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Abstract

Two numerical methods for the determination of the pth

moment Lyapunov exponents of a two-dimensional system un-

der bounded noise or real noise parametric excitation are pre-

sented. The first method is an analytical-numerical approach, in

which the partial differential eigenvalue problems governing the

moment Lyapunov exponents are established using the theory of

stochastic dynamical systems. The eigenfunctions are expanded

in double series to transform the partial differential eigenvalue

problems to linear algebraic eigenvalue problems, which are then

solved numerically. The second method is a Monte Carlo sim-

ulation approach. The numerical values obtained are compared

with approximate analytical results with weak noise amplitudes.

1 Introduction

In general, the study of the dynamics of many engineer-

ing structures under random loadings leads to a d-dimensional

stochastic differential equations of the form

Ẋi = f i(t,X,ξ), i = 1,2, . . . ,d, (1)

where X = (X1,X2, . . . ,Xd)T is the state vector of the system and

ξ is a vector of stochastic processes characterizing the random-

ness of the loadings. The sample or almost-sure stability of the

trivial solution of system (1) is determined by the Lyapunov expo-

nent, which characterizes the average exponential rate of growth

of the solutions of system (1) for t large, defined as

λX(t) = lim
t→∞

1

t
log

∥

∥X(t)
∥

∥, (2)
1

ps://proceedings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Us
where ‖X(t)‖ =
(

XT X
)1/2

denotes the Euclidean vector norm.

The trivial solution of system (1) is stable with probability one if

the top Lyapunov exponent is negative, whereas it is unstable w.p.1

if the top Lyapunov exponent is positive. The theory of Lyapunov

exponents was placed on a rigorous mathematical foundation

in the Multiplicative Ergodic Theorem (Oseledec, 1968). The

Lyapunov exponent has been recognized as an ideal avenue for

studying the behaviour of a dynamical system, because it provides

not only the information about stability or instability, but also

how rapidly the response grows or diminishes with time.

On the other hand, the stability of the pth moment of the triv-

ial solution of system (1), is determined by the moment Lyapunov

exponent

3X(t)(p) = lim
t→∞

1

t
log E

[∥

∥X(t)
∥

∥

p]
, (3)

where E[·] denotes expected value. If the moment Lyapunov

exponent is negative, then the pth moment approaches 0 as time

t → ∞. The pth moment Lyapunov exponent is a convex analytic

function in p, which passes through the origin and its slope at the

origin is equal to the top Lyapunov exponent. The non-trivial

zero of the moment Lyapunov exponent is called the stability

index.

In order to have a complete picture of the dynamic stability of

system (1), it is important to study both the sample and moment

stability and to determine both the top Lyapunov exponent and

the pth moment Lyapunov exponent.

Although the moment Lyapunov exponents are important

in the study of dynamic stability of stochastic systems, the actual
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evaluations of the moment Lyapunov exponents are very difficult.

Various approximate analytical methods have been devised to

actually carry out the computation for a number of engineering

structural systems.

The Lyapunov exponents of a general n-dimensional

stochastic system can be determined numerically using the al-

gorithm developed in Wolf et al. (1985). However, there are no

numerical algorithms for evaluating the moment Lyapunov ex-

ponents. Because of this reason, almost all published work has

been on the analytical determination of the moment Lyapunov

exponents under weak noise excitations. Xie (2001a) evaluated

numerically the moment Lyapunov exponents of a near-nilpotent

system under stochastic parametric excitation. The second-order

ordinary differential eigenvalue problem governing the moment

Lyapunov exponent is converted to a two-point boundary-value

problem, which is solved numerically by the method of relaxation.

Numerical determination of the moment Lyapunov expo-

nents is important for three reasons. Numerically accurate results

of the moment Lyapunov exponents are essential in assessing the

validity and the ranges of applicability of the approximate ana-

lytical results. In many engineering applications, the amplitudes

of noise excitations are not small and the approximate analyti-

cal methods, such as the method of perturbation and stochas-

tic averaging, cannot be applied. Numerical approaches have

to be employed to evaluate the moment Lyapunov exponents.

Furthermore, for systems under noise excitations that cannot

be described in analytical forms, such as filtered white noise or

bounded noise, or if only the time series of the response of the

system is known, Monte Carlo simulation approaches have to be

resorted to.

This paper presents the first study of numerical determina-

tion of the moment Lyapunov exponents of stochastic systems

using two different methods. In Section 2, two-dimensional sys-

tems under bounded noise and real noise excitations are intro-

duced. The first method, presented in Section 3, is an analytical-

numerical approach, in which the second-order partial differen-

tial eigenvalue problems are established. Double series expan-

sions of the eigenfunctions, in terms of orthogonal functions, are

used to convert the partial differential eigenvalue problems to

linear algebraic eigenvalue problems. The second method is a

Monte Carlo simulation approach, which is presented in Section

4.

2 Two-Dimensional Systems under Bounded and Real
Noise Excitations

Consider a two-dimensional system under random noise ex-

citation

d2q(τ )

2
+ 2β

dq(τ ) +
[

ω2
0 − ε0 η(τ)

]

q(τ ) = 0, (4)

dτ dτ

2
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where τ is the time variable, q(τ ) the generalized coordinate, β

the damping constant, ω0 the circular natural frequency of the

system, ε0 the amplitude of the random fluctuation. The random

noise η(τ) can be a bounded noise or a real noise process.

A bounded noise process is given by

η(τ) = cos
[

ν0τ +σ0W(τ )+ θ
]

, (5)

in which θ is a uniformly distributed random number in (0, 2π),

and W(τ ) is the standard Wiener process in time τ . The inclusion

of the phase angle θ in equation (5) makes the bounded noise η(τ)

a stationary process.

A real noise process modelled by an Ornstein-Uhlenbeck

process is given by

dη(τ) = −α0 η(τ)dτ +σ0 dW(τ ), (6)

The Ornstein-Uhlenbeck process is a simple, Gaussian, explicitly

representable stationary process that is often used to model a

realizable noise process.

Equation (4) can be simplified by removing the damping

term using the transformation q(τ ) = x(τ )e−βτ and time scaling

t = ωτ , where ω2 = ω2
0 −β2, to yield

d2x(t)

dt2
+

[

1 − ε ξ(t)
]

x(t) = 0, (7)

where ε = ε0/ω
2.

For the bounded noise excitation (5),

ξ(t) = cosζ(t), dζ(t) = ν dt +σdW(t), (8)

where ν = ν0/ω, σ = σ0/
√

ω, and W(t) is a standard Wiener

process in time t.

For the real noise modelled by an Ornstein-Uhlenbeck pro-

cess (6),

ξ(t) = ζ(t), dζ(t) = −αζ(t)dt +σdW(t), (9)

where α = α0/ω, σ = σ0/
√

ω.

The moment Lyapunov exponent of systems (4), and (7) are

related by

3q(τ )(p) = −pβ +ω3x(t)(p). (10)

3 Analytical-Numerical Approach

3.1 Eigenvalue Problems for the Moment Lyapunov
Exponents

Two-Dimensional System under Bounded Noise Excitation

The eigenvalue problem governing the pth moment Lya-

punov exponent of system (7) can be derived using an approach
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originally applied by Wedig (1988) for a two-dimensional linear

Itô stochastic system.

Under bounded noise excitation (8), equations (7) may be

considered as a three dimensional system

d















x1

x2

ζ















=















x2

(−1 + ε cosζ )x1

ν















dt +















0

0

σ















dW .

Apply the Khasminskii transformation (Khasminskii, 1967)

s1 = x1

a
= cosϕ, s2 = x2

a
= sinϕ, a =

√

x2
1 + x2

2, (11)

and define a pth norm P = a p. The Itô equations for P and ϕ can

be obtained by Itô’s lemma

dP = ε pP cosζ cosϕ sinϕdt, dϕ = (−1 + ε cosζ cos2 ϕ)dt.

Applying a linear stochastic transformation

S = T(ζ,ϕ)P, P = T−1(ζ,ϕ)S, (12)

where −∞ < ζ < ∞, 0 6 ϕ < π , the Itô equation for the new pth

norm process S is given by, from Itô’s lemma,

dS =
[

1
2σ 2 Tζ ζ +ν Tζ − (1 − ε cosζ cos2 ϕ)Tϕ

+ ε p cosζ cosϕ sinϕ T
]

P dt +σTζ P dW . (13)

For bounded and non-singular transformation T(ζ,ϕ), both pro-

cesses P and S are expected to have the same stability behaviour.

Therefore, T(ζ,ϕ) is chosen so that the drift term of the Itô dif-

ferential equation (13) is independent of the noise process ζ(t)

and the phase process ϕ so that

dS = 3S dt +σTζ T−1S dW . (14)

Comparing equations (13) and (14), it is seen that such a trans-

formation T(ζ,ϕ) is given by the following equation

1
2σ 2 Tζ ζ +νTζ − (1−ε cosζ cos2 ϕ)Tϕ +ε p cosζ cosϕ sinϕ T

= 3T, −∞ < ζ < ∞, 0 6 ϕ < π, (15)

in which T(ζ,ϕ) is a periodic function in ϕ of period π and is

bounded when ζ → ±∞. Equation (15) defines an eigenvalue

problem for a second-order differential operator with 3 being the

eigenvalue and T(ζ,ϕ) the associated eigenfunction. From equa-

tion (14), the eigenvalue 3 is seen to be the Lyapunov exponent

of the pth moment of system (7), i.e. 3 = 3x(t)(p).

Two-Dimensional System under Real Noise Excitation

The eigenvalue problem governing the moment Lyapunov

exponent for system (7) under real noise excitation (9) can be
3
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derived using the same procedure. Equations (7) and (9) may be

considered as a three dimensional system

d















x1

x2

ζ















=















x2

(−1 + εζ )x1

−αζ















dt +















0

0

σ















dW .

Applying the Khasminskii transformation (11), the Itô equations

for P = ap and ϕ are

dP = ε pP ζ cosϕ sinϕ dt, dϕ = (−1 + εζ cos2 ϕ)dt.

Applying a linear stochastic transformation given by equation

(12), the Itô equation for the new pth norm process S is given by

dS =
[

1
2σ 2 Tζ ζ −αζ Tζ −

(

1 − ε ζ cos2 ϕ
)

Tϕ

+ ε pζ cosϕ sinϕ T
]

P dt +σTζ P dW . (16)

The transformation T(ζ,ϕ) is chosen so that the drift term of

the Itô differential equation (16) is independent of the real noise

process ζ(t) and the phase process ϕ so that equation (16) is of

then form (14). Comparing equations (16) and (14), the trans-

formation T(ζ,ϕ) satisfies

1
2σ 2 Tζ ζ −αζ Tζ −

(

1 − εζ cos2 ϕ
)

Tϕ + ε pζ cosϕ sinϕ T

= 3T, −∞ < ζ < ∞, 0 6 ϕ < π, (17)

which defines an eigenvalue problem of a second-order differ-

ential operator with 3 = 3x(t)(p), the pth moment Lyapunov

exponent, being the eigenvalue and T(ζ,ϕ) the associated eigen-

function.

3.2 Transformation of the Eigenvalue Problems for the
Moment Lyapunov Exponents

In this subsection, series expansions of the eigenfunctions

are employed to convert the second-order partial differential

eigenvalue problems (15) and (17), governing the pth moment

Lyapunov exponents, to linear algebraic eigenvalue problems,

which can then be easily solved numerically.

Two-Dimensional System under Bounded Noise Excitation

For the two-dimensional system (7) under bounded noise

excitation (8), the pth moment Lyapunov exponent satisfies the

eigenvalue problem (15). Since the coefficients of the equation

(15) are periodic functions in ζ of period 2π and in ϕ of period

π , the eigenfunction T(ζ,ϕ) can be expanded in double Fourier

series in the complex form, which is much more compact than

the real form, as follows (Tolstov, 1962)

T(ζ,ϕ) =
∞
∑

l=−∞

∞
∑

k=−∞
Cl,k ei (lζ+2kϕ), (18)
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where the coefficients Cl,k are complex numbers. Substituting

equation (18) into equation (15), multiplying the resulting equa-

tion by e−i (mζ+2nϕ), integrating with respect to ζ from 0 to 2π

and with respect to ϕ from 0 to π yields a linear algebraic eigen-

value problem of infinite dimension. In numerical analysis, only

a finite number of terms can be taken in the double Fourier series

(18). Hence, let m takes the values −M, −M + 1, . . . , M − 1, M,

and n takes the values −N ,−N +1, . . . , N −1, N ; that is, there are

2M + 1 terms in ζ and 2N + 1 terms in ϕ in the double Fourier

series (18).

For the easy of formulation, the two-dimensional array of

the coefficients Cm,n is transformed to the one-dimensional array

yj = Cm,n, where j = (2N+1)(M+m)+N+n+1, for m = −M : M,

n = −N : N . The linear algebraic eigenvalue problem can be

written as

A y = 3y, (19)

in which the dimension of matrix A is (2M +1)(2N +1)×(2M +
1)(2N + 1). For the jth row, j = (2N +1)(M+m)+N +n+1,

m = −M : M, n = −N : N , the non-zero elements of A are

Aj, j = − 1
2σ 2m2 + i mν − i 2n, Aj, J− = Aj, J+ = i 1

2εn,

Aj, J−−1 = Aj, J+−1 = i 1
8ε[2(n−1)−p],

Aj, J−+1 = Aj, J++1 = i 1
8ε[2(n+1)+p],

where J± = (2N+1)(M+m±1)+N+n+1.

Two-Dimensional System under Real Noise Excitation

The moment Lyapunov exponent of the two-dimensional

system (7) under real noise excitation (9) is governed by the

eigenvalue problem (17). The coefficients of equation (17) are

periodic functions in ϕ of period 2π . The eigenfunction T(ζ,ϕ)

are expanded in terms of sinusoidal functions and Hermite poly-

nomials as

T(ζ,ϕ) =
∞
∑

l=0

∞
∑

k=−∞
Cl,k hl(ζ )ei 2kϕ, (20)

where hl(ζ ) is the normalized Hermite polynomial

hl(ζ ) = 1

(2l l!√π)1/2
exp

(

− ζ 2

2

)

Hl(ζ ), l = 0,1, . . . , (21)

in which Hl(ζ ) is the Hermite polynomial (Lebedev, 1972). The

normalized Hermite polynomials hl(ζ ), l = 0, 1, . . . , form an

orthonormal system on the interval (−∞,+∞), i.e.

∫ +∞

−∞
hl(ζ )hm(ζ )dζ = δl,m. (22)
4
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Some relevant properties of the normalized Hermite polynomials

are given in Appendix A.

Substituting equation (20) into (17), multiplying the result-

ing equation by hm(ζ )e−i 2nϕ , for m = 0 : +∞ and n = −∞ : +∞,

integrating with respect to ζ from −∞ to +∞ and with respect to

ϕ from 0 to π , and utilizing the orthogonality condition (22) and

identities (5) leads to a system of infinity homogeneous linear al-

gebraic equations for the unknown coefficients Cm,n, m = 0 : +∞,

n = −∞ : +∞. For numerical analysis, the series expansion (20)

must be truncated, i.e. m takes the values 0, 1, . . . , M, and n takes

the values −N , −N + 1, . . . , N − 1, N . Map the two-dimensional

array of coefficients Cm,n to the one-dimensional array yj = Cm,n,

j = (2N +1)m+N +n+1. The system of infinity homogeneous

linear algebraic equations can then be written in the form of a

linear algebraic eigenvalue problem (19), in which the dimension

of matrix A is (M + 1)(2N + 1) × (M + 1)(2N + 1). For row

j = (2N+1)m+N+n+1, the non-zero elements of matrix A are

Aj, j = −σ 2

2

(

m + 1

2

)

+ α

2
+ i 2n,

Aj, J−−1 = iε
2(n−1)− p

4

√

m

2
, Aj, J− = iεn

√

m

2
,

Aj, J−+1 = iε
2(n+1)+ p

4

√

m

2
, Aj, J+−1 = iε

2(n−1)− p

4

√

m+1

2
,

Aj, J+ = iεn

√

m+1

2
, Aj, J++1 = iε

2(n+1)+ p

4

√

m+1

2
,

A
j, J−

2
=

(σ 2

2
+α

)

√
m(m−1)

2
, A

j, J+
2

=
(σ 2

2
−α

)

√
(m+2)(m+1)

2
,

where J± = (2N +1)(m±1)+N +n+1 and J±
2 = (2N +1)(m±

2)+N+n+1.

3.3 Numerical Results and Discussions

Double series expansions of the eigenfunctions using or-

thogonal functions have been applied to transform the partial

differential eigenvalue problems (15) and (17) into linear alge-

braic eigenvalue problems of the form (19). The resulting large

square matrix A is highly sparse. To solve system (19) numeri-

cally, one must take full advantage of the sparsity of matrix A in

developing or selecting numerical algorithms. Matlab 6 has an

excellent sparse matrix handling facility and functions for deter-

mining the eigenvalues of a large sparse matrix. In this paper, the

function eigs in Matlab 6 is used to evaluate a few eigenvalues of

system (19). Numerical results are presented in the following.

Two-Dimensional System under Bounded Noise Excitation

The bounded noise excitation (8) reduces to harmonic exci-

tation, i.e. ξ(t) = cosνt, when σ = 0. It is well known that the
Copyright © 2003 by ASME
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resulting Mathieu’s equation (7) under harmonic excitation is in

parametric resonance when ν = 2, 1, 1
2 , 1

3 , 1
4 , . . . . The effect of the

noise on the parametric resonance or the stability of system (7) is

of particular interest.

Using a method of regular perturbation, Xie (2003) obtained

a weak noise expansion of the moment Lyapunov exponent of

system (7) under bounded noise excitation (8). The second-

order perturbation of the moment Lyapunov exponent is given

by, for small ε,

3x(t)(p) = ε2 p(p + 2)S(2)

16
+ O(ε4), (23)

where S(2) is the spectral density function S(ω) with ω = 2 of the

bounded noise ξ(t) given by

S(2) =
σ 2

(

4 +ν2 + 1
4 σ 4

)

2
[

(2 +ν)2 + 1
4 σ 4

][

(2 −ν)2 + 1
4 σ 4

] .

In the numerical solution of the linear algebraic eigenvalue

problem (19), the numbers of terms of the series expansion are

taken as N = M = 50, resulting in the dimension of matrix A

being 10201×10201. The number of non-zero elements is 69800

and the density is

Number of non-zero element

Total number of elements
= 69800

102012
= 6.708 × 10−4,

which indicates that matrix A is highly sparse. The approximate

analytical result (23) can be used as a seed in the Matlab function

eigs to determine the largest real eigenvalue of system (19).

Numerical results of the moment Lyapunov exponents are

shown in Figures 1–3 for ν = 2.0, 1.0, and 3.0, respectively, and

various values of ε. It is seen that, for all values of ν, the approx-

imate analytical result agrees extremely well with the numerical

results for ε up to 0.2. For ε = 0.1, the relative error between the

approximate analytical result and the numerical result is within

1% for all values of p. When ν = 2.0 and 1.0, the two-dimensional

system is in the primary and secondary parametric resonance, re-

spectively. Discrepancy between the two results increases rapidly

when the value of ε is increased as shown in Figures 1 and 2.

When ν = 3.0, as shown in Figure 3, system (7) is not in para-

metric resonance and the two results agree extremely well for ε as

large as 2.0.

Two-Dimensional System under Real Noise Excitation

When the noise amplitude parameter ε is small, a second-

order perturbation of the moment Lyapunov exponent of system

(7) under the real noise excitation (9) is given by (Xie, 2001b)

3x(t)(p) = ε2 p(p + 2)σ 2

16(α2 + 4)
+ O(ε4). (24)
5
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One extra parameter can be eliminated in equations (7) and (9)

as

ẍ(t)+[1 − ε̂ ξ̂ (t)]x(t) = 0,

dξ̂ (t) = −α ξ̂(t)dt + dW ,

where ξ̂ (t) = ξ(t)/σ , ε̂ = εσ . Hence, without loss of generality,

the parameter σ can be taken as 1.

In the numerical analysis, the numbers of the double series

expansions are taken as M = N = 50. The dimension of matrix A

in the linear algebraic eigenvalue problem (19) is 5151×5151 and

the number of non-zero elements is 44849. The density of non-

zero elements is 44849/51512 = 1.690 × 10−3. Hence, matrix A

is also highly sparse and, as in the case under bounded noise

excitation, the eigs function in Matlab is used to determine the

largest real eigenvalue as the moment Lyapunov exponent, with

the approximate analytical result (24) used as the seed.

Typical results of the moment Lyapunov exponents obtained

are shown in Figure 4 for α = 2.0, σ = 1.0, and various values of

the noise amplitude parameter ε. The approximate analytical re-

sult and the numerical result agree very well as shown in Figure 4.

Good agreement is observed even for ε close to 1.0.
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Thick line−Approximate analytical results

Figure 1. Moment Lyapunov Exponent (Bounded Noise)

4 Monte Carlo Simulation

4.1 Determination of the pth Moment

The state vector of system (1) is augmented to rewrite sys-

tem (1) as a D-dimensional system of autonomous Itô stochastic

differential equations

dY i = ai(Y)dt +
K

∑

k=1

bi,k(Y)dW k, i = 1,2, . . . ,D, (25)
Copyright © 2003 by ASME
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Figure 2. Moment Lyapunov Exponent (Bounded Noise)
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where Y = (Y 1,Y 2, . . . ,Y D)T , in which Y i = X i , for i = 1, 2, . . . , d.

In the remainder of this paper, vector X and the vector containing

the first d elements of vector Y are interchangeable for the easy of

presentation.

Since the moment Lyapunov exponent is related to the expo-

nential rate of growth or decay of the pth moment, only the

numerical approximation of the pth moment of the solution

of system (1) or (25) is of interest in the Monte Carlo simula-

tion. As a result, pathwise approximations of the solutions of the

stochastic differential equations (1) or (25) are not necessary. A

much weaker form of convergence in probability distribution is

required. For the numerical solutions of the stochastic differen-

tial equations (25), weak Taylor approximations may be applied.

To evaluate the pth moment E
[
∥

∥X
∥

∥

p]
, S samples of the solutions

of equations (25) are generated.

If the functions ai(Y) and bi(Y), i = 1, 2, . . . , D, are six times

continuously differentiable, the simplified order 2.0 weak Taylor
6
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scheme of the sth realization of equations (25) at the mth iteration

with tm − tm−1 = 1, where 1 is the time step of integration, is

given by (Kloeden and Platen, 1992), for i = 1, 2, . . . , D,

Y i
s,m = Y i

s,m−1 + ai
s,m−1 ·1+ 1

2
L0ai

s,m−1 ·12

+
K

∑

k=1

[

bi,k
s,m−1 + 1

2

(

L0bi,k
s,m−1 + Lkai

s,m−1

)]

·1W k
s,m−1

+ 1

2

K
∑

k1=1

K
∑

k2=1

Lk1 b
i,k2
s,m−1

(

1W
k1
s,m−1 ·1W

k2
s,m−1 + V

k1,k2
s,m−1

)

, (26)

where the subscript s stands for the sth sample, s = 1, 2, . . . , S, and

the operators L0, Lk are defined as

L0 =
D

∑

j=1

a j ∂

∂Y j
+ 1

2

D
∑

j,l=1

K
∑

k=1

b j,k bl,k ∂2

∂Y j ∂Y l
,

Lk =
D

∑

j=1

b j,k ∂

∂Y j
, k = 1, 2, . . . , K,

in which the functions a j and b j,k are evaluated at time tm−1 of

the sth sample. 1W k
s,m−1 can be taken as a normally distributed

random number with mean 0 and standard deviation
√

1

1W k
s,m−1 = Rk

s,m−1

√
1, (27)

where Rk
s,m−1 is a standard normal random number N(0,1).

V
k1,k2
s,m−1 are independent random numbers with the following two-

point distribution, for k1 = 1, 2, . . . , K ,

P
(

V
k1,k2
s,m−1 = ±1

)

= 1
2 , for k2 = 1, 2, . . . , k1 − 1,

V
k1,k2
s,m−1 = −1, for k2 = k1,

V
k1,k2
s,m−1 = −V

k2,k1
s,m−1, for k2 = k1 + 1, k1 + 2, . . . , K .

(28)
Copyright © 2003 by ASME
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For the special case when K = 1, equations (26) are reduced

to, for s = 1, 2, . . . , S, and i = 1, 2, . . . , D,

Y i
s,m = Y i

s,m−1 +ai
s,m−1 ·1+bi

s,m−1 ·1Ws,m−1 + 1
2 L0ai

s,m−1 ·12

+ 1
2 L1bi

s,m−1

[

(

1Ws,m−1

)2 −1
]

+ L1ai
s,m−1 ·1Zs,m−1

+ L0bi
s,m−1

[

1Ws,m−1 ·1−1Zs,m−1

]

, (29)

where 1Ws,m−1 and 1Zs,m−1 are a pair of correlated normally

distributed random numbers generated as

1Ws,m−1 = R1
s,m−1

√
1, 1Zs,m−1 = 1

2
13/2

(

R1
s,m−1 +

R2
s,m−1√

3

)

,

where R1
s,m−1 and R2

s,m−1 are two independent standard normally

distributed random numbers.

Having obtained s samples of the solutions of the stochastic

differential equations, the pth moment can be determined as

follows

E
[
∥

∥X(tm)
∥

∥

p] = 1

S

S
∑

s=1

∥

∥Xs,m

∥

∥

p
,

∥

∥Xs,m

∥

∥ =
(

XT
s,mXs,m

)1/2
, (30)

where X i
s,m = Y i

s,m, for i = 1, 2, . . . , d.

4.2 Determination of the pth Moment Lyapunov Expo-
nents

Having obtained the pth moment E
[
∥

∥X
∥

∥

p]
at any time in-

stance t, the moment Lyapunov exponent 3X(p) can be deter-

mined using equation (3). However, since the pth moment grows

or decays exponentially in time, periodic normalization of the

pth moment must be applied in order to avoid numerical overflow

or underflow and to correctly determine the moment Lyapunov

exponent.

Take the initial condition of Xs(0) such that
∥

∥Xs(0)
∥

∥ = 1,

s = 1, 2, . . . , S. Note that Y i
s = X i

s , for i = 1, 2, . . . , d. Normalization

of the first d elements of the state vector Ys is applied after every

time period (M1).

At the time instance n(M1), n = 1, 2, . . . , N , the following

ratio is determined for all values of p of interest

ρn(p) =
E
[
∥

∥X
(

n(M1)
)
∥

∥

p]

E
[
∥

∥X
(

(n−1)(M1)
)∥

∥

p] , for n = 1, 2, . . . , N . (31)

The state vector Ys is then normalized, in the sense that
∥

∥Xs

∥

∥ = 1,

using

Y i
s

(

n(M1)
)

=
Y i

s

(

n(M1)
)

∥

∥Xs

(

n(M1)
)
∥

∥

, i = 1, 2, . . . , d. (32)

After the normalization, numerical solution of the stochastic dif-

ferential equations is continued.
7
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From equation (31), it can be easily shown that

ρ1(p) ·ρ2(p) · · ·ρN (p) = E
[
∥

∥X
(

N(M1)
)
∥

∥

p]
. (33)

Using equations (3) and (33), the pth moment Lyapunov expo-

nent is given by, for all values of p of interest,

3X(p) = 1

N(M1)
log E

[
∥

∥X
(

N(M1)
)
∥

∥

p]

= 1

N(M1)
log

[

ρ1(p) ·ρ2(p) · · ·ρN (p)
]

= 1

N(M1)

N
∑

n=1

log ρn(p), for large N .

(34)

4.3 Monte Carlo Simulation of the pth Moment Lya-
punov Exponents

The results presented in Sections 4.1 and 4.2 are summarized

in the following procedure for the Monte Carlo simulation of the

pth moment Lyapunov exponent.

1. Setting the Initial Conditions

For sample s, s = 1, 2, . . . , S, set the initial conditions of the

first d elements of the state vector Ys as Y i
s (0) = 1/

√
d, i = 1,

2, . . . , d. Y i
s (0), i = d+1, d+2, . . . , D, can be set to any

values; for simplicity of implementation, they may also be set

to 1/
√

d.

2. Conducting the Monte Carlo Simulation

For time iterations n = 1, 2, . . . , N , conduct the Monte Carlo

simulation. For each increment in n, the increase in time is

M1.

(a) For m = 1, 2, . . . , M, and sample s = 1, 2, . . . , S, perform

the numerical integration of the stochastic differential

equations. For each increment in m, the increment in

time is 1.

i. Generate 3K standard normally distributed ran-

dom numbers to evaluate 1W k
s,m−1, 1W

k1
s,m−1,

1W
k2
s,m−1, k, k1, k2 = 1, 2, . . . , K , using equation

(27).

ii. Generate 1
2 K(K −1) uniformly distributed ran-

dom numbers in (0,1) to evaluate V
k1,k2
s , k1 = 1,

2, . . . , K , k2 = k1+1, k1+2, . . . , K , using equation

(28).

iii. Evaluate Ys

(

[(n−1)M+m]1
)

in time step 1 using

the iterative equation (26).

For the special case when K = 1, the following simpli-

fied steps are taken:

i. Generate two standard normally distributed ran-

dom numbers to evaluate 1Ws,m−1 and 1Zs,m−1.
Copyright © 2003 by ASME
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ii. Evaluate Ys

(

[(n−1)M+m]1
)

in time step 1 using

the iterative equation (29).

(b) For all values of p of interest and sample s = 1, 2, . . . , S,

determine the pth norms
∥

∥Xs

(

n(M1)
)
∥

∥

p
using

∥

∥X
∥

∥ =
(

XT X
)1/2

, where X i
s = Y i

s , i = 1, 2, . . . , d.

(c) Determine the pth moments E
[
∥

∥Xs

(

n(M1)
)
∥

∥

p]
using

equation (30) for all values of p of interest.

(d) Evaluate the ratio ρn(p) = E
[
∥

∥Xs

(

n(M1)
)
∥

∥

p]
using

equation (31) for all values of p of interest.

(e) Normalize the state vector Ys

(

n(M1)
)

using equation

(32).

3. Determining the pth Moment Lyapunov Exponent

Determine the pth moment Lyapunov exponent 3X(p) us-

ing equation (34) for all values of p of interest.

4.4 Numerical Results

Two-Dimensional System under Bounded Noise Excitation

The two-dimensional system (4) under bounded noise exic-

tation (5) can be converted to a three-dimensional autonomous

stochastic system as:















dY 1 = Y 2 dτ,

dY 2 =
[

− 2β Y 2 −
(

ω2
0 − ε0 cos Y 3

)

Y 1
]

dτ,

dY 3 = ν0 dτ +σ0 dW ,

(35)

where Y 1 = q(τ ), Y 2 = dq(τ )/dτ , Y 3 = ξ(τ ). Y 1 and Y 2 are

related to the state variables of the original system (4) and are

used to calculated the pth norm
∥

∥Y
∥

∥

p =
[(

Y 1
)2 +

(

Y 2
)2]p/2

.

The order 2.0 weak Taylor scheme is given by, from equation

(29),

Y 1
s,m = Y 1

s,m−1 + Y 2
s,m−1 ·1+ 1

2 Rs,m−1 ·12,

Y 2
s,m = Y 2

s,m−1 + Rs,m−1 ·1− 1
2

[

(

ω2
0 − ε0 cos Y 3

s,m−1

)

Y 2
s,m−1

+ 2β Rs,m−1 − ε0

(

ν0 sin Y 3
s,m−1 + 1

2 σ 2
0 cos Y 3

s,m−1

)

· Y 1
s,m−1

]

·12 − ε0 σ0 Y 1
s,m−1 sin Y 3

s,m−1 ·1Z,

Y 3
s,m = Y 3

s,m−1 +ν0 ·1+σ0 ·1W ,

Rs,m−1 = −
(

ω2
0 − ε0 cos Y 3

s,m−1

)

Y 1
s,m−1 − 2β Y 2

s,m−1.

Numerical results of the pth moment Lyapunov exponents

3q(τ )(τ ) from Monte Carlo simulation are plotted in Figures 5–

6 for ν = 2.0, 1.0, respectively, β = 0.01, ω0 = 1.0, ν0 = 1.0,

σ0 = 1.0 and various values of ε0. It is observed that the numerical

results compare well with a fourth-order approximation of the

pth moment Lyapunov exponent determined using a method of

regular perturbation in (Xie, 2003) for small ε0 > 0.
8
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Two-Dimensional System under Real Noise Excitation

The two-dimensional system (4) under real noise excitation

(6) can be written as a three-dimensional autonomous stochastic

system as:















dY 1 = Y 2 dτ,

dY 2 =
[

− 2β Y 2 − (1 − ε0 Y 3)Y 1
]

dτ,

dY 3 = −α0 Y 3 dτ +σ0 dW ,

(36)

where Y 1 = q(τ ), Y 2 = dq(τ )/dτ , Y 3 = ξ(τ ), and Y 1 and Y 2 are

used to calculated the pth norm of the state vector of the system
∥

∥Y
∥

∥

p =
[(

Y 1
)2 +

(

Y 2
)2]p/2

.

Using equation (29), the order 2.0 weak Taylor scheme is
Copyright © 2003 by ASME
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given by

Y 1
s,m = Y 1

s,m−1 + Y 2
s,m−1 ·1+ 1

2 Rs,m−1 ·12,

Y 2
s,m = Y 2

s,m−1 + Rs,m−1 ·1+ ε0 σ0 Y 1
s,m−1 ·1Z

+ 1
2

[

−ω2
0 Y 2

s,m−1 − 2β Rs,m−1

+ ε0 Y 3
s,m−1

(

Y 2
s,m−1 −α Y 1

s,m−1

)]

·12,

Y 3
s,m = Y 3

s,m−1 −α0 Y 3
s,m−1 ·1+σ0 ·1W

+ 1
2 α2

0 Y 3
s,m−1 ·12 −α0 σ0 ·1Z,

Rs,m−1 = −2β Y 2
s,m−1 −

(

ω2
0 − ε0 Y 3

s,m−1

)

Y 1
s,m−1.

The pth moment Lyapunov exponents of system (36) obtained

using Monte Carlo simulation are presented in Figures 7–8 for

α0 = 2.0, 1.0, respectively, β = 0.01, ω0 = 1.0, σ0 = 1.0 and var-

ious values of ε0. The simulation results compare well with a

sixth-order approximation of the pth moment Lyapunov expo-

nent obtained in (Xie, 2001b) using a method of regular pertur-

bation for small values of ε0 > 0.
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Figure 7. Moment Lyapunov Exponent (Real Noise)

5 Conclusions

In this paper, an analytical-numerical approached is em-

ployed to obtain numerical values of the moment Lyapunov expo-

nents of a two-dimensional system under either a bounded noise

or a real noise parametric excitation. The theory of stochastic

dynamical systems is applied to establish the partial differential

eigenvalue problems governing the pth moment Lyapunov expo-

nents. Double series expansions of the eigenfunctions in terms of

orthogonal functions are taken to transform the partial differen-

tial eigenvalue problems to linear algebraic eigenvalue problems.

The eigs function in Matlab for determining a few eigenvalues of

a large sparse matrix is then used to solve the linear eigenvalue
9
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problem to obtain the pth moment Lyapunov exponents. The

numerical results are compared with the approximate analytical

results with weak noise obtained earlier (Xie, 2001b and 2003). It

is found that for the amplitude of the exciting noise ε in the order

of 0.1, the approximate analytical results agree with the numerical

results extremely well. Discrepancies increase for larger values of

ε.

A Monte Carlo simulation procedure is also developed to nu-

merically determine the pth moment Lyapunov exponents. The

procedure can be easily implemented. The Monte Carlo simu-

lation is a pure numerical method and is more general than the

analytical-numerical approach. The method can be easily ap-

plied for higher dimensional systems and any noise excitations,

even for those with only time series available.

This is the first paper that presents numerical methods for

determining the pth moment Lyapunov exponents of stochas-

tic systems under non-white noise excitations. Its usefulness

and importance is twofold. Firstly, it verifies the validity of the

approximate analytical results and determines the range of ap-

plicability of the parameter ε. Secondly, for many engineering

applications, the amplitude of the noise ε is not small and numer-

ical approaches must be employed to determine the pth moment

Lyapunov exponents.
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Appendix A. Formulas of the Normalized Hermite Poly-
nomials

It is well-known that the Hermite Polynomials satisfy the

identities

Hm+1(ζ ) = 2x Hm(ζ )− 2m Hm−1(ζ ), Hm
′(ζ ) = 2m Hm−1(ζ ),

from which it can be shown that

x Hm(ζ ) = 1
2 Hm+1(ζ )+ m Hm−1(ζ ),

x2 Hm(ζ ) = 1
4 Hm+2(ζ )+ (m + 1

2 )Hm(ζ )+ m(m − 1)Hm−2(ζ ),

x Hm
′(ζ ) = m Hm(ζ )+ 2m(m − 1)Hm−2(ζ ),

Hm
′′(ζ ) = 4m(m − 1)Hm−2(ζ ).
10
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Using these equations and the definition of the generalized Her-

mite polynomials, one obtains

x hm(ζ ) =
√

m + 1

2
hm+1(ζ )+

√

m

2
hm−1(ζ ),

x hm
′(ζ ) = −

√
(m + 2)(m + 1)

2
hm+2(ζ )− 1

2 hm(ζ )

+
√

m(m − 1)

2
hm−2(ζ ),

hm
′′(ζ ) =

√
(m + 2)(m + 1)

2
hm+2(ζ )− (n + 1

2 )hm(ζ )

+
√

m(m − 1)

2
hm−2(ζ ).

Employing the orthogonality condition (22), the following results

can be derived

∫ +∞

−∞
x hl(ζ )hm(ζ )dζ =

√

m + 1

2
δl,m+1 +

√

m

2
δl,m−1,

∫ +∞

−∞
x hl

′(ζ )hm(ζ )dζ = −
√

(m + 2)(m + 1)

2
δl,m+2

− 1
2 δl,m +

√
m(m − 1)

2
δl,m−2,

∫ +∞

−∞
hl

′′(ζ )hm(ζ )dζ =
√

(m + 2)(m + 1)

2
δl,m+2

− (n + 1
2 )δl,m +

√
m(m − 1)

2
δl,m−2.
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