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ABSTRACT 
In this paper, we present a kinematic theory for Hoberman and 
other similar foldable linkages. By recognizing that the 
building blocks of such linkages can be modeled as planar 
linkages, different classes of possible solutions are 
systematically obtained including some novel arrangements. 
Criteria for foldability are arrived by analyzing the algebraic 
locus of the coupler curve of a PRRP linkage. They help 
explain generalized Hoberman and other mechanisms reported 
in the literature. New properties of such mechanisms including 
the extent of foldability, shape-preservation of the inner and 
outer profiles, multi-segmented assemblies and heterogeneous 
circumferential arrangements are derived. The design equations 
derived here make the conception of even complex planar 
radially foldable mechanisms systematic and easy. 
Representative examples are presented to illustrate the usage of 
the design equations and the kinematic theory. 

 
INTRODUCTION 
This paper is concerned with foldable linkages. The 
applications of such linkages range from consumer products 
and toys to architectural applications and massive deployable 
space structures. They belong to the class of over-constrained 
linkages. It is their particular arrangement of specially 
designed, suitably-proportioned rigid links that renders them 
mobile often with a single degree of freedom. Therefore we see 
such mechanisms as inventions rather than results of systematic 
design. Two such examples are shown in Figs.1 and 2 [1]. In 
Fig. 1, we see the Hoberman’s sphere—a popular toy in recent 
times [2]. Its planar version is shown in Fig. 2. Now, consider a 
general arrangement shown in Fig. 3. This paper poses the 
question: what geometry of links makes this over-constrained 
planar arrangement fold like Hoberman’s mechanism of Fig. 2? 
Is Hoberman’s the only possible solution? If not, how do we 
find the others? This paper answers these questions by deriving 
eedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use
kinematic design equations that not only help explain this but 
also lead to general classes of foldable linkages. 

(a) (b)  
Figure 1. Hoberman’s radially foldable sphere (a) folded (b) 
unfolded (images are approximately to the same scale.) 
 

 
Figure 2. Hoberman’s planar foldable mechanism. The basic 
building block is shown using superimposed red angulated line 
in (a-c). Figure (a) also highlights the basic pair that folds. 

 
Figure 3. An arbitrary closed loop of a potentially foldable 
linkage. 
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According to You and Pellegrino [3], there are two types of 
foldable structures. Some are specific in that their arrangement 
of bars and revolute joints gives their specific foldability while 
others consist of repeating building blocks that can lead to a 
variety of foldable designs. In the latter type, a remarkable 
invention of a patented angulated bar element by Hoberman [1] 
has proved to be versatile in giving a wide range of 2-D and 3-
D foldable structures with a single degree of freedom. Indeed 
the basic building block of the mechanism in Fig. 2 is a bent 
bar with an obtuse angle as shown by thick angulated lines in 
all three Figs. 2(a-c). In this structure there are 16 angulated 
elements connected with 24 hinges. In Fig. 2a, a hinge between 
two adjacent elements is shown. According to the Grubler’s 
formula, it has 3(16-1) – 2(24) = -3 degrees of freedom. But, 
how did Hoberman arrive at the above arrangement and the 
lengths and the angle of his building block so that it can fold 
with a single degree of freedom? Is this the only radially 
foldable mechanism? The answer is ‘no’ because You and 
Pellegrino [3] have reported their inventions of two types of 
generalized angulated elements (GAEs). They give many 
examples of not only circular but also general shapes that can 
fold in this manner. They also propose a multi-angulated 
element to minimize the number of elements in a complex 
arrangement. They present a number of designs and geometric 
derivations. In this paper, based on a simple kinematic 
interpretation we derive general conditions of foldability and 
establish a class of solutions which render Hoberman’s and You 
and Pellegrino’s designs as special classes and cases. 
Furthermore, we also present conditions for shape-preservation 
of the interior inscribed polygon (shown with a dotted line in 
Fig. 3). 
 Since the focus of this paper is on kinematic analysis of 
foldable structures, it is pertinent to note that kinematic 
treatment of foldable linkages is receiving increasing attention 
in recent years. Wohlhart [4] reported a number of three 
dimensional foldable linkages. Langbecker [5] presented 
kinematic analysis of scissor structures and derived the 
foldability conditions. The basic element of a scissor structure 
is a pair of straight bars connected with a revolute joint to form 
an X (scissor) shape. Lazy tongs is an example of such a 
structure. Langbecker also considered Hoberman’s angulated 
element but not the more general ones discovered by You and 
Pellegrino [3]. Dai and Jones [6] analyzed the mobibility of 
foldable mechanisms which belong to a general class of 
metamorphic mechanisms. They used principles of screw 
theory to arrive at mobility conditions [7]. Agrawal et al. [8] 
presented a design methodology for constructing foldable 
linkages of general shapes. Langbecker and Albermani [9] 
discussed the geometric design of foldable structures of 
positive and negative curvatures and also analyzed the 
structural response of such structures. Pfister and Agrawal [10] 
considered the dynamics of suspended foldable structures. 
While the above works used analytical tools such as screw 
theory and Euler-Liouville equations or plain trigonometry, the 
present work uses the classical theory of algebraic equations of 
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loci of points in a linkage. This simple theory surprisingly leads 
to many more insights into the kinematics of planar foldable 
linkages and leads to general classes of solutions and 
straightforward design criteria. 
 In the next section, our recent work [11] on kinematic 
interpretation of radially foldable mechanisms and the equation 
of a coupler curve are briefly reviewed. This paper utilizes and 
adds to it to derive the conditions of foldability and shape-
preservation and other new kinematic insights including the 
extent of foldability, heterogeneous arrangements of basic pairs 
of angulated elements, multi-segmented assemblies, etc. Some 
concluding remarks are in order at the end of the paper. 

KINEMATIC INTERPRETATION OF HOBERMAN TYPE 
FOLDABLE LINKAGES 
Figure 4a shows a pair of Hoberman’s angulated elements that 
enclose an angle α  at the center. Since points A, C, D and E 
are constrained to move along the dashed lines, we can 
interpret the angulated elements as PRRP linkages. Figure 4b 
shows this for the angulated element ABC. It should be 
observed that in the Hoberman’s element, point B, which we 
can call the coupler point of the PRRP linkage, traces a radial 
line indicated as a dotted line in Fig. 4b. If we take a general 
pair of angulated elements (or as a pair of general PRRP 
linkages) as in Fig. 4c, we can easily see that Grubler’s formula 
gives zero degrees of freedom. Thus, this pair is immovable in 
general. But its mobility is essential for the foldability of the 
polar array of such a pair. By noting that two PPRP linkages are 
individually movable with a single degree of freedom, we can 
say that the two pair will be movable if they both share the 
same coupler curve at point B. This is a simple but effective 
condition as can be seen when the equation of the coupler 
curve is derived. 
 

 

 
Figure 4. Kinematic interpretation of Hoberman’s angulated 
element (a) a pair of Hoberman’s angulated elements (b) a 
PRRP linkage interpretation of an angulated element (c) a pair 
of general PRRP linkages sharing a common coupler point B. 
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Equation of the coupler curve of a PRRP linkage 
The equation of the coupler curve of a 4R four-bar linkage is a 
special sextic with many interesting properties [12]. There have 
been attempts to synthesize path-generating four-bar linkages 
using its equation [e.g., 13, 14]. Using the same procedure as in 
[12], the algebraic equation of the coupler curve of the PRRP 
linkage is derived below. 

 
Figure 5. A PRRP linkage and its coupler point 

 
From the symbols defined in Fig. 5 and letting the coordinates 
of the coupler point B be ( , )x y , the coordinates of points A 
and C can be written as follows: 
 

 1 2 1 2

3 2 3 2

: ( cos sin , sin cos )
: ( cos sin , sin cos )

A x r r y r r
C x r r y r r

β β β β
β β β β

− − − +
+ − + +

 (1) 

 
Since A lies on the x-axis and C on the line given by 

( )tany xα= , we can write 
 

 
( )

1 2

3 2 3 2

sin cos 0
sin cos tan cos sin

Ay y r r
y r r x r r

β β
β β α β β

= − + =

+ + = + −
 (2) 

 
By solving for cos β  and sin β  using the two equations in Eq. 
(2), and using the identity 2 2sin cos 1β β+ = , the equation of 
the coupler can be obtained. It has the following form. 
 

2 2 2 2 2 2 2 2 2
1 2 2 3

2 2 2
1 2 2 3 1 3 1 3

2 2 2
1 2 2 3 1 1 3

3 2 2 2 2 2 3 2
2 3 2 1 3 1 1 2 1 2 3

4 2 2 2
2 2 3 1 2 3

( tan tan ) ( tan tan

2 tan 2 tan 2 r ) 

2( tan tan  tan tan ) 

( 2 tan tan 2 tan 2

tan 2

r r x r r

r r r r r r r y

r r r r r r r xy

r r r r r r r r r r r

r r r r r r

α α α α

α α

α α α α

α α α

α

+ + +

+ + + + +

+ − − − − +

− − − − −

− − + 2 2 2 2
1 2 3 1 2 3tan 2 tan 2 tan )r r r r r rα α α+ +

 (3) 
Compared to the full form of a 2nd degree equation, which is 
shown below, Eq. (3) has a shortened form with 0g f= = . 
 
 2 2 2 2 2 0ax by hxy gx fy c+ + + + + =  (4) 
 
For different parameters, 1 2 3{ , , , }r r r α , of the PRRP linkage, the 
coupler curve will trace different geometric entities as 
summarized below. 
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(i) A pair of straight lines if  
    2 2 2 22 0abc fgh af bg ch abc ch∆ = + − − − = − = . 
(ii) A parabola if 2 0 and 0h ab− = ∆ ≠ . 
(iii) A hyperbola if 2 0 and 0h ab− > ∆ ≠ . (5) 
(iv) An ellipse if 2 0 and 0h ab− < ∆ ≠ . 
(v) A pair of parallel lines if 2 0 and 0h ab− = ∆ =  
 
Condition for the Hoberman’s mechanism 
To obtain the condition on the parameters 1 2 3{ , , , }r r r α  to give 
the Hoberman’s mechanism, we note that in his mechanism all 
the coupler points trace radial lines passing through the center. 
Therefore, we can apply condition (i) of Eq. (5) and arrive at 
the following relationship. 
 

 2 1 3
2

1 3 2

( )
tan

r r r
r r r

α
+

=
−

 (6) 

 
It is a special situation of identical straight lines passing 
through the origin both having the form y mx= .  

We note that the condition of Eq. (6) is more general than a 
Hoberman element. We need to reduce this equation further to 
make it specific to a Hoberman’s angulated element. We note 
that even in the general type, Hoberman assumes that the two 
triangles (or the angulated bars) in the pair are identical. A 
special case, which is shown in Figs. 2a-c, is obtained when the 
two sides enclosing the obtuse angle are equal. That is, 1 3r r= . 
This relationship with Eq. (6) would give the result that 

/ 2BOA BCA BAC α∠ = ∠ = ∠ =  in Fig. 5. 
 

 

2 1 3 2 1 2 1
2 2 2 2

1 3 2 1 2 2 1

1
2 1

2 1
2

( ) 2 2( / )
tan

1 ( / )

2 tan(tan ( / ))tan(2 / 2)
1 tan (tan ( / ))

r r r r r r r
r r r r r r r

r r
r r

α

α
−

−

+
= = =

− − −

⇒ ⋅ =
−

 (7) 

with 2 1tan( / 2) /r rα =  
  
Thus, Hoberman’s mechanism of Figs. 2a-c is easily seen as a 
special case of designs governed by Eq. (6). In fact, the coupler 
curve interpretation and this equation for radial coupler curve 
lead to many insights into the planar radially foldable linkages 
of this kind. These are discussed next. 

PROPERTIES OF RADIALLY FOLDABLE LINKAGES 
By referring to Fig. 3 once again, now with the help of the 
above kinematic interpretation and the equation of the coupler 
curve, we can derive the conditions for foldability and shape-
preservation. By ‘foldability’, we mean that such a linkage will 
have a positive number of kinematic degrees of freedom. We 
prefer it to be one in practice. By ‘shape-preservation’ we mean 
that the shape of the inscribed polygon in Fig. 3 retains its 
3/9 Copyright © 2006 by ASME 
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shape as the linkage folds radially inwards or outwards. For the 
example shown in Fig. 2, this inscribed polygon is a regular 
octagon that preserves its shape during folding.  
 
Foldability condition 
From Fig. 4c, it is to be noted that the pair of PRRP linkages 
will have one degree of freedom when they both share the same 
coupler curve at their common point B. Now, if take two 
arbitrary instances of the parameters 1 2 3{ , , }r r r  for the same α , 
what relationship among them gives rise to the same equation 
of the coupler curve? One possible solution to this is a 
generalized angulated element of the first kind (GAE1) given 
by You and Pellegrino, which they call an invention. In GAE1, 
as shown in Fig. 6, there is a simple condition of isosceles 
triangle that relate the two instances of 1 2 3{ , , }r r r .  

As shown in Fig. 6, a pair of PRRP linkages is considered. 
Note that we have used the parameters 1 2 3{ , , , }r r r α  for one 
linkage and 1 2 3{ , , , }s s s α  for another. You and Pellegrino 
define GAE 1 as the one in which the triangles ABE and DBC 
are isosceles such that AB EB=  and DB CB= , i.e.,  

 
 2 2 2 2 2 2 2 2

1 2 1 2 2 3 2 3andr r s s r r s s+ = + + = + . (8) 
 
We show below that this condition can easily be verified by 
using the equation of the coupler curve. We do this by showing 
that the coupler curves of both the PRRP linkages are the same 
when the above isosceles triangle condition is satisfied by the 
parameters 1 2 3{ , , , }r r r α  and 1 2 3{ , , , }s s s α .  
 

 
Figure 6. The case of isosceles triangles (GAE 1) of [3] 

 
Perpendiculars 1BT  and 2BT  are drawn so that 1 2OT BT  
becomes a cyclic quadrilateral so that 
 

1 2

1 2

2 2

T BT
T BA ABD DBT

DBE ABD ABC ABDABD

α π
α π

α π

+ ∠ =
+ ∠ + ∠ + ∠ =

∠ − ∠ ∠ − ∠
⇒ + + ∠ + =

2( )DBE ABC π α⇒ ∠ + ∠ = −  (9) 
 
Since angles ABC∠  and DBE∠  are in terms of the parameters 

1 2 3{ , , , }r r r α  and 1 2 3{ , , , }s s s α , we can substitute Eqs. (8) and 

O A E T1 
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r1 
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r2 

s1 
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B 

A 

C 

α 

E 
 

ded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use
(9) into the equation of the coupler curves defined by 
1 2 3{ , , , }r r r α  and 1 2 3{ , , , }s s s α  to see that they are the same in 

view of Eq. (8). It is important to note that under the isosceles 
triangles condition, the coupler curve shared by the two PRRP 
linkages is an ellipse.  

A second possibility of having the same coupler curve for 
two instances of 1 2 3{ , , }r r r  is that the coupler curve is a radial 
line passing through the center. The condition for it is already 
given in Eq. (6). The generality of this equation can be 
highlighted by the fact that it gives You and Pellegrino’s [3] 
another invention called the generalized angulated element of 
the second kind (GAE2). 
 GAE 2 is defined as a pair of PRRP linkages in which 
triangles ABE∆  and DBC∆  are similar. This geometric 
condition observed by You and Pellegrino to give foldability 
indeed gives radial-line for the common coupler point. To show 
that Eq. (6) readily gives this condition, we state and prove two 
propositions: (i) When ABE∆  and DBC∆  are similar it leads 
to Eq. (6), and (ii) When Eq. (6) is satisfied, ABE∆  and 

DBC∆  are similar. 
 

 
Figure 7. The case of similar triangles (GAE 2) of [3] 

 
 
Proof of proposition 1: By referring to Fig. 7, due to the 
similarity of  ABE∆  and DBC∆  , we can write 
 
  (i) AEB CDB∠ = ∠  and (ii) EAB DCB∠ = ∠  (10) 
 
By noting that  
 
 1 1

2 1 2 1tan ( / ) tan ( / )AEB AED s s OED s s− −∠ = ∠ + = ∠ +

 
1

2 3
1

2 3

tan ( / )

tan ( / ) ( )

CDB s s ODE

s s OED

π

π π α

−

−

∠ = − − ∠ =

− − − − ∠
 (11) 

 
from (i) of Eq. (10), we get 
 

 

1 1
2 1 2 3

1 1 1 2 1 3
2 1 2 3 2

1 3 2

tan ( / ) tan ( / ) ( )

( )
tan ( / ) tan ( / ) tan

OED s s s s OED

s s s
s s s s

s s s

π π α

α

− −

− − −

∠ + = − − − − ∠

⎛ ⎞+
⇒ = + = ⎜ ⎟−⎝ ⎠

 2 1 3
2

1 3 2

( )
tan

s s s
s s s

α
+

⇒ =
−

 (12) 

O A E 

B 
D 

s1 
s3 

r1 

r3 

r2 
B B 

A α 

C C 

s2 

E 

D 
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Similarly, from (ii) of Eq. (10), we can see that  
 

 2 1 3
2

1 3 2

( )
tan

r r r
r r r

α
+

⇒ =
−

 (13) 

 
Eqs. (12) and (13) are the same as Eq. (6). QED. 
 
Proof of proposition 2 (converse of proposition 1):  
Now, we have 
 

 2 1 3 2 1 3
2 2

1 3 2 1 3 2

( ) ( )
tan and tan

s s s r r r
s s s r r r

α α
+ +

= =
− −

. (14) 

 
We take the first one of Eq. (14) and divide the numerator and 
the denominator of the right hand side by 1 3s s  to get 
 

 

( ) ( )
( )( )

( ) ( )
( )( )

( ) ( )

2 1 2 3

2 1 2 3

2 1 2 31

2 1 2 3

1 1
2 1 2 3

/ /
tan

1 / /

/ /
tan

1 / /

tan / tan /

s s s s
s s s s

s s s s
s s s s

s s s s

α

α −

− −

+
=

−

⎛ ⎞+
⇒ = ⎜ ⎟⎜ ⎟−⎝ ⎠

= +

 (15) 

 
which is part of Eq. (12) and can be arranged to give the result 
that ABE CDB∠ = ∠ . Similar procedure for the second part of 
Eq. (14) gives EAB DCB∠ = ∠ . This leads to the conclusion 
that ABE∆  and DBC∆  are similar. QED. 
 One of the numerous linkages designed with Eq. (6) is 
shown in Fig. 8 in eight different configurations. Thus, this 
equation not only helps in systematically deriving inventions 
reported by Hoberman [1] and You and Pellegrino [3] but also 
helps in constructing new designs. Since, we now understand 
the conditions for foldability, we can easily construct 
heterogeneous designs where non-identical pairs of PRRP 
linkages are connected together to form of foldable closed-loop 
linkages. Two examples of this are shown in Figs. 9 and 10. 
While Fig. 9 has a regular pattern with two different pairs of 
PRRP linkages, Fig. 10 has completely different pairs used to 
create the closed loop. Two things can be observed in the 
linkage of Fig. 10. First, the shape of its inscribed polygon (see 
Fig. 3) is not preserved. Second, it is not capable of folding 
completely. Both of these properties can be discerned from the 
equation of the coupler curve with further analysis. 
 
Partial foldability of heterogeneous arrangements 
Hoberman’s angulated element pairs are identical and hence 
they are foldable completely. But when two non-identical 
PRRP linkages are connected together at a common coupler 
point, they may not in general be foldable completely. This 
means that when a circumferentially closed linkage consisting 
of several such heterogeneous pairs, the inscribed polygon will  
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(a) (b)  

(c) (d)  

(e) (f)  

(g) (h)  
Figure 8. Eight configurations of a fully and reversibly 
foldable linkage, one of the many possible linkages that can be 
designed with Eq. (6). Elliptical loci of the coupler points are 
also shown. 
 
 
not be able to shrink to a point. So, one needs to analyze the 
extent and the range of foldability. This can be analyzed once 
again with the help of the equation of the coupler curve and 
insights gained from it. 
 Consider the PRRP linkage shown in Fig. 11 and let its 
parameters 1 2 3{ , , , }r r r α  satisfy the radial-line coupler point 
condition of Eq. (6). Let the size of this linkage be fixed so that 

1 3 1r r+ = . Then, for a given α  and 1 3/r r , 2r  will be 
determined by Eq. (6). This implies that there is a freedom to 
choose the coupler point B by choosing the value of  1 3/r r .  
5/9 Copyright © 2006 by ASME 

e: http://www.asme.org/about-asme/terms-of-use



 

 

F
f
w
 

F
r
i
 

Downloade
(a)  

(b)  

(c)  
igure 9. Three configurations of a heterogeneous regular 

oldable linkage. The inscribed polygon of this is a rectangle 
ith rounded corners. 

(a)  

(b)  

(c)  
 

igure 10. Three configurations of a heterogeneous irregular 
adially foldable linkage. The inscribed polygon does not retain 
ts shape here. 
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Figure 11. Possible locations of the coupler point to have a 
radial line as its locus. 
 
It can be shown that B can lie anywhere on the (red) circle 
shown in Fig. 11. All these coupler points will have radial line 
as their locus as the PRRP linkage moves. This leads to an 
interesting consequence: OABC is a cyclic quadrilateral. 
Therefore, the following angles in the same segment of the 
circle are equal. 
 

 1

2

AOB ACB
BOC BAC

α
α

∠ = ∠ =
∠ = ∠ =

 (16) 

 
From Fig. 11, we can also see that  
 
 1 2( )ABC π α α π α∠ = − + = −  (17) 
 
Using these relationships, we can also derive the radius of the 
circle in Fig. 11 to be equal to 1(2sin )α −  for the size-
normalization condition of 1 3 1r r+ = . Based on this, we can 

derive the analytical expressions for the lengths OA , OB  and 
OC  from the coordinates of points A, B, and C. 
 

 
{ }
{ }
{ }

1 2 1 2

: sin( ) / sin ,0

: cos sin , sin cos

: cos ,sin

A a

B a r r r r

C a

γ α α

γ γ γ γ

γ γ

= −

+ + −

+

 (18) 

 
In Eq. (18), γ  is the variable that exercises the single degree of 
freedom of the PRRP linkage. In view of investigating the 
extent of foldability, we restrict the range of γ  to α γ π≤ ≤ . 

With reference to Fig. 12, where the length OB  is plotted for 
three different values of 1 3/r r . A heterogeneous PRRP linkage 
pair can be made if there are two values of γ  for a given value 

of OB b= . This is because the two linkages share a common 
coupler point as seen in Fig. 4c. Among the three cases shown 
in Fig. 12, only 1 3/ 1r r =  shows full foldability because of the 
symmetric nature of the curve in the permitted range of γ . The 
reduced ranges of foldability for the other two cases are also 
shown in the figure. Thus, partial foldability can be analytically 
characterized. 

r1 
α 

r3 
r2 

O A 

B 
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y 
γ 

α2 

α1 

C 
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Figure 12. Extent of foldability of heterogeneous PRRP 
linkage pairs. 
 
Multi-segment assemblies 
You and Pellegrino [3] note that the angulated element need not 
contain only two segments and can consist of any number of 
segments of equal length. But they limit it to the case where all 
segments are of equal length. The radially foldable multi-
segment mechanism created using You and Pellegrino’s idea is 
shown in Figure 13. Based on the result indicated in Figs. 11 
and 14, we note that an entire arc (actually the circle as a 
whole) can be used for this purpose as all the points on it trace 
radial lines. As shown in Fig. 14, this circle rotates about the 
origin as the PRRP linkage moves. Its locus is shown in the last 
figure of Fig. 14. 
 

 
Figure 13. A multi-segmented assembly of a radially foldable 
planar linkage. 
 
Shape-preservation 
You and Pellegrino [3] presented some foldable linkages where 
the inscribed polygon (see Fig. 3) can assume a variety of 
shapes. But not all of them preserve that shape as the 
mechanism moves with a single degree of freedom. No 
conclusive conditions for shape-preservation were given in that 
work. Having derived the analytical expressions for  OA  and 
OC , it is now a simple matter to see when the shape will be 
preserved: the velocities of points A and C' (where A belongs to 
one PRRP linkage and C' to the other in the pair) should be 

r1/r3 = 1.5 
r1/r3 = 1.0 
r1/r3 = 0.5 
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proportional to their distances from the origin. If the parameters 
of the linkage satisfy this condition, we can ensure shape-
preservation for any arbitrary circumferentially closed-loop 
linkage such as the one shown in Fig. 3. If it is not possible, it 
will be revealed as well.  
 

 
 

 
Figure 14. Possible radial-line coupler point locus to create 
multi-segment assemblies. All the points on the circle trace 
radial lines.  
 

(a) (b)  
Figure 15. Interior polygon shapes of the linkage shown in Fig. 
8. (a) Shape-preserving case (b) shape-changing case 
 
Figures 15a-b show the cases of interior polygon with 
preserved shape and change shape. Fig. 15a corresponds to the 
case of the linkage shown in Fig. 8. Fig. 15b is an asymmetric 
variation of it with changing shape. Figure 17a-b show the case 
of a closed-loop linkage with seven building blocks, i.e., seven 
PRRP linkages. In this case, since 1 3/r r  is equal to one, we 
have the shape of the polygon preserved. On the other hand, in 
Fig. 17c-d, 1 3/r r  is less than one and the shape is not 
preserved. It is interesting to see that now, the linkage is not 
closed and the points on the x-axis need to be guided along the 
x-axis. It also gives an interesting possibility that changing the 
distance between the un-joined points on the x-axis provides an 
easy way to actuate this single degree-of-freedom linkage.  
 Figure 18 shows the prototype of a heterogeneous 
linkage, which has the interior polygon of the shape of a 
pentacle. Finally, Fig. 19 shows a compliant one-piece linkage 
that is foldable and is designed based on the design equations 
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presented in the paper. Details of this design are presented 
elsewhere.  
 

(a) (b)  

(c) (d)  
Figure 17. (a-b) A seven-module foldable linkage and its 
shape-preserving regular heptagons (c-d) An open 
heterogeneous linkage whose points on the horizontal need to 
be guided, and its shape-changing interior polygon. The guided 
points can easily be actuated with a linear actuator. Thus, even 
an irregular shape can be closed and opened with this type of 
linkages.  
 
 

(a)  (b)  
Figure 18. A heterogeneous foldable linkage prototype made 
using polypropylene (white) and Plexiglas (transparent) 
materials to show the two different building blocks. 
 

    
(a)     (b)          (c) 

Figure 19. A foldable compliant, single-piece linkage design using the 
design equations presented in this paper. 
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CLOSURE 
In this paper, we presented the kinematic theory behind 
Hoberman’s and other inventions related to planar, radially 
foldable linkages. Apart from rigorously explaining why 
overconstrained linkages such as Hoberman’s structures have 
mobility, we showed that a general class of foldable linkages 
can be derived by using a simple algebraic equation and even 
simpler design criterion. This criterion was derived from the 
kinematic interpretation that the basic building block in the 
radially foldable linkages is a pair of PRRP linkages. The 
algebraic equation of the locus of the coupler point of the 
PRRP linkage reveals the reported inventions as special cases. 
It also helps in providing further design insights into several 
interesting properties such as foldability, shape-preservation, 
heterogeneous arrangements, multi-segment assemblies, 
circumferential actuation, etc. Future extensions of this work 
inclide 3-D radially foldable linkages, giving a suitable shape 
to the angulated elements to ensure complete coverage, etc. 
Applications of the theory presented here to deployable 
linkages/structures for architectural and space requirements is 
currently being pursued in our ongoing work. 
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