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Abstract. While realistic illumination significantly improves the visual quality
and perception of rendered images, it is often very expensive to compute. In this
paper, we propose a new algorithm for embedding a global ambient occlusion
computation within the fast sweeping algorithm while determining isosurfaces.
With this method we can approximate ambient occlusion for rendering volumetric
data with minimal additional cost over fast sweeping. We compare visualizations
rendered with our algorithm to visualizations computed with only local shading,
and with a ambient occlusion calculation using Monte Carlo sampling method.
We also show how this method can be used for approximating low frequency
shadows and subsurface scattering.

Realistic illumination techniques used in digitally synthesized images are known
to greatly enhance the perception of shape. This is as true for renderings of volume
data as it is for geometric models. For example, Qiu et al. [1] used full global illumi-
nation techniques to improve visualizations of volumetric data, and Stewart [2] shows
how computation of local ambient occlusion enhances the perception of grooves in a
brain CT scanned dataset. Tarini et al. [3] observed that perception of depth for large
molecules was significantly improved with the use of ambient occlusion as compared
to standard direct shading methods even when coupled with other techniques such as
depth cueing and shadowing. Recently, a carefully designed experimental study by Wei-
gle and Banks [4] definitively demonstrated that physically-based global illumination
is a powerful adjunct to perspective projection in aiding human subjects to understand
spatial relationships in a complex volume rendered scene. Despite the strong evidence
for its efficacy in conveying spatial information in visualization, the use of global illu-
mination is rare in practical visualization systems. This is most likely due to the high
overhead of existing global illumination rendering algorithms.

In this paper, we provide a new solution for ambient occlusion computation that is
significantly faster than existing techniques. The method integrates well with a volu-
metric ray marching algorithm implemented on the GPU. While not a full global illu-
mination solution, ambient occlusion provides a more realistic illumination model than
does local illumination, and permits the use of realistic light sources, like skylights. For
accelerating our ray marching algorithm, we build a volumetric signed distance field
using the fast sweeping method, and we embed our ambient occlusion approximation
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directly into the sweeping algorithm. Thus, our algorithm can produce an ambient oc-
clusion estimate with only a minor computational overhead. We are also able to use
our approach to approximate low-frequency shadows due to direct illumination from
certain angles, and to approximate subsurface scattering effects.

1 Background

Since our method combines an ambient occlusion computation with the fast sweeping
method, in this section, we briefly overview the fast sweeping method, and ambient
occlusion, and review previous work on computing ambient occlusion.

1.1 Fast Sweeping

The aim of fast sweeping is to build a volumetric signed distance field from volume
data, for a specified isolevel. This defines a surface in 3D as the zero distance level set
of the field, with all cells away from this surface containing the minimum distance from
that cell to the surface. This distance field is commonly used as an aid in speeding the
process of isosurface rendering using methods such as ray-marching. The fast sweeping
method was introduced by Zhao [5] as a linear time alternative to the fast marching
method [6] for computing a signed distance field.

The fast sweeping method can be divided into two distinct steps, as indicated in
Fig. 1. First, the distance values of all grid vertices are initialized to positive infinity.
Then, all vertices that participate in grid edges with exact zero-crossings of the isolevel
(grey curve in the figure) are updated to their interpolated distance from the isolevel
(open vertices in the figure).

Fig. 1. The fast sweeping method for building a dis-
tance field to the zero level set (grey curve) in 2D.
The open vertices indicate voxels initialized by direct
distance computation. The closed vertices show the
sweeping order of voxels for one diagonal sweep.

The second step conceptually consists of multiple diagonal sweeps that update the
distance values from the distance values of neighboring vertices. In Fig. 1, the filled
vertices show the order of vertices visited by one diagonal sweep, starting from bottom-
left towards the top-right (the scanlines are numbered according to sweeping order).
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This would be followed by a sweep back from the upper-right to the lower-left, and
then sweeps in both directions along the other diagonal. 3D fast sweeping uses eight
similar diagonal sweeps. In actual implementation, it is usual to arrange the algorithm
so that iterations are across the columnar directions in the volume, instead of along
diagonals.

During a sweeping operation in 3D, we consider the current distance field values
D(P) at three neighboring vertices of each vertex P in the grid. These three neighboring
vertices are the ones that are visited before P depending on the current sweeping direc-
tion. Table 1 shows the sweeping directions and formulations of neighboring vertices
P2, P}, and P% for each sweep s, through a cubic grid whose spacing is .

Table 1. Sweeping Directions and Neighboring Positions

s Sweep Direction P Py P

I (LL1D)  P— (0,0 P=(0,,0) P—(0.0.%)
2 (LL1)  P+(h0,0)P—(0,40) P—(0,0,h)
3 (1-L1)  P—(1,0,0) P+(0,4,0) P—(0,0,h)
4 (1-1,1) P+ (h0,0) P+(0,40) P—(0,0,h)
5 (L)  P—(h0,0)P—(0,h0) P+(0,0,h)
6 (L1-) P+(10,0)P—(0,h0) P+(0,0,h)
7 (1-1-1)  P—(h,0,0) P+ (0,h,0) P+(0,0,h)
8§  (-1-1-1) P+ (h0,0) P+(0,k,0) P+(0,0,h)

For each vertex, the distance field D(P) is updated as the minimum of its current
value and a new distance estimate d, calculated from the existing values D(PY), D(PY),
and D(P?) of the indicated three neighbors. To calculate the new estimate, these three
distances are sorted into ascending order, and renamed d, d;, and d3. Then

si=a1+h if|S1‘<az,
5 \/2h2 2 .
d=<{ 50 = atart (@1=az) if |s2] < a3, (1)

a1+a2+a3+\/3h (a1—a2)?—(ay—a3)*—(ar—a3)?
3

53 = otherwise.

1.2 Ambient Occlusion

Ambient occlusion was first introduced by Zhukov et al. [7] as a better approximation
to ambient light than the constant ambient term used in many local illumination models.
Ambient occlusion on a point P with surface normal N is defined as

A®N) = [ v(P0)s(N.0)do, @)

where Q is the unit sphere, V (P, ) is the visibility function accounting for occlusion
and scattering along direction ®, and g(N, ®) = max(N - ®,0) is the geometry term.
In this formulation, ambient occlusion corresponds to illumination due to an isotropic
skylight including global shadows cast by surrounding objects (i.e. occlusion). It is the
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computation of the visibility function for all directions that makes the ambient occlusion
computationally intensive.

The typical way of solving Equation 2 is through Monte Carlo integration using
raycasting for a binary decision of visibility in a chosen direction (if the ray hits any
object visibility is zero in that direction, otherwise it is one). This approach requires
many samples to reduce noise and it is very slow, especially when the integration is
performed for all pixels of an image. Therefore, for real-time visualizations of static
objects, ambient occlusion is often precomputed.

A popular alternative to Monte Carlo integration for ambient occlusion is precom-
puting shadows from multiple directional light sources (such as in [8, 9]). While this
method can be faster, depending on the number of light directions and the complexity
of the scene, it tends to produce undesired aliasing artifacts instead of noise.

For ambient occlusion in dynamic scenes, researchers have proposed different ways
of keeping volumetric ambient occlusion fields around moving objects [10—13]. How-
ever, the initial computation of the ambient occlusion values is handled through a long
precomputation step, similar to previous approaches.

For the purpose of ambient occlusion, Bunnell’s [14] method represents each vertex
in the scene as a planer disk called a surface element. The ambient occlusion com-
putation is performed for every vertex by considering the contributions of all surface
elements. Since the complexity of this algorithm is O(n?), where n is the number of
surface elements, it is not suitable for scenes with high resolution surfaces.

Shanmugam and Arikan [15] used nearby pixels for computing local occlusion in-
formation. They precompute an expensive spherical representation of the model for
distant occlusion information. Ritschel et al. [16] also used only local occlusion in-
formation derived from the nearby pixels in the image space. Their method does not
account for global occlusion. Salama [17] proposed a multipass algorithm that precom-
putes a set of random directions and runs a GPU-based Monte Carlo raycasting.

2 Occlusion Sweeping

We compute an approximate ambient occlusion solution using eight sweeps of the fast
sweeping method. During each diagonal sweep s, we compute the ambient contribu-
tion for each voxel from the corresponding octant of the sphere €2,. The final ambient
occlusion is the sum of all of these eight octants, given by

A;(P,N) = A V(P,w)g(N,w)dw . 3)
s
Notice that the only difference between Equation 2 and Equation 3 is the integration
domain.

To simplify the computation of this equation, we introduce three theoretical simpli-
fications. First, we approximate the visibility function within an octant by a constant
value V;(P). This implies that all of the light rays arriving at point P from the same oc-
tant are occluded the same amount. Using this simplification, we can take the visibility
function outside of the integral and approximate ambient occlusion for the octant as

As(P,N) = Vy(P)Gy(N) , ©)



Lecture Notes in Computer Science 5
where G;(N) is the integrated geometry term
6N = | s(N.w)do. 5)

In this formulation G(N) depends solely on the surface normal and can be easily pre-
computed. Therefore, all we need to compute to find the ambient occlusion is the visi-
bility approximation of the octant for each voxel.

Our second simplification provides a fast estimation to V(P) of the voxel at P by
approximating it as a combination of the visibility at three neighboring voxels. These
voxels, Py, P}, and PZ, are the three of the six neighbors of the voxel at P given in Ta-
ble 1. We multiply the visibility values at these neighboring voxels by the transmittance
7(P) through these voxels to account for the light that is occluded within these voxels.
As aresult, our visibility estimation becomes

1 , ,
VaB) = 5 [V (B) £(PY) + Vo (B) () + V() (%)) (©)
Finally, we approximate the value of the transmittance function using the distance

to the level set surface D(P). We define the transmittance function to be

0 if D(P) < -4
tP)=9 2P 1 i b oppy<t . 7
1 if D(P) > 4

To summarize, in our occlusion sweeping method, we visit each voxel eight times in
eight diagonal sweeps. Each sweep computes the visibility function for the octant that
is on the opposite side of the sweeping direction, using Equation 6. Table 1 gives the
ordering of sweeping directions and the neighboring voxels used in the calculations. The
order in which the voxels are visited in a particular sweep is chosen to assure that the
visibility functions at the corresponding neighboring voxels of P are computed before
P. This whole computation can be easily implemented as a part of the fast sweeping
method for building a signed distance field. Notice that even though we use the distance
field values in Equation 7, the distance values within the range [—’2—’, %] are set during
the initialization step. Therefore, we can use the distance field to evaluate T(P) while
building the distance field itself.

3 Implementation and Results

For demonstration purposes, we implemented our method within a single pass, GPU-
based, ray marcher. The volumetric distance field and the ambient occlusion terms are
precomputed offline, and stored as 3D textures on the GPU. A single ray is then marched
for every pixel on the screen. If the ray hits a surface, hit position P is returned along
with the gradient of the distance field, which is used as the surface normal N. Since N
is computed on the GPU per pixel (as opposed to per voxel of the dataset), Equation 4
needs to be evaluated separately for each octant at runtime. Therefore, we store the eight
V(P) fields as color channels in two 3D RGBA textures.
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Since the eight integrated geometry terms G;(N) depend only on the surface normal,
they can be precomputed once and stored in the color channels of two 2D textures
(Fig. 2). The x and y coordinates of N then serve to determine the texture coordinate for
lookup. These are shown in Fig. 2.

diFERNw

Fig. 2. Precomputed geometry term G(N), stored as eight channels in two 2D RGBA textures.

Since ambient occlusion does not correctly account for inter-reflected light, as in a
full global illumination calculation, images can be overly dark. To overcome the extra
darkening, we applied gamma correction directly to our ambient occlusion estimation as
a post-processing operation, computed as A < A(P,N) 177 We use Y =2 for all gamma
corrected images in this paper.

SYSS

Local illumination ~ Occlusion Sweeping OcclusionSweeping Monte Carlo Reference
(gamma corrected)

Fig. 3. A simple 100 x 100 x 100 dataset for demonstrating the validity of our algorithm, where
we compare our occlusion sweeping results to local illumination and Monte Carlo reference.

To test the validity of our ambient occlusion estimation, we prepared the simple
100 x 100 x 100 voxel dataset shown in Fig. 3, and rendered it using local illumination
only, our occlusion sweeping method, and with a Monte Carlo ray tracer. The precom-
putation of ambient sweeping took only a fraction of a second, while the Monte Carlo
reference image was rendered in several minutes. Both the occlusion sweeping and
Monte Carlo images are arguably much more effective than the local illumination im-
age in depicting the depth relationships of the various objects in the scene. It can also
be seen that occlusion sweeping provides a good estimate for ambient occlusion, in that
the dark areas and shadows correspond well to the those in the Monte Carlo reference
image.

While occlusion sweeping greatly improves the illumination as compared to lo-
cal illumination, there are two inaccuracies introduced by our simplifications. Ambient
sweeping produces soft diagonal shadows, which are especially visible on the flat walls
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of the images in Fig. 3. Secondly, ambient sweeping produces a glow effect along sharp
edges. While this can be interpreted as a useful visualization feature (as argued by Tarini
et al. [18]), it actually originates from our transmittance function 7(P) in Equation 7.
Since 7(P) is directly computed from the distance field D(P) and it does not depend on
the octant, neighboring voxels on a flat surface end up partially occluding each other.
While this effect darkens flat surfaces, sharp features are not affected as much and ap-
pear brighter.

Fig. 4, shows a comparison of local illumination to our ambient occlusion solution
for a vorticity isosurface within a lightning cloud simulation dataset. As can be seen
from this figure, ambient occlusion greatly improves depth perception and the global
shape of this complicated surface becomes easier to understand. In Fig. 4, we provide
a comparison of the gamma corrected occlusion sweeping to a Monte Carlo reference
image for the same dataset. Notice that on a complicated surface like this one, the di-
agonal artifacts of ambient sweeping are not visible, while the darkening of flat regions
emphasizes sharp local features.

Local Illumination Occlusion Sweeping (gamma corrected) Monte Carlo Reference

Fig. 4. Comparison of occlusion sweeping to a Monte Carlo reference.

Fig. 5 shows another dataset that contains capillaries from the mouse brain (cerebel-
lum). Notice that ambient occlusion with our method significantly improves the percep-
tion of the thread-like 3D vascular structure, while using only local illumination makes
the image look flat and visually confusing.

In our experiments, we noticed that local features can be further emphasized by
dropping the geometry term G;(P) from Equation 4. In this case the visibility fields of
all eight octants can be combined to form a scalar ambient occlusion field, significantly
reducing the memory requirements. Fig. 6 shows such an example where it can be seen
that sharp features appear brighter when the geometry term is dropped.

With our occlusion sweeping technique, we can also produce more natural illumina-
tion conditions than those produced by an isotropic skylight. For example, in Fig. 7 the
surface is illuminated through only top four of the eight octants, emulating the lighting
conditions of a cloudy day.



8 Mayank Singh, Cem Yuksel, and Donald House

Local Illumination Occlusion Sweeping Occlusion Sweeping
(gamma corrected)

Fig. 5. Vascular data of capillaries from the mouse brain (cerebellum) with different illumination
methods. The dataset is about 0.5mm across and the capillaries occupy less than six percent of
the overall tissue volume. The data is sampled on a 256 x 256 x 256 grid.

Occlusion Sweeping Occlusion Sweeping without G

Fig. 6. Ambient sweeping with and without the geometry term. Notice that the images are very
similar. Eliminating the geometry term G;(N) makes edges and sharp features slightly brighter.

Table 2 provides timing information for our ambient occlusion precomputation, for
five different data sets of varying sizes. The timings are computed on an Intel Core2
(2.66 GHz) machine with 4 GB RAM and NVidia GeForce 8800 GTX graphics card.
Our method adds an overhead of from 30% to 100% to a standard fast sweeping calcula-
tion, which we believe to be bounded by memory access time, and not by computation.
This is actually only a minor overhead to the full rendering calculation, as this compu-
tation needs to be done only once per viewing session.

4 Other Illumination Effects

4.1 Low-frequency Shadows

In our method, the result of ambient occlusion from each octant corresponds to low-
frequency shadows from an area light source. The assumed directions of the light source
is in the opposite direction to the sweeping direction. In this sense, our ambient occlu-
sion solution can be thought of as the combination of low-frequency shadows from
eight area light sources.
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Fig. 7. Occlusion sweeping with lighting from only the top four octants, emulating the lighting
conditions of a cloudy day. The image on the right is gamma corrected.

Table 2. Computational time (in seconds) for sweeping the dataset

NX NY NZ ‘Without Occlusion‘Combined Occlusion‘S Octant Occlusion

101 101 61 0.72 0.91 1.01
100 100 100 1.06 1.386 1.52
150 150 150 3.86 6.52 7.78
200 200 200 9.56 17.12 23.43
250 250 250 23.26 39.66 46.64

Fig. 8 shows a comparison of ray traced hard shadows to low-frequency shadows
using a single octant of occlusion sweeping. While for simple datasets hard shadows
can provide good depth cues, for more complicated datasets they are not as suitable.
A complicated example comparing hard shadows to our low-frequency shadows are
shown in Fig. 9. Notice that hard shadows of this complicated dataset produces addi-
tional high-frequency features, while our low-frequency shadows do not interfere with
the actual data.

While the intensities of each of these eight light sources can be adjusted at run time,
their positions are attached to the grid. For computing low frequency shadows with our
technique from an arbitrary direction, one needs to rotate the grid on which the ambient
occlusion is computed. While the ambient occlusion grid can be easily rotated indepen-
dent of the distance field grid, changing the light direction requires recomputation of
the occlusion values with a new sweep. However, the size of an area light source cannot
be adjusted as it is a function of the grid resolution.

4.2 Subsurface Scattering Effects

Subsurface scattering accounts for the light that enters a translucent surface and scat-
ters within the object. For visualization purposes, subsurface scattering can be used to
provide visual cues to the thickness of an object.

With a slight modification to our fast occlusion sweeping technique, we can achieve
a subsurface scattering effect for materials with strong forward scattering. We perform
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Ray traced shadows Low-frequency shadows

Fig. 8. Comparison of hard shadows computed using ray marching on the GPU to low-frequency
shadows generated by our occlusion sweeping method.

Ray traced shadows Low-frequency shadows

Fig. 9. Comparison of hard shadows computed using ray marching on the GPU to low-frequency
shadows generated by our occlusion sweeping method for the vascular data in Fig. 5.

this by replacing the transmittance functions 7 in Equation 6 with translucent transmit-
tance functions T4y, such that

Ttrans(P) =1- (1 - T(P)) @, ®

where « is a user defined opacity parameter between 0 and 1. Decreasing o values
permit more light to penetrate through the surface, effectively softening the shadows of
ambient occlusion and allowing surfaces to be lit from behind via forward scattering.

However, the geometry term g(N, @) in Equation 2 and the integral of the geometry
term over an octant G(N) eliminate the illumination contribution from the opposite di-
rection of the surface normal. Therefore, for backward illumination from forward scat-
tering, we need to modify the geometry term. We can easily achieve this by redefining
itas g(N,0) = |N- 0|
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@ a=1 (b) x=0.6

Fig. 10. With decreasing & values subsurface scattering effects become more prominent.

Fig. 10 shows examples of the subsurface scattering effect computed with our method.
Notice that subsurface scattering makes thinner parts of the object brighter giving a vi-
sual cue indicating how deep the object is beyond the visible surface.

5 Conclusion

We have presented a new method, which we call occlusion sweeping, for the fast com-
putation of ambient occlusion in the rendering of volumetric data. Unlike a full global
illumination solution, our method produces approximate ambient occlusion in time that
scales linearly with the size of the data set. Since it uses only volumetric calculations,
its time complexity is not affected by the geometric complexity of the data. Further, it
integrates very easily into the fast sweeping method for determining a signed distance
field in a data volume. Therefore, our method should be particularly useful for visu-
alization applications that use ray-marching through a distance field. In addition, our
method permits other illumination effects like soft shadows and sub-surface scattering,
both of which provide essential visual cues that enhance spatial perception.

As future work, we would like to explore other formulations for the visibility com-
putation and experiment with more accurate transmittance functions to reduce or elim-
inate the illumination artifacts produced with our current algorithm.
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