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Abstract—In this paper, we introduce a set of new kernel 

functions Which is derived by combining generalized 

Chebyshev polynomials with other standard kernel functions. 

New kernel functions have significant advantages over classic 

support Vector Machine’s (SVM) kernel functions and 

Chebyshev kernel. Simulation results illustrate the fact that the 

new set of kernel functions (in particular Chebyshev-Gaussian 

kernel) has noticeable improvement in decreasing error rate 

and support vector numbers. 
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I. INTRODUCTION 

SVM is applied to solve both classification and 
regression problems. Its theory is based on structural risk 
minimization by maximizing the margin. SVM 
generalization performance completely depends on two 
major steps. The first step is, to define the constraint 
satisfaction problem and then solving it. The second step is, 
to choose the best kernel function which maps input data to 
higher dimensional feature space where the data can be 
discriminate linearly. Choosing optimal kernel function is 
one of the major tasks in building a SVM. A kernel function 
must be checked from several viewpoints such as ability to 
map input data to the best feature space where SVM can 
classify them  with minimum error rate and lowest number 
of support vectors(SV), providing an acceptable 
performance The “Gaussian kernel function” requires only 
one parameter. Another major task is to find optimal 
parameters which are solved by different approaches. In the 
proposed method, a try and error approach is used to find 
optimal parameters. 

In recent years, many kernel functions have been 
introduced for example [1-3]. In [4], a new flexible kernel 
function is proposed which is a proper generic alternative to 
the common linear, polynomial and RBF kernels. A  new 
way to produce unlimited number of  nonparametric and 
efficient kernels is introduced in [5]. 

Chebyshev kernel is proposed as a standard kernel for 
scalar values. It is improved by [6] in order to be applicable 
in  multidimensional applications. Since a kernel function 
provides a measure of similarity between two vectors and it 
is defined as the inner product of two given vectors in the 
higher dimensional space for SVM, obviously finding a 
kernel function which reduced error and number of SVs is a 
key factor to enhance the performance. Therefore in this 
paper, a set of new kernel functions which is a combination 

of Chebyshev polynomials with some of classic kernel 
functions is proposed. The rest of this paper is organized as 
follows. In the second section we review SVM. Related 
works are presented in the third section. In the fourth section, 
validity is presented. Our proposed method is defined in the 
fifth section. The comparison of experimental results is 
provided in the seventh section. Finally, the conclusion is 
discussed in section eight. 

II. SUPPORT VECTOR MACHINE 

The fundamental of SVM can be track back to statistical 
learning theory[6]. However, current SVM is a deterministic 
supervised learning algorithm, rather than being a statistical 
learning method. There are several different models based on 
the SVM’s cost function, see [6].The SVM is based on the 
idea of inserting a hyperplane between two (binary) classes. 
Inserting a hyperplane can be done in either the current data 
space (linear SVM), or the higher dimensional space by 
using the kernel functions (nonlinear SVM). The label of test 
data is gained from the following formula [6,7]: 
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Where  is the nonzero Lagrange coefficient of the 

associated support vector  , n is the number of support 
vectors, f(x) is the class label of the given test data x and K(.) 
is the kernel function. The class labels    associated to the 
SV   , is a binary value, i.e.,     A{  1, +1}, and b is the bias 
value. These values are calculated by maximizing the 
following function: 
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Where   is the nonzero Lagrange coefficient of the 
associated support vector  , n is the number of training 
samples and K(.) is the kernel function. 

III. RELATED WORKS 

An appropriate kernel function maps input vectors to high 

dimensional feature space where all input data can be 

linearly separated. Therefore, the inner product of each given 
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pair of transformed vectors in the higher dimensional space 

can be reached by applying the kernel function onto the input 

vectors directly without the need of a transformation 

function ( )as 

 (   )   〈 ( )  ( )〉 (3) 

 

Where K(.) is the kernel function. Some of the common 

kernel functions are mentioned below. 

Gaussian kernel [8], [6]: 
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where   is the kernel parameter. 

Wavelet kernel [9]: 
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where a is the kernel parameter and m is dimensional of 

input vectors. 

Polynomial kernel [8]: 
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Where   is the scaling parameter and n is the kernel 

parameter. 

Chebyshevkernel[10]: 
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Where n is the kernel parameter and m is the dimension of 

input vectors. Also√      is the weighted function and 

  ( ) represents Chebyshev polynomials which is calculated 

by equation below: 
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Generalized Chebyshevkernel[10]: 
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Where a=m, x and z are m-dimensional vectors, n is the 

kernel parameter. Also√       is the weighted function 

and its value is always positive and finally  ( )represents 
generalized Chebyshev polynomials which is calculated by 
equation (10)[10]: 
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for k=2,3,4,…. 

(10) 

IV. VALIDITY 

A valid kernel should satisfy the Mercer Conditions 
[8],[7]. If the kernel does not satisfy them, SVM may not 
find the optimal parameters, but it is still possible to find 
suboptimal parameters. Besides, if the Mercer conditions are 
not satisfied, then the Hessian matrix for the optimization 
part may not be positive definite. 

Mercer Theorem: To be a valid SVM kernel, for any 
finite function g(x), the following integral should always be 
non- negative for the given kernel function K(x,z) [8]: 
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V. PROPOSED METHOD 

Based on Mercer theorem, having two valid kernel 

functions, a new kernel function can be made by summation 

and multiplication of these two kernel functions. In our 

proposed method, this idea is applied to produce new kernel 

functions.  

A. Chebyshev-Gaussian kernel 

Based on the above idea, first we try to build a kernel by 

mixing Gaussian kernel with generalized Chebyshev kernel. 

As mentioned before, we assume that multiplying two 

functions will give us features and advantages of both 

functions almost in the same strength. So we define first 

kernel as (12): 
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Where n is the generalized Chebyshev kernel parameter,   

is the Gaussian parameter and m is the dimension of input 

vectors' space. 

B. Chebyshev-wavelet kernel 

The second kernel is the a product of wavelet kernel (5) 
and generalized Chebyshev kernel (9) We choose wavelet 
kernel as second multiple since it has better performance 
compare with other available test data-sets' kernel functions. 
This kernel is defined as (13): 
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Where n is the generalized Chebyshev kernel parameter, 
  is the wavelet kernel parameter and m is the dimension of 
input vector. 

VI. DATA NORMALIZATION 

Chebyshev polynomials are orthogonal only within 
region [-1,1]. Because of this, all input data has to be 
normalized in this region. Since wavelet and Gaussian 
kernels are also orthogonal in the region of [-1,1],  
normalization will not affect the result of these two kernels. 

It is necessary to normalize input data to avoid the 
difference between scale of each record feature value. This 
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problem affects on the results specially in methods like SVM 
which are classified in discriminative classifiers category 
[11]. Normalization formula that is used in this paper is 
defined as below: 

     
 (     )

       
   (14) 

VII. EXPERIMENTAL RESULT 

A. validation 

There are several standard validation methods. In this 

paper, we use K-fold cross validation. The value of K 

parameters which are used for all of experiments is 10(10-

fold cross validation). In order to have more accurate results 

we first apply this method on each individual dataset and 

save the index of split points, consequently we could use 

exactly the same structure for all of our tests. 

Average error E is used as a performance parameter. To 

compare kernels, the SV number is taken into account. The 

E parameter is defined in equation (15):  
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Where    is the number of correct classified test data in 

the i-th test and     indicates the total number of test data. 

B. simulation and results 

In the simulation, we use seven different standard 

datasets from UCI repository. Moreover, we test our new 

methods and three other different SVMs that have only 

different kernels, with different kernel parameters and then 

we report the best kernel parameter in first place with 

respect of E and in second place SV numbers. 

Breast cancer Wisconsin dataset: This dataset is 

currently available 

athttp://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wis

consin+%28Diagnostic%29 known as breast cancer 

Wisconsin dataset. This dataset has 569 data where each 

data vector has 30 features in form of real values. The 

dataset has only two classes which are malignant and 

benign. Table 1 illustrates that SVM with Chebyshev-

wavelet kernel has the minimum error rate of 1.71. But from 

SV number viewpoint Chebyshev-Gaussian kernel has the 

minimum SV number. The experimental results shows that 

Chebyshev-Gaussian is the most appropriate kernel for this 

dataset. 

 

Table 1. 

breast cancer Wisconsin dataset test results with various 

kernel functions. 

Kernel 
Kernel 

parameter 

C(penalty) 

parameter 

E ( 

error 

rate 

%) 

SV 

number 

Chebyshev-     , 0.4 1.93 73 

Gaussian     

Chebyshev-

wavelet 

     
   

2 1.71 131 

Chebyshev     2 2.63 88 

wavelet      2 2.1 196 

Gaussian     2 2.1 197 

 

Heart disease dataset: This dataset is currently available 

athttp://archive.ics.uci.edu/ml/datasets/Heart+Disease 

known as heart disease dataset. This dataset has 303 data 

where each data vector has 75 features in form of integer, 

real and categorical values. The dataset has four classes. As 

we can see in table 2, both Chebyshev-Gaussian and 

Chebyshev-wavelet kernel have same results and their 

results are the same in error rate but their SV number is less 

than the other kernels. 

 

Table 2. 

Heart disease dataset test results with various kernel 

functions. 

kernel 
Kernel 

parameter 

C(penalty) 

parameter 

E ( 

error 

rate 

%) 

SV 

number 

Chebyshev-

Gaussian 

    , 

      
1 19.1 114 

Chebyshev-

wavelet 

     
   

0.8 19.1 114 

Generalized 

Chebyshev 
    2 19.1 157 

wavelet     1 19.1 186 

Gaussian     2 19.4 167 

 

Liver disorder dataset: This dataset is currently available 

at http://archive.ics.uci.edu/ml/datasets/Liver+Disorders 

known as liver disorder dataset. This dataset has 345 data 

where each data vector has 7 features in form of integer, real 

and categorical values. The dataset has only two classes. For 

this dataset, Gaussian kernel has minimum number of SVs 

and minimum error rate. Table 3 shows the result of this 

dataset. 

 

Table 3. 

Liver disorder dataset test results with various kernel 

functions. 

kernel 
Kernel 

parameter 

C(penalty) 

parameter 

E ( 

error 

rate 

%) 

SV 

number 

Chebyshev-

Gaussian 

    , 

    
2 22.6 291 

Chebyshev-

wavelet 

     
   

2 25.8 305 

Generalized 

Chebyshev 
  1 2 26.4 305 

Wavelet     1 27.2 301 
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Gaussian   2 0.8 29.3 294 

 

Diabetes dataset: This dataset is currently available  

athttp://archive.ics.uci.edu/ml/datasets/Diabetes known as 

diabetes dataset. This dataset has 768 data where each data 

vector has 8 features form of real values. The dataset has 

two classes. Table 4 demonstrates the result of this dataset. 

As we can see all the kernels almost have the same results, 

but Chebyshev-Gaussian kernel has better results. 

 

Table 4. 

Diabetes dataset test results with various kernel functions. 

Kernel 
Kernel 

parameter 

C(penalty) 

parameter 

E ( 

error 

rate 

%) 

SV 

number 

Chebyshev-

Gaussian 

    , 

     
4 27.1 621 

Chebyshev-

wavelet 

     
    

4 27.2 621 

Generalized 

Chebyshev 
    4 28 631 

Wavelet     2 27.7 646 

Gaussian     2 27.7 632 

 

Haberman's survival dataset: This dataset is currently 
available at 
http://archive.ics.uci.edu/ml/datasets/Haberman%27s+Survi
valknown as Haberman'ssurvival. This dataset has 306 data 
where each data vector has 3 features form of integer values. 
The dataset has two classes. Table 5 illustrate that 
generalized Chebyshev kernel has the best performance in 
compare to the other kernels. 

Table 5. 

Haberman’s survival dataset test results with various kernel 

functions. 

Kernel 
Kernel 

parameter 

C(penalty) 

parameter 

E ( 

error 

rate %) 

SV 

number 

Chebyshev-

Gaussian 

    , 

    
1 25.5098 272 

Chebyshev-

wavelet 
     
   

2 25.4 270 

Generalized 

Chebyshev 
    0.8 24.8 178 

Wavelet     0.8 25.5 270 

Gaussian     0.8 24.5 276 

 

Ionosphere dataset: This is another dataset currently 

available at http://archive.ics.uci.edu/ml/datasets/Ionosphere 

known as Ionosphere dataset. This dataset has 351 data 

where each data vector has 34 features form of real and 

integer values. The dataset has two classes. Both this dataset 

and the next one, in contrast with first five datasets, do not 

belong with diagnosis area. Table 6 shows that Chebyshev-

Gaussian kernel has the best performance. So in this case 

Chebyshev-Gaussian kernel is the best kernel. 

 

Table 6. 

Ionosphere dataset test results with various kernel functions. 

kernel 
Kernel 

parameter 

C(penalty) 

parameter 

E ( 

error 

rate 

%) 

SV 

number 

Chebyshev-

Gaussian 

    , 

    
1 3.1 103 

Chebyshev-

wavelet 

     
   

1 3.4 227 

Generalized 

Chebyshev 
    0.8 8.5 113 

wavelet   8 2 4.8 222 

Gaussian     2 5.4 244 

 

Connectionist bench (Sonar, Mines vs. Rocks) dataset: 

This dataset is currently available at  

http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+

(Sonar,+Mines+vs.+Rocks) known as Sonar dataset. This 

dataset has 208 data where each data vector has 60 features 

form of real values. The data has two classes. Table 7 

illustrates the results of 7th dataset. Crystal clearly in our 

last result Chebyshev-Gaussian kernel also shows the best 

performance. 

Table 7. 

Sonar dataset test results with various kernel functions. 

Kernel 
Kernel 

parameter 

C(penalty) 

parameter 

E ( 

error 

rate 

%) 

SV 

number 

Chebyshev-

Gaussian 

    , 

     
0.4 10.46 74 

Chebyshev-

wavelet 
     
   

0.1 11.5 98 

Generalized 

Chebyshev 
    0.1 15.3 80 

wavelet     1 15.4 181 

Gaussian     1 15.8 174 

VIII. CONCLUSION AND FUTURE WORK 

In this paper we introduce two new kernel functions. 

Although these new kernels show almost better performance 

in comparison with some of the other kernels, in our 

simulation phase we cannot neglect the cost of adding new 

parameter to kernel functions. So there are some issues for 

this new method. First, building the new kernel function by 

combining other individual kernels with the aim of finding 

more accurate kernels. Second, we have to solve the 

complexity of execution phase by analysis the kernels with 

different values of their parameters to reach a set of optimal 

values. 
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