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Abstract

In this paper, methods are proposed to design Luenberger type full- and reduced-order observers for rectangular
descriptor systems with unknown inputs. These methods are based on the effect of pre- and post-multiplicative
operation of a linear transformation, derived here by means of simple matrix theory. Sufficient conditions for the
existence of observers are given and proved. Numerical examples are given to illustrate the effectiveness of the
proposed method.
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1. Introduction

In the last few decades, many researchers have given a lot of attention on the analysis and design of
descriptor systems as these are general enough to provide a solid understanding of the inner dynamics of
any physical system [1–3]. Many physical systems can be modeled as the system of differential algebraic
equations and can be written in the form of descriptor systems, but it is not always necessary that number of
variables of interest and equations are same. Thus, we are here concerned with rectangular systems. Some
real life applications are electrical circuits [4], chemical control processes [5], constrained mechanics [6], and
biological systems [7] to name a few.

An observer is a mathematical realization which uses the input and output information of a given system
and its output asymptotically approaches the true state values of the given system. Observer design problem
for normal systems has received a great attention in the literature [8–14] and the techniques used for them
have been extended successfully to descriptor linear [15–22] and nonlinear [23–26] systems. There are many
practical situations where control systems arise with noise or disturbances, so the problem of observer design
for systems with unknown inputs is of great importance. Descriptor systems are very sensitive to slight input
changes, because differentiation terms of inputs exist in their solution [1]. Thus, observers design problem
for descriptor systems with unknown inputs is more important than observer design for normal systems with
unknown inputs. Many researchers have worked either on observer design of square descriptor system with
unknown inputs or on rectangular descriptor system with unknown inputs only in dynamical part [27–32],
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but results on rectangular descriptor systems with unknown inputs in dynamical as well as in measurement
equation are limited [33, 34]. Considering unknown inputs in measurement equation is vary important since,
unlike the known inputs, unknown inputs can not be eliminated from the measurement equation without
loss of generality. Concepts of generalized Sylvester equation and generalized inverse have been used for
the design of observers for descriptor systems with unknown inputs [33]. Koenig [34] presents a method
to design proportional multiple-integral observer for descriptor systems for estimating simultaneously the
states, faults, and unknown inputs, but the order of observer is greater than the number of states in the given
system. Ting et al. [35] have designed observer for normal system with unknown inputs by transforming it
into descriptor system through a series of linear transformations in the state and output equations.

It has been shown that the condition of detectability is necessary for the existence of any Luenberger
type observer for any descriptor system [2]. In this article, our assumptions on the system operators are
imitated from the papers [33] and [34] as these conditions are very less restrictive for the design of observers
for systems having unknown inputs. As compared to these articles, the proposed method is straightforward
and simple to understand and implement. Our approach is based on the restricted system equivalent theory
and does not require the concept of generalized Sylvester equation. In this note, one full column rank
matrix R is designed in such a way that its pre-multiplication to some matrices gives the design approach
for full-order observer and its post-multiplication reveals the reduced-order observer design approach. The
order of the proposed reduced-order observer is less than the dynamical order of the given descriptor system.

Rest of the paper is organized as follows. In Section 2, descriptor system with unknown inputs in
dynamical and measurement equations is transformed to descriptor system with unknown inputs only in
dynamical part by using the known results. Section 3 presents full-order observer design approach. Based
on the results of Sections 2 and 3, reduced-order observer is designed in Section 4. To illustrate the derived
results, one numerical example is given in Section 5. Finally, Section 6 concludes the paper.

2. Preliminaries

Consider the following linear time invariant descriptor system with unknown inputs

E∗ẋ = A∗x+B∗u+ F ∗v, (1a)

y∗ = C∗x+G∗v, (1b)

where x ∈ Rn, u ∈ Rk, v ∈ Rq, and y∗ ∈ Rp are the state vector, the control input vector, the unknown
input vector, and the output vector, respectively. E∗ ∈ Rm×n, A∗ ∈ Rm×n, B∗ ∈ Rm×k, F ∗ ∈ Rm×q,
C∗ ∈ Rp×n, and G∗ ∈ Rp×q are known constant matrices. We assume that rank E∗ = n0 < max{m,n}.
Let us make the following assumptions on the system (1)

(H1) rank


E∗ A∗ F ∗ 0
0 E∗ 0 F ∗

0 C∗ G∗ 0
0 0 0 G∗

 = rank

[
E∗ F ∗

0 G∗

]
+ n+ q,

(H2) rank

[
A∗ − λE∗ F ∗

C∗ G∗

]
= n+ q ∀ λ ∈ C̄+,

where C represents the set of complex numbers. C̄+ = {s|s ∈ C, Re(s) ≥ 0} is the closed right half
complex plane.

The conditions (H1) and (H2) are generalization of the conditions of the impulse observability and
detectability properties of square descriptor systems to the descriptor systems (1), respectively. Since rank

E∗ = n0, there exists a nonsingular matrix P such that PE∗ =

[
E
0

]
, PA∗ =

[
A
A1

]
, PB∗ =

[
B
B1

]
, PF ∗ =[

F
F1

]
, and system (1) is restricted system equivalent to following system (2).

Eẋ = Ax+Bu+ Fv, (2a)

y = Cx+Gv, (2b)
2
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where E ∈ Rn0×n, A ∈ Rn0×n, B ∈ Rn0×k, F ∈ Rn0×q, C =

[
A1

C∗

]
∈ Rt×n, G =

[
F1

G∗

]
∈ Rt×q are constant

matrices and y =

[
−B1u
y∗

]
∈ Rt with t = p+m− n0.

Since rank G := q1 ≤ q, there exists two nonsingular matrices U and V such that UGV =

[
Iq1 0
0 0

]
.

Now, system (2) can be written as follows.

Eẋ = Φx+Bu+ F11y1 + F12v2, (3a)

y2 = C12x, (3b)

with

y1 = C11x+ v1, (4)

where

[
y1
y2

]
= Uy,

[
C11

C12

]
= UC, v = V

[
v1
v2

]
, FV =

[
F11 F12

]
, and Φ = A− F11C11.

Under the assumptions (H1) and (H2) on the system (1), descriptor system (3) satisfies the following
condition

(H3) rank

[
E F12

C12 0

]
= n+ q − q1.

(H4) rank

[
Φ− λE F12

C12 0

]
= n+ q − q1 ∀ λ ∈ C̄+.

Till now, in this section, all the definitions and used transformations are taken from [33]. Our main
results, as described in the next two sections, also require the following lemma.

Lemma 1. Let any matrix pair (E , C), where E ∈ Rm1×n1 with m1 ≤ n1 and C ∈ Rp1×n1 satisfies following
condition

rank

[
E
C

]
= n1.

Then there exists a full column matrix R such that

rank

[
I −RE
C

]
= rank(C)

Proof of the above Lemma can be found in [36]. This matrix R is not unique, one numerically reliable
algorithm to find matrix R is given in the Appendix A. Now we will design observers for the system (3),
which is also an observer for the system (2) and the system (1).

3. Full-order observer design

Let the proposed full-order observer is of the form

ż = Nz + TBu+ TF11y1 + Ly2, (5a)

x̂ = z +My2, (5b)

where z ∈ Rn. Problem is to find matrices N , L, T , and M of compatible dimensions such that x̂(t)→ x(t)
as t→∞ for arbitrary initial conditions x(0) and z(0).

Theorem 1. Under the assumptions (H3) and (H4), there exists matrices N , L, T and M of compatible
dimensions such that the system (5) is an observer for the system (3).

3
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Proof. From systems (5) and (3) the error vector

e = x− x̂
= x− z −MC12x

= (In −MC12)x− z
= TEx− z (6)

gives the dynamics

ė = TEẋ− ż
= TΦx+ TBu+ TF11y1 + TF12v2 − (Nz + TBu+ TF11y1 + LC12x)

= (TΦ− LC12)x−N(TEx− e)
= Ne+ (TΦ− LC12 −NTE)x

= Ne+ (TΦ− LC12 −N +NMC12)x

= Ne. (7)

In the construction of equations (6) and (7), we have assumed the existence of matrices M , K, N , and L of
compatible orders such that

[
T M

] [ E F12

C12 0

]
=

[
In 0

]
, (8)

K = L−NM, (9)

N = TΦ−KC12. (10)

Now, the problem of designing the state observer (5) is converted into the design of the matrices M, K, N
and L such that the equations (8)-(10) are satisfied with the stability property of the matrix N , because the
error dynamics (7) is stable if and only if the system (5) is an observer for the system (3). Assumption (H3)
ensures the solvability of equation (8), but we have to find T such that matrix pair (TΦ, C12) is detectable,
because detectability of matrix pair (TΦ, C12) implies the stability of matrix N . Now, first we shall prove
the claim that (H3) implies the solution of equation (8).

Since rank of F12 ∈ Rn0×(q−q1) is q − q1, we can find a full row rank matrix T0 ∈ R(n0+q1−q)×n0 such
that T0F12 = 0. Now, it is clear that[

T0 0
0 It−q1

] [
E F12

C12 0

]
=

[
T0E 0
C12 0

]
. (11)

But, assumption (H3) implies

rank

[
T0 0
0 It−q1

] [
E F12

C12 0

]
≥ (n0 − q + q1 + t− q1) + (n+ q − q1)− (n0 + t− q1)

= n, (12)

which implies (together with equation (11)) that

rank

[
T0E
C12

]
= n. (13)

Now applying the Lemma 1 on matrix pair (T0E, C12), we can find a full column rank matrix R such that

rank

[
I −RT0E

C12

]
= rank(C12), (14)

4



Author / Journal of The Franklin Institute 00 (2015) 1–13 5

which implies the existence of a matrix M such that I−TE = MC12, where T = RT0. Thus, as constructed
matrices T and M satisfy the equation (8). Now it remains to prove that for constructed T , matrix pair
(TΦ, C12) is detectable. It is straightforward that ∀ λ ∈ C̄+,[

T0 0
0 I(t−q1)

] [
Φ− λE F12

C12 0

]
=

[
T0Φ− λT0E 0

C12 0

]
. (15)

But, assumption (H4) implies

rank

[
T0 0
0 I(t−q1)

] [
Φ− λE F12

C12 0

]
≥ (n0 − q + q1 + t− q1) + (n+ q − q1)− (n0 + t− q1)

= n. (16)

Thus, we have,

n = rank

[
T0Φ− λT0E

C12

]
(17)

= rank

[
TΦ− λTE

C12

]
= rank

[
TΦ− λ(I −MC12)

C12

]
= rank

[
I λM
0 I

] [
TΦ− λI
C12

]
= rank

[
TΦ− λI
C12

]
.

Hence the matrix pair (TΦ, C12) is detectable.

Now, we summarize the procedure explained in the above theorem by writing the following algorithm.
Algorithm for Full-order observer for the system (1)

1. Reduce the given descriptor system (1) in the form of system (3) as described in Section 2.

2. Find the left null matrix T0 for matrix F12.

3. Find matrix R for matrix pair (T0E,C12) by algorithm given in the Appendix.

4. Solve matrix equation MC = I − TE for unknown matrix M , where T = RT0.

5. Find matrix K by pole placement or LMI approach such that N = TΦ−KC is a stable matrix.

6. Calculate L = K +NM .

4. Reduced order observer design

Let the proposed observer is of the form

ż = N̄z + T0Bu+ T0F11y1 + L̄y2, (18a)

x̂ = Rz +My2, (18b)

where z ∈ Rn×(n0+q1−q), and the matrices T0, R and M are the same as mentioned in the previous Section.
Problem is to find matrices N̄ and L̄ of compatible dimensions such that x̂(t)→ x(t) as t→∞ for arbitrary
initial conditions x(0) and z(0).

5
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Theorem 2. Under the assumptions (H3) and (H4), there exists matrices N̄ and L̄ of compatible dimensions
such that the system (18) is an observer for the system (3).

Proof. Assume the existence of matrices N̄ , K̄ and L̄ such that

N̄ = T0ΦR− K̄C12R (19)

L̄ = T0ΦM + K̄ − K̄C12M. (20)

From systems (18) and (3) the error vector

e = x− x̂
= x−Rz −MC12x

= (In −MC12)x−Rz
= R(T0Ex− z). (21)

Assume, e1 = T0Ex− z. Then,

ė1 = T0Eẋ− ż
= T0Φx+ T0Bu+ T0F11y1 + T0F12v2 − (N̄z + T0Bu+ T0F11y1 + L̄C12x)

= (T0Φ− L̄C12)x− N̄(T0Ex− e1)

= N̄e1 + (T0Φ− L̄C12 − N̄T0E)x

= N̄e1. (22)

Equations (19) and (20) imply that
T0Φ− L̄C12 − N̄T0E = 0,

and from (21) and (22), we can write

e = R exp (N̄t)(T0Ex(0)− z(0)). (23)

It can be seen from the equation (23) that error is asymptotically stable if and only if matrix N̄ is a stable
matrix. It implies from equation (19), that detectability of matrix pair (T0ΦR,C12R) is required to construct
stable matrix N̄ . It is clear that RT0E = In −MC12 implies

T0E = R+(In −MC12), (24)

where, R+ is any left inverse of matrix R. Now, from (17), for each λ ∈ C̄+

rank

[
T0Φ− λT0E

C12

]
= n

⇒rank

[
T0Φ− λR+(In −MC12)

C12

]
= n

⇒rank

[
T0ΦR− λR+(In −MC12)R

C12R

]
= n0 + q1 − q

⇒rank

[
T0ΦR− λIn0+q1−q

C12R

]
= n0 + q1 − q (25)

which implies that the matrix pair (T0ΦR,C12R) is detectable.

Remark 1. In [33] (see equations (5e), (8), (20), and (21)) a full row rank matrix T is constructed in

such a way that TF12 = 0,

[
TE
C12

]
is nonsingular, and the matrix pair (Ω,Γ) is detectable. In the proposed

technique, we have also designed one detectable matrix pair, but the complexity of the whole work is reduced
in two steps. First, a full row rank matrix T0 (left null matrix of F12) is used to eliminate F12. Secondly,
full column rank property of matrix R easily concludes the detectability of full- and reduced-order normal
matrix pairs (TΦ, C12) and (T0ΦR,C12R), respectively.

6
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Remark 2. In the proposed technique, the order of reduced-order observer is n0 + q1 − q, which is

rank

[
E∗ F ∗

0 G∗

]
− rank

[
F ∗

G∗

]
in terms of the given system coefficient matrices. The order of the observer

given by [33] is n − rank(C12), which is n + rank

[
E∗ F ∗

0 G∗

]
− rank

[
E∗ A∗ F ∗

0 C∗ G∗

]
. It is clear from the

equation (13) that n0 + q1 − q ≥ n − rank(C12). Here equality holds if C12 is of full row rank and matrix[
T0E
C12

]
is nonsingular. Note that, in case of proportional integral observers, the order is always higher than

the number of states. Hence, in [34] (if we do not consider the faults) the order of observer is n+ t that is
addition of states and outputs.

Remark 3. After estimating states by full- or reduced-order observers, unknown inputs can be easily
estimated by equations (3a) and (4).

Now, we again summarize the procedure for designing the reduced-order observer in the following algo-
rithm.

Algorithm for Reduced-order observer for the system (1)

1. Repeat steps 1-4 of full-order observer design algorithm.

2. Find matrix K̄ by pole placement or LMI approach such that N̄ = T0ΦR− K̄C12R is a stable matrix.

3. Calculate L̄ = T0ΦM + K̄ − K̄C12M .

5. Numerical Examples

Example 1. Consider the system (1) as described by the following matrices:

E∗ =


−1 0 0 0

0 −1 0 0
0 0 1 0
0 0 0 0

, A∗ =


−1 1 0 8
−1 1 0 1
2 −1 −1 1
1 0 3 −1

, B∗ =


1
1
0
1

, F ∗ =


−1 1

0 0
1 0
1 0

,

C∗ =

[
1 0 2 3
8 5 1 1

]
, G∗ =

[
−1 0
1 0

]
, v =

[
t2

cos(t)

]
and u = sin(t).

As explained in Section 2, we calculate

E =

−1 0 0 0
0 −1 0 0
0 0 1 0

, A =

−1 1 0 8
−1 1 0 1
2 −1 −1 1

, B =

1
1
0

, F =

−1 1
0 0
1 0

,

C =

1 0 3 −1
1 0 2 3
8 5 1 1

, G =

 1 0
−1 0
1 0

, U =

 0.5774 −0.5774 0.5774
−0.5774 0.2113 0.7887
0.5774 0.7887 0.2113

, and V =

[
0.5774 0

0 1

]
.

Matrices U and V give

C11 =
[
4.6188 2.8868 1.1547 −1.7321

]
, C12 =

[
5.9434 3.9434 −0.5207 2
3.0566 1.0566 3.5207 2

]
,

F11 =

−0.5774
0

0.5774

, F12 =

1
0
0

, Φ =

 1.6667 2.6667 0.6667 7
−1 1 0 1

−0.6667 −2.6667 −1.6667 2


and T0 =

[
0 1 0
0 0 1

]
. Now, by algorithm given in the Appendix A, we calculate R =


1 1.4
−1 0

0 1
−1 −3.9

.

7
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(a) Full-order observer: Considering the algorithm for full-order observer, we get T =


0 1 1.4
0 −1 0
0 0 1
0 −1 −3.9

,

M =


0.3464 −0.3464

0 0
0 0

−0.5294 1.0294

, K =


−0.2324 0.0548
−0.0002 0.1487
−0.3151 −0.0587
0.3296 0.7205

, N =


−0.7195 −1.8747 −2.6474 4.1552
0.5470 −1.1561 −0.5236 −1.2969
1.3855 −1.3621 −1.6241 2.7476
−0.5614 7.3388 4.1351 −10.9002

,

and L =


−2.6815 4.5815

0.8758 −1.3758
−1.2898 2.2898
5.9060 −10.3060

.

If we take initial condition of descriptor system and observer as x(0) =
[
−1 1 2 5

]T
and z(0) =[

10 12 15 8
]T
, respectively, simulation results are plotted in Figure 1, which reveals that the estimated

values of the states follow the true states well.
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Figure 1. Plot of true and estimated values of states by full-order observer in Example 1

(b) Reduced order observer: Using the algorithm for reduced-order observer, we get N̄ =

[
−3 −5.3
0 −10.4

]
and L̄ =

[
−0.8758 1.3758
−1.2898 2.2898

]
. Taking x(0) =

[
−1 1 2 5

]T
and z(0) = [10 12]T , simulation results are

plotted in Figure 2.
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Figure 2. Plot of true and estimated values of states by reduced-order observer in Example 1

This example shows the effectiveness of the proposed method because Figures 1 and 2 expose the con-
vergence of estimated states to the true states in case of unknown input like t2, which grows rapidly as time
increases. In [34] simulation results have been plotted only for periodic unknown input 0.2 sin 5t.

Example 2. Consider the system (1) as described by the following matrices:

E∗ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

, A∗ =


−1 1 0 0
−1 0 0 1
0 −1 −1 0
0 0 0 1

, B∗ =


1 0
0 1
0 0
1 0

, F ∗ =


−1
0
0
0

,

C∗ =

[
1 0 0 0
0 0 1 1

]
, G∗ =

[
0
0

]
, and u =

[
cos(t)

3t

]
.

Steps 1-4 of algorithm for full-order observer design give

E =

1 0 0 0
0 1 0 0
0 0 1 0

, A =

−1 1 0 0
−1 0 0 1
0 −1 −1 0

, B =

1 0
0 1
0 0

, F =

−1
0
0

,

C =

0 0 0 1
1 0 0 0
0 0 1 1

, G =

0
0
0

, U = I3, and V = 1, C11 = Empty matrix,

C12 =

0 0 0 1
1 0 0 0
0 0 1 1

, F11 = Empty matrix, F12 =

−1
0
0

, Φ =

−1 1 0 0
−1 0 0 1
0 −1 −1 0

,

T0 =

[
0 1 0
0 0 1

]
, R =


0 0
1 0
0 −1.3764
0 0.8507

, T =


0 0 0
0 1 0
0 0 −1.3764
0 0 0.8507

, and

M =


0 1 0
0 0 0

−2.3764 0 2.3764
1.8507 0 −0.8507

.

(a) Full-order observer:
Assuming unknown input v = 2t3/2, steps 5-6 of algorithm for full-order observer design give

9
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K =


−30.2210 0.5 −32.6066
−1.6054 −2.4726 1.5516
−2.7414 32.2816 2.2188
1.4161 63.0285 −0.7723

, N =


−0.5 0 32.6066 62.8276

1.4726 0 −1.5516 1.0538
−32.2816 1.3764 −0.8425 0.5226
−63.0285 −0.8507 −0.0783 −0.6437

,

and L =


8.5652 0 −8.5652
4.0321 −1 −3.0321
0.2277 0 −0.2277
0.4109 0 −0.4109

. Taking x(0) =
[
−1 1 2 −1

]T
and z(0) =

[
10 12 15 8

]T
, simu-

lation results are plotted in Figure 3, which reveals that the estimated values of the states follow the true
states well.
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Figure 3. Plot of true and estimated values of states by full-order observer in Example 2

(b) Reduced order observer:-
Considering unknown input v = 2sin(5t), steps 2-3 of algorithm for reduced-order observer design give

K̄ =

[
−0.0398 0 0.8142
2.1925 0 −0.8537

]
, N̄ =

[
0 1.3125
−1 −0.9375

]
and L̄ =

[
2.3125 −1 −1.3125
0.0625 0 −0.0625

]
. If we take x(0) =[

−1 1 2 −1
]T

and z(0) = [10 12]T , simulation results are plotted in Figure 4.
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Figure 4. Plot of true and estimated values of states by reduced-order observer in Example 2

This example has been already discussed in [33] without the simulation results and the mathematical
description of unknown inputs. Here, Figures 3 and 4 show the estimation performances of the proposed
full- and reduced-order observers with different types of unknown inputs.

6. Conclusions

In this paper, methods have been developed to design full- and reduced-order state observers for rect-
angular descriptor system with unknown inputs. Observer design problem is converted into the solution of
some matrix equations. Beauty of the this work lies in the fact that same matrices have been used to design
the full- and reduced-order observers. The extension of this work to design observers with more reduced
order is under construction.

Appendix A

Algorithm to find a matrix R used in the Lemma 1

1. Determine
r1 := rank of matrix C
m1 × n1 :=order of matrix E , with m1 ≤ n1.

2. Check rank

[
E
C

]
= n1, then go to steps 3-8.

3. Carry out the singular value decomposition (SVD) of matrix C = U1

[
D1 0
0 0

]
V T
1 .

4. Calculate P = V1

[
D−1

1 0
0 In1−r1

]
.

5. Calculate E2 = EP
[
0r1×(n1−r1)

In1−r1

]
.

6. Carry out the SVD of matrix E2 = U2

[
D2

0

]
V T
2 .
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7. Calculate R0 =

[
0 Im1+r1−n1

V2D
−1
2 0

]
UT
2 .

8. Calculate R = P

[
0(n1−m1)×m1

R0

]
.
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