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Wave Mode Conversion in 
Stiffened Cylindrical Shells With 
Periodic Axial Curvature 
Free wave propagation in periodically stijfened cylindrical shells is investigated 
using a periodic finite element method developed by the authors. The modification 
of longitudinal wave modes was a primary objective because of their long wavelengths 
and poor attenuation characteristics. Cylinder configurations that utilize periodic 
axial curvature are examined and are shown to have significantly more coupling 
between longitudinal andfiexural wave modes than cylinders without axial curvature. 
This coupling significantly modifies the stop and pass band behavior. 

In this paper, the periodic finite element method is first reviewed. The method is 
then applied to a one-dimensional periodic structure consisting of circular beam 
sections. The longitudinal/flexural wave mode conversion in this simple structure is 
illustrated. Finally, results for cylindrical shells with and without axial curvature are 
presented. 

1 Introduction 

Ribbed stiffened cylindrical shells are commonly used as 
primary structural components in numerous aerospace and naval 
applications. In these applications, the structural acoustics prop
erties are often of primary concern. Assuming that the stiffeners 
are equally spaced, the wave propagation characteristics can 
be studied using specialized techniques for spatially periodic 
structures. 

Free wave propagation in stiffened cylinders has been studied 
by several investigators. Hodges et al. [1] used a Rayleigh-
Ritz technique to predict wave propagation in circumferentially 
stiffened cylinders. Their approach included two degrees of 
freedom to describe stiffener cross-sectional deformation. Their 
results demonstrate the importance of stiffener cross-sectional 
deformation even at low frequencies. Mead and Bardell [2] 
developed an exact solution technique for wave propagation in 
cylindrical shells with discrete circumferential stiffeners. Stif
fener cross-sectional deformation, however, was not considered 
in their solution. These studies have been limited to circular 
cylindrical shells of constant radius. 

Torsional wave mode coupling in a clad rod with multiple 
periodic interface corrugations has been investigated by Asfar 
and Hawwa [3] using an asymptotic approach. The ability to 
enhance the filtering characteristics of the waveguide by chang
ing the properties of the interface corrugations is examined. In 
the present study, free wave propagation in stiffened cylindrical 
shells with periodic axial curvature are considered using a finite 
element method developed previously by the authors [4, 5] . 
The purpose of this configuration is to enhance the coupling 
between longitudinal and flexural wave modes. Attenuation of 
these waves due to material damping is inversely proportional 
to their wavelengths. Because of their long wavelength, longitu
dinal modes propagate over large distances with little attenua
tion. When these wave modes encounter a structural discontinu
ity, scattering occurs which often results in significant acoustic 
radiation. In the present study, coupling of longitudinal and 
flexural wave modes due to periodic axial curvature is examined 
and the associated stop and pass band characteristics are identi
fied. 
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Before considering the cylindrical shell, a simpler structure 
consisting of periodic circular beam segments (Fig. 1) was 
analyzed to explore this concept. An exact solution for free 
wave propagation in this structure was developed. The results 
from the exact solution are compared to the finite element ap
proach in order to provide independent verification of the finite 
element results. 

2 Methodology 
The exact solution and periodic finite element solution are 

first developed for analysis of wave propagation in the periodic 
circular beam structure. The transfer matrix approach developed 
by Signorelli and von Flotow [6] for one-dimensional periodic 
trusses is used for both. The finite element approach is then used 
to analyze axial wave propagation in axisymmetric stiffened 
cylinders as a function of circumferential wave number. 

2.1 Wave Propagation in One-Dimensional Periodic 
Multi-Coupled Structures. A single circular beam section 
and the corresponding finite element model are shown in Fig. 
2. For the exact solution, an exact dynamic stiffness matrix 
relating the left (L) and right {R) displacements and forces is 
found. For the finite element solution, the corresponding dy
namic stiffness matrix is obtained by assembling the stiffness 
and mass matrices &sD = K M. The finite element model 
contains internal (/) degrees of freedom (DOF) in addition to 
the left and right DOF. For both solutions, the transfer matrix 
is obtained by partitioning the dynamic stiffness matrix D into 
left, right, and internal DOF. The exact solution is a special case 
where the internal DOF are absent. The partitioned equations are 
written as 

(1) 

where the internal forces F, = 0 for free wave propagation. The 
internal displacements Q, are eliminated as follows 
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Substituting Eq. (2) into Eq. (1) yields 
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0.350-

where 

Fig. 1 Periodic circular beam structure 

H,„„ = D,„„ - D,„iDii'Di„ m,n = L,R (4) 

For the exact solution, the second term involving the internal 
DOF is absent and the result is simply H,„„ = D,„„. 

The transfer matrix T is obtained from Eq. (3, 4) by relating 
the right displacements and forces to those on the left 

where 

T = 
HRRH LRHLI^ — HuL 

HlR 

'HRRH LR 

The wave propagation characteristics of a periodic structure 
are given by Floquet's theorem. For the one-dimensional struc
ture considered, Floquet's theorem is written as 

[".}-"[ (7) 

where // is the propagation constant. Subtracting Eq. (7) from 
Eq. (5) results in the following linear eigenvalue problem for 
determination of the propagation constants. 

[T-e"!] 
Qi 

= 0 (8) 

The propagation constants are frequency dependent and, in 
general, are complex. The real part of the propagation constant 
jiK, called the attenuation constant, gives the amplitude decay 
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Fig. 3 Comparison of PFEM and exact solution for a = 10 deg 

over one periodic spacing. The imaginary part [i,, known as the 
phase constant, gives the phase change of the travelling wave 
over one periodic spacing. 

2.2 Exact Solution for Periodic Circular Beam Struc
ture. In this section the exact dynamic stiffness matrix D 
for the circular beam .structure will be found. The governing 
equations for harmonic vibration of a circular beam are given 
by 

r + 4- n^l) = 0 

dv ^, d''w 

de ^ dd* 
n^w = 0 

(9) 

(10) 

^, Eh dv \ ,^ 

where 

de 

Qo = 
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\2a^ d0^ 

Et^ d^w 

na' dO' (11) 

\2a' 
n^ = 

and V and w are the tangential and radial displacements, respec
tively. Equations (9) and (10) are a special case of the equations 
of motion for a cylindrical shell where there is no axial (z) 
dependence. Seeking a solution in the form 

Fig. 2 (a) Circular beam, (b) FE model v(9) = Ve'''" w(9) = We" (12) 
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leads to the following sixth order polynomial for k 

k"" - n^k" 91 k' + j,in'-i) = o (13) 

The roots of Eq. (13) are found by substituting s = k^ and 
using the exact solution for the roots of a cubic equation in s. 
The following relationship between the amplitudes of the two 
displacement components is also found 

' in' - kj) 
7 = 1, 6 (14) 

This relation is used to eliminate the tangential displacement 
terms V, from the formulation. 

The dynamic stiffness matrix is found by relating end dis
placements Q to end forces F. First the displacements at the 
left and right ends of the circular section are prescribed. This 
is written as 

where 

[R]{W} = {Q] 

{ f i } ' = [VL, Wt, 4>i^, V,i, Wfl, <^K] 

IW}'' = [Wu W2, W3, W4, Ws, Wf,] (16) 

and (j) = (l/a){dw/dd) is the end rotation and R is a known 
matrix derived from the solution given in Eq. (12). Next the 
end forces are expressed in terms of Wj 

{F} = IS]{W} (17) 

where 

{F]'''=[N^,V^,M„N^,V^,Mj,] (18) 

and 5 is a known matrix derived from Eq. (11), (12) and 
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Fig. S Propagation constants for a = 20 deg 
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(14). Substituting Eq. (15) into Eq. (17) gives the following 
expression for the dynamic stiffness matrix d. 

[d] = [S][Rr (19) 

Fig. 4 Propagation constants for a = 10 deg 

The quantities in Eq. (19) are in the local polar coordinate 
system shown in Fig. 2(a) . The global dynamic stiffness matrix 
is D = k^dk where X. is a rotation matrix relating the local 
polar coordinate system [Fig. 2(a)] to the global system [Fig. 
2(b)] at the left and right ends. Although the solution is not 
written explicitly in closed form, the solution is considered 
exact since no numerical approximations are used. 

2.3 Axial Wave Propagation in Axisymmetric Stiffened 
Cylindrical Sliells. For axisymmetric stiffened cylinders, the 
one-dimensional finite element formulation can be used to deter
mine axial propagation constants yÛ  as a function of circumfer
ential wave number n (Bennett and Accorsi, 1993). In this case, 
the assembled stiffness and mass matrices for the axisymmetric 
model are functions of n, and the dynamic stiffness matrix is 
written as D{n) = K(n) - uj^M(n). 

3 Results 

Propagation constants for the periodic circular beam structure 
were evaluated using the exact solution and finite element ap
proach. These results can be best understood by comparison 
with an infinite straight beam with longitudinal and flexural 
wave modes. For a straight beam, there are two propagating 
longitudinal waves, two propagating flexural waves, and two 
nonpropagating flexural waves at all frequencies. Each wave 
pair corresponds to equal left and right waves. 

Propagation constants for the circular beam structure were 
evaluated as a function of nondimensional frequency (0 < fi 
=s 5) using the material properties of steel and a thickness to 
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Fig. 6 Propagation constants for a = 30 deg 

radius ratio tia = 1/50. Results are given for a subtended angle 
of a = 10 deg, 20 deg, and 30 deg (see Fig. 1). For these 
properties, the nonpropagating flexural waves remained virtu
ally unchanged from the straight beam results. However, the 
propagating longitudinal and flexural modes become coupled 
in certain frequencies ranges resulting in new stop bands (non
zero flit) that are not present in the straight beam case. 

Propagation constants predicted by the periodic finite element 
method (PFEM) and exact solution are shown for a = 10 deg, 
in Fig. 3. For the real part, only the new stop bands caused by 
the periodic circular geometry are shown. Two approximations 
apply to the PFEM. First, polynomial shape functions are used 
to generate the stiffness and mass matrices, and secondly, the 
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Fig. 7 Harmonic analysis of periodic circular and straight beam 
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circular geometry is approximated by facetted straight beam 
elements. The comparison is shown using only two and four 
elements. For two elements, the PFEM results agree poorly with 
the exact solution over the entire frequency range. For four 
elements, the PFEM results agree well with the exact solution 
for low frequencies but deviate at higher frequencies. These 
results demonstrate the validity of the PFEM when adequate 
model refinement is maintained. 

The real and imaginary parts of the propagation constants 
predicted by the exact solution are shown in Fig. 4 for a = 10 
deg. For the imaginary part, the propagating longitudinal and 
flexural modes for a straight beam (dashed lines) are shown 
for comparison with the periodic circular beam (solid lines). 
For the straight beam, the wave numbers k are plotted as princi
pal values of the phase constant (0 < ^; < TT) where fx, = ikl 
and / is the length of the periodic spacing. The motion associated 
with each wave mode for the circular periodic structure can be 
determined from the eigenvectors of Eq. (8) . The primary mo
tion associated with the new stop bands have been labelled in 
Fig. 4. The first new stop band (1.25 < 0 < 1.85) corresponds 
to both longitudinal and flexural motions with the two propaga
tion constants being complex conjugates. In the second stop 
band (1.85 ^ 17 :s 2.35), the flexural propagation constant is 
real and the longitudinal propagation constant is imaginary. In 
the third stop band (4.05 s H < 4.25), the flexural propagation 
constant is complex (with fj,j= w) and the longitudinal propaga
tion constant is imaginary. 

The propagation constants for a circular beam with angles a 
= 20 deg and 30 deg are shown in Figs. 5 and 6, respectively. 
The general behavior described previously is seen in these re
sults; however, the coupling of the longitudinal and flexural 
wave modes becomes much stronger resulting in more new stop 
bands and greater deviation from the straight beam case. A 
comparison between the PFEM using 10 elements and the exact 
solution is shown in Fig. 6 for the real part of the propagation 
constant. Good agreement is achieved at low frequencies, but 
deviation occurs at higher frequencies indicating the need for 
further model refinement. 

A harmonic analysis was performed on two finite beams 
consisting of twenty straight and circular periodic units. Each 
model was loaded separately by an axial and transverse har
monic force at the left end, and the axial and transverse displace
ment at the right end was calculated. The axial and transverse 
displacements for the periodic circular beam for a = 10 deg at 
the right end, dw, are nondimensionalized by the corresponding 
displacements for the straight beam (a = 0 deg), do, in order 
to compare their behavior. A loss factor of rj = 0.01 was used 
in the calculation. A plot of nondimensional displacement (dB 
re do) versus frequency is shown in Fig. 7 for axial and trans
verse loading. Due to the finite length of the beams, resonances 
are present in the frequency response. The resonances for the 
periodic beam are different than the straight beam and appear, 
respectively, as local peaks and dips due to the nondimensionali-
zation. The large dip in both the axial and transverse harmonic 
response of the periodic circular beam occurs in the first new 
stop band. In the second and third stop bands the dips are less 
pronounced. Outside of these stop bands, where the propagation 
constants for the undamped structure are purely imaginary, the 
mean response of the two beams is about the same. Therefore, 
the wave mode coupling does not appear to significantly affect 
the dissipation in these regions. 

3.1 Axlsymmetric Stiffened Cylindrical Shells. The two 
cylindrical shells considered in this study are shown in Fig. 8. 
The first is a conventional configuration (constant radius) using 
an internal T stiffener. The second configuration (segmented 
toroid) incorporates periodic axial curvature and an external T 

stiffener. Results are shown for circumferential wavenumbers 
n = 0 and n = 2 in Figs. 9 and 10, respectively. 

To simplify presentation of the results, only the locations of 
stop bands (black fill) and pass bands (grey shading) are given. 
The dominant wave mode is indicated by an A, if, or 7" corre
sponding to axial, radial, or tangential displacement, respec
tively. A letter in parentheses indicates appreciable motion in 
a second direction, and a slash indicates conversion of the maxi
mum displacement from one direction to another. 

For the conventional configuration, three types of stop bands 
can be identified. The first type occurs below the cut-off fre
quency of the cylinder and is not associated with axial periodic
ity of the cylinder (identified in Figs. 9 and 10 by a 1 below 
the stop band). The second type is primarily associated with 
stiffener resonances (identified in Figs. 9 and 10 by a 2). These 
appear as small, very discrete stop bands. The third type occurs 
when the structural half wavelength (or its multiples) equal the 
stiffener spacing (identified in Figs. 9 and 10 by a 3). From an 
acoustic design viewpoint, the third type of stop band are of 
primary interest since they are broadband and can be tuned to 
various frequency ranges by changing the stiffener spacing. 

Comparison of the results for the conventional configuration 
and segmented toroid show very different behavior. The seg
mented toroid has significantly more stop band behavior due to 
coupling of the radial and axial wave modes. This behavior is 
analogous to the results for the circular beam structure presented 
in the previous section. 

4 Conclusions 
Wave propagation in structures with periodic axial curvature 

has been examined using a simple circular beam structure and 
segmented toroidal shell. Comparison of an exact solution with 
the periodic finite element method for the circular beam struc
ture showed excellent agreement which provides verification of 
the finite element procedure. The periodic axial curvature causes 
coupling between the longitudinal and flexural modes resulting 
in new stop bands that are not present in a straight beam. Similar 
behavior was observed in the segmented toroidal shell. A har
monic analysis of a finite structure demonstrates that the stop 
band behavior is preserved in a finite structure, but no significant 
additional dissipation occurs outside of these stop bands due to 
wave mode coupling. 
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