
Applications of Quantum Algorithms to Partially Observable
Markov Decision Processes

R. D. Rosenwald*, D. A. Meyer✝, and H. A. Schmitt*

* Raytheon Missile Systems
P.O. Box 11337

Tucson, AZ 85734-1337, USA
e-mail: rdrosenwald@raytheon.com

✝ Project in Geometry and Physics,
Department of Mathematics

University of California/San Diego
La Jolla, CA 92093-0112, USA
e-mail: dmeyer@math.ucsd.edu

Abstract

Due to the enormous processing gains that are theoretically
achievable by using quantum algorithms instead of classical
algorithms to solve rather generic classes of numerical
problems, it makes sense that one should evaluate their
potential applicability, appropriateness, and efficiency for
solving virtually any computationally intensive task. Since
many types of control and optimization problems may be
couched in terms of partially observable Markov decision
processes (POMDPs), and since solutions to these types of
problems are invariably extremely difficult to obtain, the
use of quantum algorithms to help solve POMDP problems
is investigated here. Quantum algorithms are indeed found
likely to provide significant efficiency improvements in
several computationally intensive tasks associated with
solving POMDPs, particularly in the areas of searching,
optimization, and parameter optimization and estimation.

1 Introduction

In the last decade or so, two major new areas of study have
arisen in computer science and control theory. They are the
quantum approach to computing and a rather all-
encompassing modeling approach that addresses how
agents realistically interact with their world. The latter field
of study is called “partially observable Markov decision
processes.” The following subsections briefly describe the
background of each of these two new fields. Section 2
applies quantum algorithms to POMDPs; followed by the
last two sections on future directions and conclusions.

1.1 Background on quantum algorithms
 In 1994, Shor [1, 2] discovered an algorithm for factoring
integer numbers that, when implemented on a hypothetical
quantum computer, would produce results exponentially

faster than the best algorithms on a classical (conventional)
computer. This discovery produced a firestorm of
controversy and activity that continues to this day.

In some quarters it produced great consternation. It was
correctly noted that if a working quantum computer with a
sufficiently large number (~hundreds) of quantum bits
could indeed be built, then the security of modern public-
key cryptographic systems would be seriously threatened.
Basically, the reasoning goes as follows: cryptographic
codes are hard to break because finding the prime
factorization of a large composite number is an extremely
difficult and time-consuming task for classical computers
(despite using the latest, most efficient algorithms on
massively parallel systems). With a quantum computer
running Shor’s quantum algorithm, however, the required
factorization time would be exponentially quicker,
effectively making code-breaking a rapidly accomplished,
routine task. Even the remotest possibility of successfully
building such a quantum computer may have already
changed the modus operandi of security agencies, tipping
them towards increased self-censorship of their more
sensitive messages. This situation is not as farfetched as it
originally seems, since the “proof of concept” experiment
has already been successfully performed: Vandersypen et
al. [3] built a 7 qubit quantum computer and used it to
factor the number 15. They used an exotic molecule
containing 7 spin-1/2 nuclei in liquid solution and nuclear
magnetic resonance techniques to accomplish their feat.
Unfortunately, this particular technology is not scalable to
larger numbers of qubits.

Other researchers, however, c.f., Levin [4], treated the
discovery of Shor’s algorithm with a healthy dose of
skepticism, mainly due to the anticipated extreme physical
difficulties involved with actually building a large working
quantum computer. (For example, a major difficulty lies in

maintaining coherent states for a sufficiently long period of
time—long enough to finish the computational task. There
are two ways of doing this: reduce environmental noise that
interferes with the calculation, and use techniques of
quantum error correction (c.f., Gottesman [5] and Steane
[6]) to mitigate the bad effects. Many other researchers,
however, were optimistic and hailed the new development
with great enthusiasm, hoping that previously intractable
problems, particularly some of the key problems in their
respective fields, could be solved quickly and routinely via
quantum computers. Despite the naysayers, the overall
impact of the discovery of Shor’s quantum algorithm was a
rapid increase in the monetary resources and number of
researchers that became focused on this and related areas.

Several years after Shor’s breakthrough, Grover [7]
discovered a quantum algorithm for searching unstructured
lists; it yielded a quadratic speed-up over classical search
algorithms. More recently, Farhi et al. [8] and Hogg [9]
proposed novel quantum algorithms that use adiabatic
evolution to solve optimization problems. Doherty et al.
[10] introduced a theory of quantum feedback control,
comparing and contrasting it to classical optimal control
theory, focusing in particular on their key differences, such
as the disturbing influences that measurements may have on
quantum systems. Verstraete et al. [11] presented a
framework for sensitivity optimization in quantum
parameter estimation and Meyer [12] considered game
theory from the perspective of quantum algorithms. These
and the Shor and Grover quantum algorithm discoveries
were anticipated decades earlier by Feynman [13, 14], who
had predicted that such radical improvements in computing
capabilities would result from properly applying quantum
mechanical effects.

1.2 Background on partially observable Markov
decision processes
Markov decision processes (MDPs) may be used to model a
system if the state of the system is known at all times.
POMDPs (partially observable MDPs), on the other hand,
are more physically realistic generalizations of MDPs. They
are designed to handle or model the more robust and
frequently occurring “real world” scenarios where the state
information is only partially observable. Because exact
states are not known, one is forced to introduce probability
distribution functions into the analysis; this is what makes
POMDPs so much more difficult to analyze than MDPs.
Indeed, POMDPs are capable of addressing the central
problem of Artificial Intelligence: making optimal decisions
under uncertain conditions. POMDPs have even been
proposed as models for the human thought process. These
are extremely challenging and general “Operations
Research” type problems, certainly general enough to
contain the tough problems from the field of optimization
and control.

From Littman [15], “A POMDP…is a model, originating in
the operations research literature, for describing planning
tasks in which the decision maker does not have complete
information as to its current state. The POMDP model is a

convenient way of reasoning about tradeoffs between
actions to gain reward and actions to gain information.”

The probabilistic, i.e., incomplete knowledge, aspect that is
central to POMDPs is quite similar to and reminiscent of
certain aspects of quantum mechanics. For example, the
Heisenberg uncertainty principle of QM states that a pair of
complementary variables (e.g., a particle’s position and
momentum) cannot simultaneously be known to infinite
precision. Similarly, probabilities are built into the very
foundations of QM, with, for example, the probability
density of an electron cloud being calculated as the square
of the electron’s quantum mechanical wave function.

Regarding the difficulty of solving POMDPs, Zhang [16]
states: “It is known that finding the optimal policy for even
a simplified finite horizon POMDP is PSPACE-complete.
Since this is a broader problem class than NP, the result
suggests that POMDP problems are even harder than NP-
complete problems.” NP stands for the computational
complexity class “nondeterministic polynomial”. It is
perhaps the quintessential type of operations research
problem, one whose solution time scales exponentially with
the input size of the problem. The Traveling Salesman
Problem is an archetypical example of a problem from the
complexity class NP. (Aaronson [17] provides an excellent
resource for information on these and other computational
complexity classes, with his current list containing a “zoo”
of about 400 different entries.)

To understand POMDPs, it is easier to start with a
description of what a Markov decision process (MDP)
consists of. (In contrast to the situation with POMDPs,
MDPs are “completely observable.”) Paraphrasing from
Cassandra’s website [18], the four components of an MDP
model (that also happen to be components of a POMDP
model) are:

A Set of States—When making a decision, you need to
consider how your actions will affect things. The state is the
way the system currently exists and an action will have the
effect of changing the state of the system.

A Set of Actions (or Controls)—The actions are the set of
possible alternatives that you can make. The problem is to
know which of these actions to take, given a particular state
of the system.

State Transition Probabilities (or Effects of Actions)—
The transitions specify how each of the actions change the
state. Since an action could have different effects,
depending upon the state, one needs to specify the action’s
effect for each state in the MDP. The most powerful aspect
of the MDP is that the effects of an action can be
probabilistic. MDPs allow one to specify more complex
actions by allowing one to specify a set of resulting states
and the probability that each state results.

Immediate Rewards (Values of Actions)—To automate
the decision making process, one must be able to have some
measure of an action’s value so that one can quantitatively

compare different actions. Thus, the immediate value for
performing each action in each state is specified.

Baxter et al. [19, 20] describe the several additional
components that are present in a POMDP model; they are:

Observations—The measured values of data (possibly
noisy) that are obtained from the state of the system.

Observation Process or Model—The probability of
obtaining certain observations, given a particular state of
the system.

Stochastic Policy—The probability of implementing
certain actions/controls, given particular observations and
specified values for the adjustable parameters.

Adjustable Parameters—The quantities under control of
the observer; for example, the size and shape of smoothing
kernels.

To help clarify matters, it is useful to reiterate the eight
different components of a POMDP given above in the
context of a concrete example, namely, that of a target
tracking problem where one has access to a time sequence
of images collected by a single sensor device. In equations
(1-8) below, the subscript ‘t’ always refers to a sort of
pseudo-time, the computational step number (an integer) in
the analysis process. It is not to be confused with the
physical time values associated with each of the snapshot
images taken by the sensor device while it is collecting
data.

� States

� �nssX t ,,2,1; ��� (1)

The set of target tracks s at computational step number t.

� Observations

� �MyyYt ,,2,1; ��� (2)

The data cube voxel values y at computational step number
t, i.e., the pixel values in the time sequence of images.
These voxel values would typically be indexed by three
coordinate values: row number, column number, and
physical time (or image number).

� Actions/Controls

� �NuuUt ,,2,1; ��� (3)

The action/control decision u made at computational step
number t, on whether to drop/add tracks.

� Observation Process �

)()|Pr(iiXyY ytt ���� (4)

The probability of data cube voxel values y, given target
track information i, all at computational step number t.

� Stochastic Policy �

),()|Pr(yyYuU utt ����� (5)

The probability of dropping/adding tracks via action/control
decision u, given data cube voxel values y and adjustable
parameters �, all at computational step number t.

� Rewards

Rsr �: (6)
This is the figure of merit function for the target tracker; a
mapping from the target track space to a real number.

� Adjustable Parameters

KR�� (7)
These are parameters that describe the target tracking
algorithm/mechanism. Several examples of these are the
following: Gaussian smoothing values, receiver operating
curve characteristics, constant false alarm rate (CFAR)
settings, etc. Together, they are set up as elements of a K-
dimensional real-valued space.

� Transition Probabilities

)(),|Pr(1 upuUiXjX ijttt ����
�

(8)

The probability of target track j at computational step
number t+1, given target track i and the given drop/add
control action at computational step number t.

To help envision this example of a target tracking scenario,
data “cubes” consisting of voxel elements are shown in
Figures 1 and 2 below. The original (raw) data “cube”
(Figure 1) is composed of individual voxels (volume picture
elements) assembled from a series of snapshots (standard

Figure 1: Original Data Cube of Voxels

row-column pixel images) collected by a single sensor. The
first snapshot picture lies at the bottom plane of the cube;
subsequent pictures taken at progressively later times are
stacked vertically on top of it, filling out the data “cube”.
The signal processing of data in this form is also known as
space-time adaptive processing (STAP); see the book by
Guerci [21] for details.

The processed data “cube” (Figure 2) is composed of voxels
that have been manipulated (processed) by a number of
computational time steps. In the pictorial example shown
here, Weickert’s [22] anisotropic diffusion approach to
image processing has been generalized from its original 2-D
environment, that of processing individual images, to one
higher dimension—processing time sequences of images. In
its original, simpler 2-D form, pixel intensity values in an
image are smoothed in the direction parallel to object
boundaries and enhanced in the direction perpendicular to
object boundaries. In its generalized, 3-D version, voxel
intensity values in a data cube (time sequence of images)
are smoothed along (i.e., parallel to) object or track
boundaries and are enhanced across (i.e., perpendicular to)
object or track boundaries. In both the 2-D and 3-D cases,
diffusion tensors D are computed from the local neighbor-

Figure 2: Processed Data Cube of Voxels

hood of intensity values I (averaging occurs in spatial
dimensions alone for the 2-D case and with the temporal
dimension included for the 3-D case). These D tensors are
then substituted into the PDE that implements the
anisotropic diffusion process, namely:

)(/ IDdivI ����� � (9)

The variable � represents a sort of pseudo-time, during
which the intensity values I are allowed to gradually diffuse
according to Equation (9). For the 2-D case, the ‘div’ and
‘� ’ operators involve partial derivatives along image rows
and columns and the diffusion tensor D is a 2 by 2 matrix.
In the 3-D case (shown in Figures 1 and 2), the ‘div’ and
‘� ’ operators involve partial derivatives along not only
image rows and columns but also along the vertical (time)
axis, and the diffusion tensor D is a 3 by 3 matrix.

A primary goal of the processing for this target tracker
example case involves forming a segmentation of the data
“cube” into target tracks and everything else. Segmentation
at least starts to occur in the anisotropic diffusion phase that
transforms Figure 1 into Figure 2. Cottet and El Ayyadi
[23] address the issue of when to stop the diffusion process
so that a “hand-off” can occur to other needed processing;
there are other ways of selecting a stopping point.
Meandering, cylindrical-like data “tubes” that extend
through the data “cube” from bottom to top (past to future)
could represent the “world lines” of targets or the
occurrence of ignorable items in the background clutter.
Several conclusions can be drawn from the appearance of
Figure 2. Looking at the front panel of the cube, one can see
that the sensor was panning the scene from right to left, first
at a slow rate, then at a faster rate. One can also tell that
only a very poor (if any) non-uniformity correction (NUC)
was applied to the image sensor, due to the systematic pixel
biases that remain in the data cube, appearing as vertically
oriented pattern lines in the front panel.

After the first, segmentation phase of data processing is
accomplished, the selection and labeling of potential target
tracks from amongst the set of candidate “tubes” lying
within the data cube is the second major goal of the
POMDP tracker model. Many other tricky, ‘judgment-type’
decisions must be made in order to complete the
construction of a model tracker. For example: What
restrictions should be placed on target locations, velocities,
and accelerations? What conditions should be placed on
creating, terminating, merging, and bifurcating tracks?
What probabilities should be used as cutoff values for the
above decisions? When should the next group of image
snapshots be optimally added to the analysis? Then, after
answering all of these types of questions, before one can
have any confidence in the tracker, extensive testing must
be performed, using appropriate data. None of these latter
portions of the tracker analysis are carried out here, but they
must be included in any decent POMDP model of a tracker.

Finally, what does it mean to “solve” a POMDP? Basically,
it means finding an optimal policy (and set of adjustable
parameters) for the POMDP. A policy is a means of
selecting an action to take at a given time point
(computational step number), based on one’s belief state for
the system. Policies are compared based upon their value
functions, which are weighted time averages of reward
functions. Algorithms for solving POMDP problems are
divided into at least two classes: value iteration algorithms
and policy iteration algorithms (c.f., Baxter et al. [19, 20]).

2 Applying quantum algorithms to POMDPs

Before considering the potential applications of quantum
algorithms, we first draw some comparisons between
quantum and classical computing. In classical computers,
the bit (or Cbit, for classical bit) is the basic unit for storing
information. In quantum computers the corresponding
storage unit is the quantum bit (shortened to qubit, or Qbit).
An excellent tutorial on Cbits and Qbits is available in

Mermin [24], with more extensive background and detailed
information available in the textbook by Nielsen and
Chuang [25]. Very briefly, there are several key differences
between Cbits and Qbits. Whereas Cbits may only take on
the values (states) of 0 or 1 and are always explicitly
available, Qbits are normalized complex linear
combinations of two states:

10 ��� �� (9)

The complex numbers � and � are determined only

probabilistically, that is, after measurement the qubit is

either in the state 0 with probability
2

� or in state 1

with probability
2

� . Normalization guarantees that

1
22
�� �� (10)

When one has n Cbits, there are n2 special orthonormal
states; the corresponding set of n Qbit states, however,
resides in an enormously larger space, a Hilbert space—the
set of all linear combinations of classical basis states with
complex coefficients (amplitudes). This is a primary
contributor to the algorithmic advantage of quantum
algorithms over classical algorithms. Unitary operators are
the basic tools of quantum algorithms, they are linear norm-
preserving operators on the n Qbit states, mapping one such
state into another.

2.1 Quantum Fourier transform
Shor’s algorithm [1, 2] computes a quantum Fourier
transform (QFT) of N data points in the order of (log N)2

steps, compared to the classical Fast Fourier Transform
(FFT) algorithm which requires on the order of (N log N)
steps. Unlike the situation with the classical algorithm,
where all of the Fourier transformed (output) frequencies
are available, with the QFT this is not the case—one may
only sample the transform at a few points; the whole suite
of N transformed values is not available. This makes sense,
since one should not expect to obtain N results while only
performing (log N)2 computational steps. (Shor [1, 2]
cleverly worked around this “limited output” restriction and
was able to factor large composite integers by building up
his “answer” in a particular component of the Fourier
transform.) In a similar fashion it is possible to compute the
integral or summation of function values very efficiently by
quantum Fourier transforming a set of values and then
sampling the “DC” component of the transform. In the
context of computational work on POMDPs, the QFT could
be useful for efficiently evaluating path integrals or
summations of value functions.

Another possible application of the QFT to POMDP
processing lies in its use in pattern recognition, based on the
work by Schützhold [26]. From his work, Figure 3 shows a
32 by 20 pixel binary test image with an embedded 8 by 8
checkerboard pattern located left of center and slightly
higher than midpoint. Away from the regular pattern, half
of the pixels are randomly selected to be ‘on’, the other half
‘off’.

Figure 3: Binary Test Image with Embedded 8 by 8
Checkerboard Pattern

Schützhold [26] demonstrates the exponential speed-up that
the QFT has over classical methods for finding and
identifying the regular pattern within the test image.
Generalizable to three-dimensional data sets, the same
approach can, in principle, be used to search for certain
patterns (tracks) within 3-D data cubes such as the one
shown in Figure 2.

2.2 Quantum unstructured search algorithm
Grover’s algorithm [7] is used to perform unstructured
searches for particular items, finding them amongst the total
of N possible listed entries in only O(N1/2) steps; this
compares to the O(N) steps that are required using the best
classical search algorithms. Based on the article by
Williams [27], there are many opportunities to apply this
quantum search algorithmic approach when analyzing
POMDPs, since such unstructured searches occur naturally
in several contexts: e.g., finding locations of extreme values
and selecting amongst competing policies or potential
reward functions. Quoting from Williams [27], “Quantum
search has turned out to be remarkably versatile.” and “We
can also use quantum search to determine statistical
properties—such as means, medians, maxima, and
minima—of functions in the square root of the number of
steps needed to compute these properties classically to the
same precision.”

2.3 Quantum adiabatic evolution algorithm
A general description of this class of quantum algorithms is
given first. Start with the time-dependent Schrödinger
equation (where units have been chosen so that � is unity):

)()()()/(ttHtdtdi ��� (11)

Then define the time-varying Hamiltonian by:

)()/()()/1()(0 tHTttHTttH F��� (12)

Thus,

)0()0(0HtH �� (13)

and

)()(THTtH F�� (14)

The initial Hamiltonian, H(t=0), i.e., the “starting” system,
and its ground state wave function, |� (0)>, the “starting”
solution, are both known quantities. The final Hamiltonian,
H(t=T), i.e., the “target” system, is also known, but its
corresponding wave function |� (T)>, the desired “target”
solution, is unknown. Calculating this latter quantity,
|� (T)>, is the whole purpose of this particular quantum
algorithm. The algorithm derives its name from the
Quantum Adiabatic Theorem, which, roughly stated, is:

Quantum Adiabatic Theorem: If H(t) varies slowly
enough, then the state of the system |� (t)>, if initially
started in the ground state, will remain in the instantaneous
ground state of the Hamiltonian for all t values.

Adiabatic quantum algorithms use this theorem and
approach from quantum mechanics to obtain the desired
solution |� (T)> by slowly evolving |� (0)>.

There are two obvious questions (pitfalls) regarding the
practical physical implementation of this adiabatic solution
approach, they are: (1) How slow is slow? and (2) How
large should T be? Numerous research papers have
addressed these and other important issues on a variety of
sample problems, with varying degrees of success.

The versions of quantum adiabatic evolution algorithms
proposed by Farhi et al. [8] and Hogg [9] may be used to
solve various optimization problems more efficiently than
classical algorithms. Their general conclusions, however,
were contested by van Dam et al. [28]: “Is adiabatic
quantum computing really quantum? …we give a simple
example of a computational problem on which the adiabatic
quantum algorithm provably takes exponential time.
Although the problem is easy to solve classically, it is
designed to be difficult for algorithms based on local
search: its global optimum lies in a narrow basin, while
there is a local optimum with a much larger basin. …the
gap between the minimum and second eigenvalue of the
Hamiltonian of the system is exponentially small.”

So, the question still remains how well this quantum
approach would work on the numerous types of
optimization problems that commonly occur when
analyzing POMDPs. The work by Steffen et al. [29] is
encouraging: using NMR technology, they successfully
implemented a 3 qubit adiabatic quantum optimization
algorithm in an experiment that solved a simple problem.

Returning to van Dam et al. [28], “This paradigm [adiabatic
quantum computation] bears some resemblance to
simulated annealing, in the sense that the algorithm starts
from an initial disordered state, and homes in on a solution
(by what could be described as quantum local search) as a
parameter ‘�’ is smoothly varied from 0 to 1.” The
parameter ‘�’ in simulated annealing plays a role similar to
that of time ‘t’ in the quantum adiabatic algorithm.

Following Feynman’s maxim, “The same equations have
the same solutions”, one is led to the Chow-Yorke
algorithm [30], a “homotopy continuation” method, as a
promising approach to use for solving adiabatic quantum
algorithms.

This leads to the point of departure that our analysis takes
from the analysis in [28]. Instead of starting from an initial
disordered state, the initial state that we decide to use is
carefully chosen so that it exactly solves a known, simpler
version of the problem. Then, using homotopy continuation
techniques, the original state (point) satisfying the simpler
problem conditions, is smoothly varied until a solution of
the desired, more complex problem is reached. By using the
more robust Chow-Yorke algorithm [30], situations when
‘�’, the commonly used continuation variable, doubles back
on itself may be successfully handled by using arc length in
a higher dimensional space as the continuation variable.
The system of equations is slightly more complicated, but
this is more than compensated for by increased solution
robustness.

Figure 4: Chow-Yorke Continuation Scenario

This “doubling back” scenario is shown in Figure 4, taken
from [30]. By using arc length as the independent variable,
and integrating along the curve from � = 0 to � = 1, one can
successfully follow the curve all the way along its entire
course. If one were to use � as the independent variable,
however, after starting at the point � = 0 the calculation
would get “stuck” at the first turning point, where � is
slightly more than halfway across the rectangular region in
Figure 4, and not reach the solution point at � = 1.

3 Future Directions

DARPA’s Focused Quantum Systems (FoQuS) program is
anticipated to address the computationally difficult problem
of factoring large composite numbers. With the great
emphasis that will necessarily be placed on new and
existing methods of quantum error correction, efforts in this
area will likely have beneficial results for many other
problem areas addressed by quantum algorithms.

Just as there is a natural fit between homotopy continuation
methods (mathematics) and the quantum adiabatic theorem
(physics), there appears to be another natural fit between a
fairly obscure mathematical tool and the physical problem
of quantum error correction.

The mathematical tool is called continuous orthonormal-
ization and is useful for solving two-point boundary value
problems and initial value problems. Davey [31] and Meyer
[32] are key early references to the method. First developed
to solve stiff systems of linear ODE’s, the original system is
converted into two non-stiff operators, one of which is
nonlinear. (This doubles the size of the system.) The
nonlinear system is constructed to advance an orthonormal
coordinate frame. With this approach, independent
solutions to the ODE automatically maintain their
orthogonality at all times, a particularly useful property for
problems with nonlinear or free (i.e., location unknown)
boundary conditions. The method is extremely reliable and
especially suitable for high-order differential systems.
Problems with rapid oscillations, turning points, and
boundary layers are overcome. In one example, an Orr-
Sommerfeld flow problem with a Reynolds number of 109

was easily solved. In short, the continuous
orthonormalization algorithmic approach seems made to
order for modeling systems governed by quantum physics.
The importance of maintaining linearity properties of
quantum mechanics cannot be stressed enough, for the
consequences of nonlinearity in quantum computers are
quite radical. Abrams and Lloyd [33] have shown that
nonlinear quantum mechanics implies polynomial-time
solution for NP-complete and #P problems.

While working on these types of problems (both classical
and quantum), it is useful to keep in mind that some of the
really important questions do not yet have definitive
answers. For example, the question of the (in)equivalence
of complexity classes NP and P remains unsettled. It also
has not yet been proven that determining a composite
number’s prime factors lies in NP. Surprises sometimes do
occur; witness the recent proof by Agrawal et al. [34] that
determining whether a number is prime or not lies in
complexity class P.

4 Conclusions

This article presents several ways that quantum algorithms
can be used to speed up the analysis and solution of
computationally intense portions of partially observable
Markov decision processes—searching, pattern matching,
and parameter optimization and estimation, to name just a
few. Future numerical studies are expected to confirm the
theoretical scaling behavior and performance of the
algorithms. With new papers coming online, such as the
recent one by Romanelli et al. [35] that synthesizes
quantum algorithms and Markov processes, the future for
applying quantum algorithms to POMDPs looks very bright
indeed.

This work was supported by the DARPA QuIST program.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency (DARPA) or the U.S. Government.

References

[1] P. W. Shor, “Algorithms for quantum computation:
discrete logarithms and factoring,” in Proceedings,
35th Annual Symposium on Foundations of Computer
Science, IEEE Press, Los Alamitos, CA, pp.~124--
134, 1994; or quant-ph/9508027.

[2] P. W. Shor, “Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer,” SIAM J. Computing, Vol. 26, pp.~1484--
1509, 1997.

[3] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S.
Yannoni, M. H. Sherwood, and I. L. Chuang,
“Experimental realization of Shor’s quantum factoring
algorithm using nuclear magnetic resonance,” Nature,
Vol. 414, pp.~883--887, 20/27 Dec. 2001, or
quant-ph/0112176.

[4] L. A. Levin, “The Tale of One-Way Functions,”
Problems of Information Transmission, Vol. 39,
pp.~92--103, 2003; or cs/0012013.

[5] D. Gottesman, “An Introduction to Quantum Error
Correction,” in quant-ph/0004072.

[6] A. M. Steane, “Quantum Computing and Error
Correction,” in quant-ph/0304016.

[7] L. Grover, “Quantum mechanics helps in searching for
a needle in a haystack,” Phys. Rev. Lett., Vol. 79,
pp.~325--328, 1997, or quant-ph/9706033.

[8] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A.
Lundgren, and D. Preda, “A quantum adiabatic
evolution algorithm applied to random instances of an
NP-complete problem,” Science, Vol. 292, pp.~472--
476, Apr. 2001.

[9] T. Hogg, “Quantum Search Heuristics,” Phys. Rev. A,
Vol. 61, Issue 5, pp.~052311, 2000.

[10] A. C. Doherty, S. Habib, K. Jacobs, H. Mabuchi, and
S. M. Tan, “Quantum feedback control and classical
control theory,” Phys. Rev. A, Vol. 62, pp.~012105,
2000.

[11] F. Verstraete, A. C. Doherty, and H. Mabuchi,
“Sensitivity optimization in quantum parameter
estimation,” Phys. Rev. A, Vol. 64, pp.~032111, 2001.

[12] D. A. Meyer, “Quantum Strategies,” Phys. Rev. Lett.,
Vol. 82, pp.~1052--1055, 1999.

[13] R. P. Feynman, “There’s Plenty of Room at the
Bottom,” speech at Caltech, December 1959,
www.zyvex.com/nanotech/feynman.html

[14] R. P. Feynman, “Simulating physics with computers,”
Int. J. Theor. Phys., Vol. 21, pp.~467--488, 1982.

[15] M. L. Littman, from his web site at the following URL
www.cs.duke.edu/~mlittman/topics/pomdp-page.html

[16] W. Zhang, “Algorithms for partially observable
Markov decision processes,” Ph.D. dissertation, Dept.
of Computer Science, Hong Kong Univ. of Science
and Technology, 2001.

[17] S. Aaronson, from his website at the URL:
www.cs.berkeley.edu/~aaronson/zoo.html

[18] A. R. Cassandra, from his web site at the URL:
www.cs.brown.edu/research/ai/pomdp/tutorial/index.h
tml

[19] J. Baxter and P. L. Bartlett, “Direct Gradient-Based
Reinforcement Learning: I. Gradient Estimation
Algorithms,” Technical Report, Research School of
Information Sciences and Engineering, Australian
National University, July 1999.

[20] J. Baxter, L. Weaver, and P. L. Bartlett, “Direct
Gradient-Based Reinforcement Learning: II. Gradient
Ascent Algorithms and Experiments,” Technical
Report, Research School of Information Sciences and
Engineering, Australian National University, Sept.
1999.

[21] J. R. Guerci, Space-Time Adaptive Processing for
Radar, Artech House, Aug. 2003.

[22] J. Weickert, Anisotropic Diffusion Image Processing,
Teubner-Verlag, Stuttgart, Germany, 1998. See also:
www.mia.uni-saarland.de/weickert/publications.html
for numerous updates.

[23] G.-H. Cottet and M. El Ayyadi, “Nonlinear PDE
Operators with Memory Terms for Image Processing,”
Proc. IEEE Int. Conf. on Image Processing (ICIP-96),
Lausanne, Vol. 1, pp.~481--483, 16-19 Sep. 1996.

[24] N. David Mermin, “From Cbits to Qbits: Teaching
computer scientists quantum mechanics,” Am. J.
Phys., Vol. 71, pp.~23--30, Jan. 2003.

[25] M. A. Nielsen and I. L. Chuang, Quantum
Computation and Quantum Information, Cambridge
University Press, Cambridge, 2000.

[26] R. Schützhold, “Pattern recognition on a quantum
computer,” quant-ph/0208063, 2002.

[27] C. P. Williams, “Quantum Search Algorithms in
Science and Engineering,” Computing in Science and
Engineering, AIP/IEEE Computer Society, pp.~44--
51, March/April 2001.

[28] W. van Dam, M. Mosca, and U. Vazirani, “How
powerful is adiabatic quantum computation?,”

Proceedings of the 42nd Annual Symposium on
Foundations of Computer Science, pp.~279--
287,2001.

[29] M. Steffen, W. van Dam, T. Hogg, G. Breyta, and I.
Chuang, “Experimental implementation of an
adiabatic quantum optimization algorithm,” in
quant-ph/0302057.

[30] S. N. Chow, J. Mallet-Paret, and J. A. Yorke, “Finding
zeros of maps: Homotopy methods that are
constructive with probability one,” Mathematics of
Computation, Vol. 32, pp.~887--899, 1978.

[31] A. J. Davey, “An automatic orthonormalization
method for solving stiff boundary value problems,” J.
Comp. Phys., Vol. 51, pp.~343--356, 1983.

[32] G. J. Meyer, “Continuous orthonormalization for
boundary value problems,” J. Comp. Phys., Vol. 62,
pp.~248--262, 1985.

[33] D. S. Abrams and S. Lloyd, “Nonlinear quantum
mechanics implies polynomial-time solution for NP-
complete and #P problems,” Phys. Rev. Lett., Vol. 81,
pp.~3992--3995, 1998, or quant-ph/9801041.

[34] M. Agrawal, N. Kayal, and N. Saxena, “Primes is in
P,” available at www.cse.iitk.ac.in/primality.pdf,
2002.

[35] A. Romanelli, A. C. Sicardi Schifino, R. Siri, G. Abal,
A. Auyuanet, and R. Donangelo, “Quantum Random
Walk on the Line as a Markovian Process,” in
quant-ph/0310171.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Latha
 /LucidaConsole
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MT-Extra
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sshlinedraw
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

