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Abstract 

Due to the enormous processing gains that are theoretically 
achievable by using quantum algorithms instead of classical 
algorithms to solve rather generic classes of numerical 
problems, it makes sense that one should evaluate their 
potential applicability, appropriateness, and efficiency for 
solving virtually any computationally intensive task. Since 
many types of control and optimization problems may be 
couched in terms of partially observable Markov decision 
processes (POMDPs), and since solutions to these types of 
problems are invariably extremely difficult to obtain, the 
use of quantum algorithms to help solve POMDP problems 
is investigated here. Quantum algorithms are indeed found 
likely to provide significant efficiency improvements in 
several computationally intensive tasks associated with 
solving POMDPs, particularly in the areas of searching, 
optimization, and parameter optimization and estimation. 

1 Introduction 

In the last decade or so, two major new areas of study have 
arisen in computer science and control theory. They are the 
quantum approach to computing and a rather all-
encompassing modeling approach that addresses how 
agents realistically interact with their world. The latter field 
of study is called “partially observable Markov decision 
processes.” The following subsections briefly describe the 
background of each of these two new fields. Section 2 
applies quantum algorithms to POMDPs; followed by the 
last two sections on future directions and conclusions. 

1.1 Background on quantum algorithms 
 In 1994, Shor [1, 2] discovered an algorithm for factoring 
integer numbers that, when implemented on a hypothetical 
quantum computer, would produce results exponentially 

faster than the best algorithms on a classical (conventional) 
computer. This discovery produced a firestorm of 
controversy and activity that continues to this day. 

In some quarters it produced great consternation. It was 
correctly noted that if a working quantum computer with a 
sufficiently large number (~hundreds) of quantum bits 
could indeed be built, then the security of modern public-
key cryptographic systems would be seriously threatened. 
Basically, the reasoning goes as follows: cryptographic 
codes are hard to break because finding the prime 
factorization of a large composite number is an extremely 
difficult and time-consuming task for classical computers 
(despite using the latest, most efficient algorithms on 
massively parallel systems). With a quantum computer 
running Shor’s quantum algorithm, however, the required 
factorization time would be exponentially quicker, 
effectively making code-breaking a rapidly accomplished, 
routine task. Even the remotest possibility of successfully 
building such a quantum computer may have already 
changed the modus operandi of security agencies, tipping 
them towards increased self-censorship of their more 
sensitive messages. This situation is not as farfetched as it 
originally seems, since the “proof of concept” experiment 
has already been successfully performed: Vandersypen et 
al. [3] built a 7 qubit quantum computer and used it to 
factor the number 15. They used an exotic molecule 
containing 7 spin-1/2 nuclei in liquid solution and nuclear 
magnetic resonance techniques to accomplish their feat. 
Unfortunately, this particular technology is not scalable to 
larger numbers of qubits.  

Other researchers, however, c.f., Levin [4], treated the 
discovery of Shor’s algorithm with a healthy dose of 
skepticism, mainly due to the anticipated extreme physical 
difficulties involved with actually building a large working 
quantum computer. (For example, a major difficulty lies in 



maintaining coherent states for a sufficiently long period of 
time—long enough to finish the computational task. There 
are two ways of doing this: reduce environmental noise that 
interferes with the calculation, and use techniques of 
quantum error correction (c.f., Gottesman [5] and Steane 
[6]) to mitigate the bad effects. Many other researchers, 
however, were optimistic and hailed the new development 
with great enthusiasm, hoping that previously intractable 
problems, particularly some of the key problems in their 
respective fields, could be solved quickly and routinely via 
quantum computers. Despite the naysayers, the overall 
impact of the discovery of Shor’s quantum algorithm was a 
rapid increase in the monetary resources and number of 
researchers that became focused on this and related areas. 

Several years after Shor’s breakthrough, Grover [7]
discovered a quantum algorithm for searching unstructured 
lists; it yielded a quadratic speed-up over classical search 
algorithms. More recently, Farhi et al. [8] and Hogg [9] 
proposed novel quantum algorithms that use adiabatic 
evolution to solve optimization problems. Doherty et al.
[10] introduced a theory of quantum feedback control, 
comparing and contrasting it to classical optimal control 
theory, focusing in particular on their key differences, such 
as the disturbing influences that measurements may have on 
quantum systems. Verstraete et al. [11] presented a 
framework for sensitivity optimization in quantum 
parameter estimation and Meyer [12] considered game
theory from the perspective of quantum algorithms. These 
and the Shor and Grover quantum algorithm discoveries 
were anticipated decades earlier by Feynman [13, 14], who 
had predicted that such radical improvements in computing 
capabilities would result from properly applying quantum 
mechanical effects. 

1.2 Background on partially observable Markov 
decision processes 
Markov decision processes (MDPs) may be used to model a 
system if the state of the system is known at all times. 
POMDPs (partially observable MDPs), on the other hand, 
are more physically realistic generalizations of MDPs. They 
are designed to handle or model the more robust and
frequently occurring “real world” scenarios where the state 
information is only partially observable. Because exact 
states are not known, one is forced to introduce probability 
distribution functions into the analysis; this is what makes 
POMDPs so much more difficult to analyze than MDPs.
Indeed, POMDPs are capable of addressing the central 
problem of Artificial Intelligence: making optimal decisions 
under uncertain conditions. POMDPs have even been 
proposed as models for the human thought process. These 
are extremely challenging and general “Operations 
Research” type problems, certainly general enough to 
contain the tough problems from the field of optimization 
and control. 

From Littman [15], “A POMDP…is a model, originating in 
the operations research literature, for describing planning 
tasks in which the decision maker does not have complete 
information as to its current state. The POMDP model is a 

convenient way of reasoning about tradeoffs between
actions to gain reward and actions to gain information.” 

The probabilistic, i.e., incomplete knowledge, aspect that is 
central to POMDPs is quite similar to and reminiscent of 
certain aspects of quantum mechanics. For example, the 
Heisenberg uncertainty principle of QM states that a pair of 
complementary variables (e.g., a particle’s position and 
momentum) cannot simultaneously be known to infinite 
precision. Similarly, probabilities are built into the very 
foundations of QM, with, for example, the probability 
density of an electron cloud being calculated as the square 
of the electron’s quantum mechanical wave function.

Regarding the difficulty of solving POMDPs, Zhang [16] 
states: “It is known that finding the optimal policy for even 
a simplified finite horizon POMDP is PSPACE-complete. 
Since this is a broader problem class than NP, the result 
suggests that POMDP problems are even harder than NP-
complete problems.” NP stands for the computational
complexity class “nondeterministic polynomial”. It is 
perhaps the quintessential type of operations research 
problem, one whose solution time scales exponentially with 
the input size of the problem. The Traveling Salesman 
Problem is an archetypical example of a problem from the 
complexity class NP. (Aaronson [17] provides an excellent 
resource for information on these and other computational 
complexity classes, with his current list containing a “zoo” 
of about 400 different entries.) 

To understand POMDPs, it is easier to start with a 
description of what a Markov decision process (MDP)
consists of. (In contrast to the situation with POMDPs, 
MDPs are “completely observable.”) Paraphrasing from 
Cassandra’s website [18], the four components of an MDP 
model (that also happen to be components of a POMDP
model) are: 

A Set of States—When making a decision, you need to 
consider how your actions will affect things. The state is the 
way the system currently exists and an action will have the 
effect of changing the state of the system. 

A Set of Actions (or Controls)—The actions are the set of 
possible alternatives that you can make. The problem is to 
know which of these actions to take, given a particular state 
of the system. 

State Transition Probabilities (or Effects of Actions)—
The transitions specify how each of the actions change the 
state. Since an action could have different effects, 
depending upon the state, one needs to specify the action’s 
effect for each state in the MDP. The most powerful aspect 
of the MDP is that the effects of an action can be 
probabilistic. MDPs allow one to specify more complex 
actions by allowing one to specify a set of resulting states 
and the probability that each state results. 

Immediate Rewards (Values of Actions)—To automate 
the decision making process, one must be able to have some 
measure of an action’s value so that one can quantitatively 



compare different actions. Thus, the immediate value for 
performing each action in each state is specified. 

Baxter et al. [19, 20] describe the several additional 
components that are present in a POMDP model; they are: 

Observations—The measured values of data (possibly 
noisy) that are obtained from the state of the system. 

Observation Process or Model—The probability of 
obtaining certain observations, given a particular state of 
the system. 

Stochastic Policy—The probability of implementing 
certain actions/controls, given particular observations and 
specified values for the adjustable parameters. 

Adjustable Parameters—The quantities under control of 
the observer; for example, the size and shape of smoothing 
kernels. 

To help clarify matters, it is useful to reiterate the eight 
different components of a POMDP given above in the 
context of a concrete example, namely, that of a target 
tracking problem where one has access to a time sequence 
of images collected by a single sensor device. In equations 
(1-8) below, the subscript ‘t’ always refers to a sort of 
pseudo-time, the computational step number (an integer) in 
the analysis process. It is not to be confused with the 
physical time values associated with each of the snapshot 
images taken by the sensor device while it is collecting 
data. 

� States 

� �nssX t ,,2,1; ��� (1)

The set of target tracks s at computational step number t. 

� Observations 

� �MyyYt ,,2,1; ��� (2)

The data cube voxel values y at computational step number 
t, i.e., the pixel values in the time sequence of images. 
These voxel values would typically be indexed by three 
coordinate values: row number, column number, and 
physical time (or image number). 

� Actions/Controls 

� �NuuUt ,,2,1; ��� (3)

The action/control decision u made at computational step 
number t, on whether to drop/add tracks. 

� Observation Process �

)()|Pr( iiXyY ytt ���� (4)

The probability of data cube voxel values y, given target 
track information i, all at computational step number t. 

� Stochastic Policy �

),()|Pr( yyYuU utt ����� (5)

The probability of dropping/adding tracks via action/control 
decision u, given data cube voxel values y and adjustable 
parameters �, all at computational step number t. 

� Rewards 

Rsr �: (6)
This is the figure of merit function for the target tracker; a 
mapping from the target track space to a real number. 

� Adjustable Parameters 

KR�� (7)
These are parameters that describe the target tracking 
algorithm/mechanism. Several examples of these are the 
following: Gaussian smoothing values, receiver operating 
curve characteristics, constant false alarm rate (CFAR) 
settings, etc. Together, they are set up as elements of a K-
dimensional real-valued space. 

� Transition Probabilities 

)(),|Pr( 1 upuUiXjX ijttt ����
�

(8)

The probability of target track j at computational step 
number t+1, given target track i and the given drop/add 
control action at computational step number t. 

To help envision this example of a target tracking scenario, 
data “cubes” consisting of voxel elements are shown in 
Figures 1 and 2 below. The original (raw) data “cube” 
(Figure 1) is composed of individual voxels (volume picture 
elements) assembled from a series of snapshots (standard 

Figure 1: Original Data Cube of Voxels 



row-column pixel images) collected by a single sensor. The 
first snapshot picture lies at the bottom plane of the cube; 
subsequent pictures taken at progressively later times are 
stacked vertically on top of it, filling out the data “cube”. 
The signal processing of data in this form is also known as 
space-time adaptive processing (STAP); see the book by 
Guerci [21] for details. 

The processed data “cube” (Figure 2) is composed of voxels 
that have been manipulated (processed) by a number of 
computational time steps. In the pictorial example shown 
here, Weickert’s [22] anisotropic diffusion approach to 
image processing has been generalized from its original 2-D 
environment, that of processing individual images, to one 
higher dimension—processing time sequences of images. In 
its original, simpler 2-D form, pixel intensity values in an 
image are smoothed in the direction parallel to object 
boundaries and enhanced in the direction perpendicular to 
object boundaries. In its generalized, 3-D version, voxel 
intensity values in a data cube (time sequence of images) 
are smoothed along (i.e., parallel to) object or track 
boundaries and are enhanced across (i.e., perpendicular to) 
object or track boundaries. In both the 2-D and 3-D cases, 
diffusion tensors D are computed from the local neighbor-  

Figure 2: Processed Data Cube of Voxels 

hood of intensity values I (averaging occurs in spatial 
dimensions alone for the 2-D case and with the temporal 
dimension included for the 3-D case). These D tensors are 
then substituted into the PDE that implements the 
anisotropic diffusion process, namely:  

                   )(/ IDdivI ����� �                                (9) 

The variable � represents a sort of pseudo-time, during 
which the intensity values I are allowed to gradually diffuse 
according to Equation (9). For the 2-D case, the ‘div’ and 
‘� ’ operators involve partial derivatives along image rows 
and columns and the diffusion tensor D is a 2 by 2 matrix. 
In the 3-D case (shown in Figures 1 and 2), the ‘div’ and 
‘� ’ operators involve partial derivatives along not only 
image rows and columns but also along the vertical (time) 
axis, and the diffusion tensor D is a 3 by 3 matrix.  

A primary goal of the processing for this target tracker 
example case involves forming a segmentation of the data 
“cube” into target tracks and everything else. Segmentation 
at least starts to occur in the anisotropic diffusion phase that 
transforms Figure 1 into Figure 2. Cottet and El Ayyadi 
[23] address the issue of when to stop the diffusion process 
so that a “hand-off” can occur to other needed processing; 
there are other ways of selecting a stopping point.
Meandering, cylindrical-like data “tubes” that extend 
through the data “cube” from bottom to top (past to future) 
could represent the “world lines” of targets or the
occurrence of ignorable items in the background clutter. 
Several conclusions can be drawn from the appearance of 
Figure 2. Looking at the front panel of the cube, one can see 
that the sensor was panning the scene from right to left, first 
at a slow rate, then at a faster rate. One can also tell that 
only a very poor (if any) non-uniformity correction (NUC) 
was applied to the image sensor, due to the systematic pixel 
biases that remain in the data cube, appearing as vertically 
oriented pattern lines in the front panel. 

After the first, segmentation phase of data processing is 
accomplished, the selection and labeling of potential target 
tracks from amongst the set of candidate “tubes” lying 
within the data cube is the second major goal of the 
POMDP tracker model. Many other tricky, ‘judgment-type’ 
decisions must be made in order to complete the 
construction of a model tracker. For example: What 
restrictions should be placed on target locations, velocities, 
and accelerations? What conditions should be placed on 
creating, terminating, merging, and bifurcating tracks? 
What probabilities should be used as cutoff values for the 
above decisions? When should the next group of image 
snapshots be optimally added to the analysis? Then, after 
answering all of these types of questions, before one can 
have any confidence in the tracker, extensive testing must 
be performed, using appropriate data. None of these latter 
portions of the tracker analysis are carried out here, but they 
must be included in any decent POMDP model of a tracker.   

Finally, what does it mean to “solve” a POMDP? Basically, 
it means finding an optimal policy (and set of adjustable 
parameters) for the POMDP. A policy is a means of 
selecting an action to take at a given time point 
(computational step number), based on one’s belief state for 
the system. Policies are compared based upon their value 
functions, which are weighted time averages of reward 
functions. Algorithms for solving POMDP problems are 
divided into at least two classes: value iteration algorithms 
and policy iteration algorithms (c.f., Baxter et al. [19, 20]). 

2 Applying quantum algorithms to POMDPs 

Before considering the potential applications of quantum 
algorithms, we first draw some comparisons between 
quantum and classical computing. In classical computers, 
the bit (or Cbit, for classical bit) is the basic unit for storing 
information. In quantum computers the corresponding
storage unit is the quantum bit (shortened to qubit, or Qbit). 
An excellent tutorial on Cbits and Qbits is available in 



Mermin [24], with more extensive background and detailed 
information available in the textbook by Nielsen and 
Chuang [25]. Very briefly, there are several key differences 
between Cbits and Qbits. Whereas Cbits may only take on 
the values (states) of 0 or 1 and are always explicitly 
available, Qbits are normalized complex linear 
combinations of two states: 

10 ��� �� (9)

The complex numbers �  and �  are determined only 

probabilistically, that is, after measurement the qubit is 

either in the state 0  with probability 
2

�  or in state 1

with probability 
2

� . Normalization guarantees that 

1
22
�� ��                               (10) 

When one has n Cbits, there are n2  special orthonormal 
states; the corresponding set of n Qbit states, however, 
resides in an enormously larger space, a Hilbert space—the 
set of all linear combinations of classical basis states with 
complex coefficients (amplitudes). This is a primary 
contributor to the algorithmic advantage of quantum
algorithms over classical algorithms. Unitary operators are 
the basic tools of quantum algorithms, they are linear norm-
preserving operators on the n Qbit states, mapping one such 
state into another. 

2.1 Quantum Fourier transform 
Shor’s algorithm [1, 2] computes a quantum Fourier 
transform (QFT) of N data points in the order of (log N)2

steps, compared to the classical Fast Fourier Transform 
(FFT) algorithm which requires on the order of (N log N) 
steps. Unlike the situation with the classical algorithm, 
where all of the Fourier transformed (output) frequencies 
are available, with the QFT this is not the case—one may 
only sample the transform at a few points; the whole suite 
of N transformed values is not available. This makes sense, 
since one should not expect to obtain N results while only 
performing (log N)2 computational steps. (Shor [1, 2] 
cleverly worked around this “limited output” restriction and 
was able to factor large composite integers by building up 
his “answer” in a particular component of the Fourier 
transform.) In a similar fashion it is possible to compute the 
integral or summation of function values very efficiently by 
quantum Fourier transforming a set of values and then 
sampling the “DC” component of the transform. In the 
context of computational work on POMDPs, the QFT could 
be useful for efficiently evaluating path integrals or 
summations of value functions. 

Another possible application of the QFT to POMDP 
processing lies in its use in pattern recognition, based on the 
work by Schützhold [26]. From his work, Figure 3 shows a 
32 by 20 pixel binary test image with an embedded 8 by 8 
checkerboard pattern located left of center and slightly 
higher than midpoint. Away from the regular pattern, half 
of the pixels are randomly selected to be ‘on’, the other half 
‘off’.   

Figure 3: Binary Test Image with Embedded 8 by 8 
Checkerboard Pattern 

Schützhold [26] demonstrates the exponential speed-up that 
the QFT has over classical methods for finding and 
identifying the regular pattern within the test image. 
Generalizable to three-dimensional data sets, the same 
approach can, in principle, be used to search for certain 
patterns (tracks) within 3-D data cubes such as the one 
shown in Figure 2. 

2.2 Quantum unstructured search algorithm 
Grover’s algorithm [7] is used to perform unstructured 
searches for particular items, finding them amongst the total 
of N possible listed entries in only O(N1/2) steps; this 
compares to the O(N) steps that are required using the best 
classical search algorithms. Based on the article by 
Williams [27], there are many opportunities to apply this 
quantum search algorithmic approach when analyzing 
POMDPs, since such unstructured searches occur naturally 
in several contexts: e.g., finding locations of extreme values 
and selecting amongst competing policies or potential 
reward functions. Quoting from Williams [27], “Quantum 
search has turned out to be remarkably versatile.” and “We 
can also use quantum search to determine statistical 
properties—such as means, medians, maxima, and 
minima—of functions in the square root of the number of 
steps needed to compute these properties classically to the 
same precision.” 

2.3 Quantum adiabatic evolution algorithm 
A general description of this class of quantum algorithms is 
given first. Start with the time-dependent Schrödinger 
equation (where units have been chosen so that �  is unity): 

                )()()()/( ttHtdtdi ���                    (11) 

Then define the time-varying Hamiltonian by: 

         )()/()()/1()( 0 tHTttHTttH F���           (12) 

Thus, 

                          )0()0( 0HtH ��                             (13) 

and 



                     )()( THTtH F��                                (14) 

The initial Hamiltonian, H(t=0), i.e., the “starting” system, 
and its ground state wave function, |� (0)>, the “starting” 
solution, are both known quantities. The final Hamiltonian, 
H(t=T), i.e., the “target” system, is also known, but its 
corresponding wave function |� (T)>, the desired “target” 
solution, is unknown. Calculating this latter quantity, 
|� (T)>, is the whole purpose of this particular quantum 
algorithm. The algorithm derives its name from the 
Quantum Adiabatic Theorem, which, roughly stated, is: 

Quantum Adiabatic Theorem: If H(t) varies slowly 
enough, then the state of the system |� (t)>, if initially 
started in the ground state, will remain in the instantaneous 
ground state of the Hamiltonian for all t values. 

Adiabatic quantum algorithms use this theorem and 
approach from quantum mechanics to obtain the desired 
solution |� (T)> by slowly evolving |� (0)>. 

There are two obvious questions (pitfalls) regarding the 
practical physical implementation of this adiabatic solution 
approach, they are: (1) How slow is slow? and (2) How 
large should T be? Numerous research papers have 
addressed these and other important issues on a variety of 
sample problems, with varying degrees of success. 

The versions of quantum adiabatic evolution algorithms 
proposed by Farhi et al. [8] and Hogg [9] may be used to 
solve various optimization problems more efficiently than 
classical algorithms. Their general conclusions, however, 
were contested by van Dam et al. [28]: “Is adiabatic 
quantum computing really quantum? …we give a simple
example of a computational problem on which the adiabatic 
quantum algorithm provably takes exponential time. 
Although the problem is easy to solve classically, it is 
designed to be difficult for algorithms based on local 
search: its global optimum lies in a narrow basin, while 
there is a local optimum with a much larger basin. …the 
gap between the minimum and second eigenvalue of the 
Hamiltonian of the system is exponentially small.” 

So, the question still remains how well this quantum 
approach would work on the numerous types of 
optimization problems that commonly occur when 
analyzing POMDPs. The work by Steffen et al. [29] is 
encouraging: using NMR technology, they successfully 
implemented a 3 qubit adiabatic quantum optimization 
algorithm in an experiment that solved a simple problem. 

Returning to van Dam et al. [28], “This paradigm [adiabatic 
quantum computation] bears some resemblance to 
simulated annealing, in the sense that the algorithm starts 
from an initial disordered state, and homes in on a solution 
(by what could be described as quantum local search) as a 
parameter ‘�’ is smoothly varied from 0 to 1.” The 
parameter ‘�’ in simulated annealing plays a role similar to 
that of time ‘t’ in the quantum adiabatic algorithm. 

Following Feynman’s maxim, “The same equations have
the same solutions”, one is led to the Chow-Yorke 
algorithm [30], a “homotopy continuation” method, as a 
promising approach to use for solving adiabatic quantum 
algorithms. 

This leads to the point of departure that our analysis takes 
from the analysis in [28]. Instead of starting from an initial 
disordered state, the initial state that we decide to use is 
carefully chosen so that it exactly solves a known, simpler 
version of the problem. Then, using homotopy continuation 
techniques, the original state (point) satisfying the simpler 
problem conditions, is smoothly varied until a solution of 
the desired, more complex problem is reached. By using the 
more robust Chow-Yorke algorithm [30], situations when 
‘�’, the commonly used continuation variable, doubles back 
on itself may be successfully handled by using arc length in 
a higher dimensional space as the continuation variable. 
The system of equations is slightly more complicated, but 
this is more than compensated for by increased solution 
robustness. 

Figure 4: Chow-Yorke Continuation Scenario 

This “doubling back” scenario is shown in Figure 4, taken 
from [30]. By using arc length as the independent variable, 
and integrating along the curve from � = 0 to � = 1, one can 
successfully follow the curve all the way along its entire 
course. If one were to use � as the independent variable, 
however, after starting at the point � = 0 the calculation 
would get “stuck” at the first turning point, where � is 
slightly more than halfway across the rectangular region in 
Figure 4, and not reach the solution point at � = 1.  

3 Future Directions 

DARPA’s Focused Quantum Systems (FoQuS) program is 
anticipated to address the computationally difficult problem 
of factoring large composite numbers. With the great 
emphasis that will necessarily be placed on new and
existing methods of quantum error correction, efforts in this 
area will likely have beneficial results for many other 
problem areas addressed by quantum algorithms. 



Just as there is a natural fit between homotopy continuation 
methods (mathematics) and the quantum adiabatic theorem 
(physics), there appears to be another natural fit between a 
fairly obscure mathematical tool and the physical problem 
of quantum error correction. 

The mathematical tool is called continuous orthonormal-
ization and is useful for solving two-point boundary value 
problems and initial value problems. Davey [31] and Meyer 
[32] are key early references to the method. First developed 
to solve stiff systems of linear ODE’s, the original system is 
converted into two non-stiff operators, one of which is 
nonlinear. (This doubles the size of the system.) The 
nonlinear system is constructed to advance an orthonormal 
coordinate frame. With this approach, independent 
solutions to the ODE automatically maintain their 
orthogonality at all times, a particularly useful property for 
problems with nonlinear or free (i.e., location unknown) 
boundary conditions. The method is extremely reliable and 
especially suitable for high-order differential systems. 
Problems with rapid oscillations, turning points, and 
boundary layers are overcome. In one example, an Orr-
Sommerfeld flow problem with a Reynolds number of 109

was easily solved. In short, the continuous 
orthonormalization algorithmic approach seems made to 
order for modeling systems governed by quantum physics. 
The importance of maintaining linearity properties of 
quantum mechanics cannot be stressed enough, for the 
consequences of nonlinearity in quantum computers are 
quite radical. Abrams and Lloyd [33] have shown that 
nonlinear quantum mechanics implies polynomial-time
solution for NP-complete and #P problems.  

While working on these types of problems (both classical 
and quantum), it is useful to keep in mind that some of the 
really important questions do not yet have definitive 
answers. For example, the question of the (in)equivalence 
of complexity classes NP and P remains unsettled. It also 
has not yet been proven that determining a composite 
number’s prime factors lies in NP. Surprises sometimes do 
occur; witness the recent proof by Agrawal et al. [34] that 
determining whether a number is prime or not lies in 
complexity class P. 

4 Conclusions 

This article presents several ways that quantum algorithms 
can be used to speed up the analysis and solution of 
computationally intense portions of partially observable 
Markov decision processes—searching, pattern matching, 
and parameter optimization and estimation, to name just a 
few. Future numerical studies are expected to confirm the 
theoretical scaling behavior and performance of the
algorithms. With new papers coming online, such as the 
recent one by Romanelli et al. [35] that synthesizes 
quantum algorithms and Markov processes, the future for 
applying quantum algorithms to POMDPs looks very bright 
indeed. 

This work was supported by the DARPA QuIST program.
The views and conclusions contained herein are those of the 
authors and should not be interpreted as necessarily 
representing official policies or endorsements, either 
expressed or implied, of the Defense Advanced Research 
Projects Agency (DARPA) or the U.S. Government. 
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