,
was driven to a value that would minimize the overall
process time. The results show that by increasing the
average coding time from 246 seconds to 1168 seconds,
the overall completion time would decrease by 37 percent.

It is important to note that no causality is implied by
this result; clearlyhow a designer spends the increased
coding time is critical to realizing any decrease in overall
time. A more appropriate interpretation of this result is to
view it as a lower bound on design time, based on the
empirical observation of the relationship between task
durations and the likelihood of error.

6: Conclusions

In this paper we have shown how sensitivity analysis
can be used to identify those mechanisms in design
processes that have the greatest impact on design time.
Because our approach is based on the use of an analytic
model of the process, rather than Monte Carlo simulation,
sensitivities may be calculated more efficiently. Two
applications illustrated the effective use of sensitivity
analysis. In the first application, the sensitivities were
ranked in a Pareto analysis of an ASIC design process.
The results of the analysis showed that it is not always
intuitive to determine which parameters affect process
time. The second application involved using sensitivities
as gradients in an optimization problem to identify a lower
bound on process time for a software design process.

7: References

[1] S. W. Director and R. A. Rohrer, “Automated Network
Design, The Frequency Domain Case,”IEEE Transactions
on Circuit Theory, vol. CT-16, pp. 330-337, August 1969.

[2] E. W. Johnson, L. Castillo, and J. B. Brockman,
“Application of a Markov Model to the Measurement,
Simulation, and Diagnosis of an Iterative Design Process”,
In the Proceedings of the 33nd IEEE Design Automation
Conference, June 1996, pp. 185-188.

[3] E. W. Johnson and J. B. Brockman, “Improving Sequential
Design Processes using Sensitivity Analysis,” Department
of Computer Science and Engineering Technical Report
#96-1, University of Notre Dame, 1996.

[4] J. J. Moder, C. R. Phillips and E. W. Davis,Project
Management with CPM, PERT, and Precedence
Diagramming, Van Nostrand Reinhold, 1983.

[5] A. B. Pritsker, Modeling and Analysis using Q-Gert
Networks, John Wiley and Sons, 1977.

[6] R. P. Smith and S. D. Eppinger, “A Predictive Model of
Sequential Iteration in Engineering Design”,MIT Sloan
School of Management Working Paper, No. 3160-90-MS,
1994.

Figure 4. Simplified Software Process Flow

P32

P42

Code
T2

Conceptual
Design

T1

Compile
T3

Test
T4

p32 p42

pij

pij e
kt j–

=

k t j

k

p32 e
0.0042t2–

= p42 e
0.00017t2–

=

Min TP ti pij,()
ti

TP
ti
pij i and j

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

