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ABSTRACT 
Dynamic mechanical properties of soft tissues provide 

information that may be used in medical diagnosis. 
Developing a better fundamental understanding of the 
governing constitutive relations could improve diagnostic 
techniques. The mechanical behavior of soft tissues and tissue 
mimicking phantoms, such as gels, can be represented by 
viscoelastic material models. Static loading of viscoelastic 
materials yields information related to elasticity, creep and 
stress relaxation. However, a broader measure of rate-
dependent properties that affect mechanical wave propagation 
and wave attenuation in such materials can only be extracted 
from measured response to dynamic excitation. The well 
known linear viscoelastic material models of Voigt, Maxwell 
and Kelvin cannot represent the more complicated frequency 
dependency of these materials over a broad spectral range. 
Therefore, fractional calculus methods have been considered 
to model the viscoelastic behavior of soft tissue-like materials. 
Fractional order models capture the viscoelastic material 
behavior using fractional orders of differential equations that 
may yield a more accurate representation of viscoelastic 
material behavior. This paper focuses on experimental 
measurements on the tissue mimicking phantom, CF11. 
Surface waves on the phantom material are studied 
experimentally and theoretically. Theoretical calculations 
using linear and fractional order methods are compared with 
experimental measurements. 

 
INTRODUCTION 

Conventional morphological imaging techniques create 
contrast based on x-ray attenuation, magnetization relaxation 
times, or ultrasound reflection. However, a potentially more 
powerful set of information would be to have a mapping of 
the viscoelastic properties of the tissue. Stiffness of a medium 
can be estimated using conventional methods, such as a tensile 
test, compression test or indentation tests. These methods are 
usually static or quasi-static and they work well when the 
material specimen can be isolated with well-defined boundary 
s://proceedings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use: 
conditions and is relatively homogenous. However, biological 
tissue is heterogeneous and anisotropic, with complex 
boundary conditions in vivo.  Additionally, static or quasistatic 
techniques do not provide sufficient information about 
viscosity, which itself can be a valuable source of contrast. A 
broader measure of rate-dependent properties that affect 
mechanical wave propagation and wave attenuation in such 
materials can only be extracted from measured response to 
dynamic excitation; for soft tissue this may yield moduli 
related to propagation and attenuation for the medium. 

The mechanical behavior of soft tissues and tissue 
mimicking phantoms, such as gels, can be represented by 
viscoelastic material models. Studies have shown that integer 
order models, such as Voigt, Kelvin and Maxwell, only poorly 
approximate the rate-dependency of biological tissues and that 
possibly fractional order viscoelasticity models may be more 
appropriate (e.g. 1-5,7). Current work in fractional calculus 
viscoelastic modeling starts with the idea that it is the order of 
the derivative of the strain that to a first approximation 
characterizes the material's behavior (assuming a one 
dimensional stress-strain relation). For example, the order of 
the derivative is zero for a Hookean solid and one for a 
Newtonian fluid. Viscoelastic materials occupy the 
intermediate range with a fractional order "α" between zero 
and one. Thus, it is possible to build a multi-component 
fractional equivalent of the "standard" linear solid (or fluid) 
by replacing one or more springs and dashpots with 
"Springpots". 

This research focuses on experimental measurements on 
the silicone based tissue mimicking phantom, CF11. Surface 
(Rayleigh) waves, which are closely related to shear waves in 
terms of how the medium’s material properties affect their 
phase speed and attenuation, are induced and measured at 
various frequencies in a manner described in (6). 
1 Copyright © 2008 by ASME 
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THEORY 
Rayleigh wave propagation on an isotropic homogeneous 

viscoelastic half-space caused by normal excitation over a 
region depicted in Fig. 1 is given by (6): 

 
Fig. 1. Schematic of experimental setup 
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Here, uz is out-of-plane surface velocity, Pm is force per unit 
area of the driving disk, a is disk radius, p is a root of the 
function F0 that is associated with Rayleigh wave motion, ζ is 
dummy variable, kl is the compression wave number, z is 
zepth from surface, r is radial distance from center of driving 
disk, η is ratio of compression to shear wave speed, ζ is ratio 
of compression wave speed to surface wave speed, J1 is the 
Bessel function of the first kind (order 1), and K0 is the 
modified Bessel function of the second kind (order 0).  

Equation (2) couples the dependency of both shear and 
surface wave speeds to material viscoelastic properties. 
Assuming a Voigt model, shear wave speed is related to the 
real (storage) and imaginary (loss) parts of the shear modulus, 
μR and μI respectively, and the material density ρ as:  
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If surface wave speed and attenuation is measured, material 
properties that affect shear and surface wave speed can be 
estimated iteratively using Eqs. (1-3). 

Note that both μR and μI are independent of whether the 
Voigt model is integer or fractional order. They are equal to μ1 
and ω.μ2, shear elasticity and shear viscosity multiplied with 
rotational frequency, if an integer Voigt model is used. In the 
case of a fractional Voigt Model the storage modulus and loss 
modulus are defined as 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ π
αω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
μ
μ

μ+μ=μ α
α

2
cos

1

2
11R

,   (4) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ π
αω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
μ
μ

μ=μ α
α

2
sin

1

2
1I

 .           (5) 
 

ded From: https://proceedings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Us
EXPERIMENT 
The surface response of the CF11 phantom (Fig. 1) to an 

oscillating finite disk is measured using a laser Doppler 
vibrometer (Polytec). Based on eqs. (1-2), least squares 
estimates for μR and μI/ω are shown in Fig. 2. The inadequacy 
of the integer Voigt model is evident in the widely varying 
values of the moduli as a function of frequency. (If the integer 
Voigt model were adequate, then μR and μI/ω should be 
independent of frequency.) Alternatively, a fractional Voigt 
model is fit to the experimental data, by assuming α = 1/2, 
1/3,  and 1/4 and using eqs. (4-5). A closer match to 
experiment is achieved. 
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Fig. 2 Fractional material model fit to experimental shear 
modulus and loss modulus results. Integer Voigt material 
model suggests constant μR and μI/ω; fractional models 
simulate the experimental results better. 
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